parse_utils.py 17.1 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import re
from copy import copy
from typing import Dict, Any, List, Tuple
from tests import is_attr, is_input, is_output, is_vec


def to_named_dict(items: List[Dict]) -> Dict[str, Dict]:
    named_dict = {}
    for item in items:
        if "name" not in item:
            raise KeyError(f"name not in {item}")
        name = item["name"]
        named_dict[name] = item
    return named_dict


def parse_arg(api_name: str, s: str) -> Dict[str, str]:
    """parse an argument in following formats:
    1. typename name
    2. typename name = default_value
    """
    typename, rest = [item.strip() for item in s.split(" ", 1)]
    assert len(
        typename
    ) > 0, f"The arg typename should not be empty. Please check the args of {api_name} in yaml."

    assert rest.count(
        "=") <= 1, f"There is more than 1 = in an arg in {api_name}"
    if rest.count("=") == 1:
        name, default_value = [item.strip() for item in rest.split("=", 1)]
        assert len(
            name
        ) > 0, f"The arg name should not be empty. Please check the args of {api_name} in yaml."
        assert len(
            default_value
        ) > 0, f"The default value should not be empty. Please check the args of {api_name} in yaml."
        return {
            "typename": typename,
            "name": name,
            "default_value": default_value
        }
    else:
        name = rest.strip()
        assert len(
            name
        ) > 0, f"The arg name should not be empty. Please check the args of {api_name} in yaml."
        return {"typename": typename, "name": name}


def parse_input_and_attr(api_name: str,
                         arguments: str) -> Tuple[List, List, Dict, Dict]:
    args_str = arguments.strip()
    assert args_str.startswith('(') and args_str.endswith(')'), \
        (f"Args declaration should start with '(' and end with ')', "
         f"please check the args of {api_name} in yaml.")
    args_str = args_str[1:-1]
    args = parse_plain_list(args_str)

    inputs = []
    attrs = []

    met_attr_with_default_value = False

    for arg in args:
        item = parse_arg(api_name, arg)
        typename = item["typename"]
        name = item["name"]
        if is_input(typename):
            assert len(attrs) == 0, \
                (f"The input Tensor should appear before attributes. "
                f"please check the position of {api_name}:input({name}) "
                f"in yaml.")
            inputs.append(item)
        elif is_attr(typename):
            if met_attr_with_default_value:
                assert "default_value" in item, f"{api_name}: Arguments with default value should not precede those without default value"
            elif "default_value" in item:
                met_attr_with_default_value = True
            attrs.append(item)
        else:
            raise KeyError(f"{api_name}: Invalid argument type {typename}.")
    return inputs, attrs


def parse_output(api_name: str, s: str) -> Dict[str, str]:
    """parse an output, typename or typename(name)."""
    match = re.search(
        r"(?P<out_type>[a-zA-Z0-9_[\]]+)\s*(?P<name>\([a-zA-Z0-9_@]+\))?\s*(?P<expr>\{[^\}]+\})?",
        s)
    typename = match.group("out_type")
    name = match.group("name")
    size_expr = match.group("expr")

    name = name[1:-1] if name is not None else 'out'
    size_expr = size_expr[1:-1] if size_expr is not None else None

    assert is_output(typename), \
        (f"Invalid output type: {typename} in api: {api_name}."
            f"Supported types are Tensor and Tensor[]")
    if size_expr is not None:
        assert is_vec(typename), \
            (f"Invalid output size: output {name} in api: {api_name} is "
             f"not a vector but has size expr")
        return {"typename": typename, "name": name, "size": size_expr}
    else:
        return {"typename": typename, "name": name}


def parse_outputs(api_name: str, outputs: str) -> List[Dict]:
    outputs = parse_plain_list(outputs, sep=",")
    output_items = []
    for output in outputs:
        output_items.append(parse_output(api_name, output))
    return output_items


def parse_infer_meta(infer_meta: Dict[str, Any]) -> Dict[str, Any]:
    infer_meta = copy(infer_meta)  # to prevent mutating the input
    if "param" not in infer_meta:
        infer_meta["param"] = None
    return infer_meta


def parse_candidates(s: str) -> Dict[str, Any]:
    "parse candidates joined by either '>'(ordered) or ','(unordered)"
    delimiter = ">" if ">" in s else ","
    ordered = delimiter == ">"
    candidates = parse_plain_list(s, delimiter)
    return {"ordered": ordered, "candidates": candidates}


def parse_plain_list(s: str, sep=",") -> List[str]:
    items = [item.strip() for item in s.strip().split(sep)]
    return items


151 152
def parse_kernel(api_name: str, kernel_config: Dict[str,
                                                    Any]) -> Dict[str, Any]:
153 154 155 156 157 158
    # kernel :
    #    func : [], Kernel functions (example: scale, scale_sr)
    #    param : [], Input params of kernel
    #    backend : str, the names of param to choose the kernel backend, default is None
    #    layout : str, the names of param to choose the kernel layout, default is None
    #    data_type : str, the names of param to choose the kernel data_type, default is None
159
    #    dispatch : {}, the key is kernel_func, the value is type of inputs and outputs for kernel (example: {kernel_name : (['dense','sparse_coo']#input,['sparse_coo']#output)})
160
    kernel = {
161
        'func': [],  # up to 2 function names
162 163 164
        'param': None,
        'backend': None,
        'layout': None,
165 166
        'data_type': None,
        'dispatch': {}
167 168 169 170 171 172 173 174 175 176 177 178
    }
    if 'param' in kernel_config:
        kernel['param'] = kernel_config['param']

    if 'backend' in kernel_config:
        kernel['backend'] = parse_candidates(kernel_config["backend"])

    if 'layout' in kernel_config:
        kernel['layout'] = parse_candidates(kernel_config["layout"])

    if 'data_type' in kernel_config:
        kernel['data_type'] = parse_candidates(kernel_config["data_type"])
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206

    kernel_funcs = re.compile(r'([a-zA-Z0-9_]+)\s*({[^}]+})?').findall(
        kernel_config['func'])

    def parse_kernel_in_out_type(in_out_str):
        if len(in_out_str) == 0:
            return None
        tmp_in_out_list = in_out_str[1:-1].split('->')
        inputs = [item.strip() for item in tmp_in_out_list[0].split(',')]
        outputs = [item.strip() for item in tmp_in_out_list[1].split(',')]

        # check the tensor type
        for item in inputs:
            assert item in [
                'dense', 'selected_rows', 'sparse_coo', 'sparse_csr'
            ], f"{api_name} : Invalid input tensor type ('{item}'), here we only support 'dense', 'selected_rows', 'sparse_coo' and 'sparse_csr'."
        for item in outputs:
            assert item in [
                'dense', 'selected_rows', 'sparse_coo', 'sparse_csr'
            ], f"{api_name} : Invalid output tensor type ('{item}'), here we only support 'dense', 'selected_rows', 'sparse_coo' and 'sparse_csr'."

        return (inputs, outputs)

    for func_item in kernel_funcs:
        kernel['func'].append(func_item[0])
        kernel['dispatch'][func_item[0]] = parse_kernel_in_out_type(
            func_item[1])

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
    return kernel


def parse_inplace(api_name: str, inplace_cfg: str) -> Dict[str, str]:
    inplace_map = {}
    inplace_cfg = inplace_cfg.lstrip("(").rstrip(")")
    pairs = parse_plain_list(inplace_cfg)
    for pair in pairs:
        in_name, out_name = parse_plain_list(pair, sep="->")
        inplace_map[out_name] = in_name
    return inplace_map


def parse_invoke(api_name: str, invoke_config: str) -> Dict[str, Any]:
    invoke_config = invoke_config.strip()
    func, rest = invoke_config.split("(", 1)
    func = func.strip()
    args = rest.rstrip(")").strip()
    invocation = {"func": func, "args": args}
    return invocation


def extract_type_and_name(records: List[Dict]) -> List[Dict]:
    """extract type and name from forward call, it is simpler than forward api."""
    extracted = [{
        "name": item["name"],
        "typename": item["typename"]
    } for item in records]
    return extracted


def parse_forward(api_name: str, forward_config: str) -> Dict[str, Any]:
    # api_name (const Tensor& input, ... , int attr, ...) -> Tensor(out)
    result = re.search(
241
        r"(?P<op>[a-z][a-z0-9_]+)\s*(?P<args>\([^\)]+\))\s*->\s*(?P<outputs>.+)",
242
        forward_config)
243
    api = result.group("op")
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
    outputs = parse_outputs(api_name, result.group("outputs"))
    outputs = extract_type_and_name(outputs)

    inputs, attrs = parse_input_and_attr(api_name, result.group("args"))
    inputs = extract_type_and_name(inputs)
    attrs = extract_type_and_name(attrs)
    forward_cfg = {
        "name": api,
        "inputs": inputs,
        "attrs": attrs,
        "outputs": outputs
    }
    return forward_cfg


259
def parse_api_entry(api_entry: Dict[str, Any], name_field="op"):
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
    api_name = api_entry[name_field]
    inputs, attrs = parse_input_and_attr(api_name, api_entry["args"])
    outputs = parse_outputs(api_name, api_entry["output"])

    # validate default value of DataType and DataLayout
    for attr in attrs:
        if "default_value" in attr:
            typename = attr["typename"]
            default_value = attr["default_value"]
            if typename == "DataType":
                assert "DataType" in default_value, f"invalid DataType default value in {api_name}"
                # remove namespace
                default_value = default_value[default_value.find("DataType"):]
                attr["default_value"] = default_value
            elif typename == "DataLayout":
                assert "DataLayout" in default_value, f"invalid DataLayout default value in {api_name}"
                default_value = default_value[default_value.find("DataLayout"):]
                attr["default_value"] = default_value

    input_names = [item["name"] for item in inputs]
    attr_names = [item["name"] for item in attrs]
    output_names = [item["name"] for item in outputs]

    # add optional tag for every input
    for input in inputs:
        input["optional"] = False
    if "optional" in api_entry:
        optional_args = parse_plain_list(api_entry["optional"])
        for name in optional_args:
            assert name in input_names, f"{api_name} has an optional input: '{name}' which is not an input."
        for input in inputs:
            if input["name"] in optional_args:
                input["optional"] = True

    # add intermediate tag for every output
    for output in outputs:
        output["intermediate"] = False
    if "intermediate" in api_entry:
        intermediate_outs = parse_plain_list(api_entry["intermediate"])
        for name in intermediate_outs:
            assert name in output_names, f"{api_name} has an intermediate output: '{name}' which is not an output."
        for output in outputs:
            if output["name"] in intermediate_outs:
                output["intermediate"] = True

    # add no_need_buffer for every input
    for input in inputs:
        input["no_need_buffer"] = False
    if "no_need_buffer" in api_entry:
        no_buffer_args = parse_plain_list(api_entry["no_need_buffer"])
        for name in no_buffer_args:
            assert name in input_names, f"{api_name} has an no buffer input: '{name}' which is not an input."
        for input in inputs:
            if input["name"] in no_buffer_args:
                input["no_need_buffer"] = True
    else:
        no_buffer_args = None

    # TODO(chenfeiyu): data_transform

    api = {
        "name": api_name,
        "inputs": inputs,
        "attrs": attrs,
        "outputs": outputs,
        "no_need_buffer": no_buffer_args
    }

    # invokes another api?
    is_base_api = "invoke" not in api_entry

    if is_base_api:
        # kernel
        kernel = parse_kernel(api_name, api_entry["kernel"])
        if kernel["param"] is None:
            kernel["param"] = input_names + attr_names

        # infer meta
        infer_meta = parse_infer_meta(api_entry["infer_meta"])
        if infer_meta["param"] is None:
            infer_meta["param"] = copy(kernel["param"])

        # inplace
        if "inplace" in api_entry:
            inplace_pairs = parse_inplace(api_name, api_entry["inplace"])
        else:
            inplace_pairs = None
        api.update({
            "infer_meta": infer_meta,
            "kernel": kernel,
            "inplace": inplace_pairs
        })
    else:
        # invoke
        invoke = parse_invoke(api_name, api_entry["invoke"])
        api["invoke"] = invoke

    # backward
    if "backward" in api_entry:
        backward = api_entry["backward"]
    else:
        backward = None
    api["backward"] = backward

    # forward for backward_apis
365
    is_backward_api = name_field == "backward_op"
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
    if is_backward_api:
        if "forward" in api_entry:
            forward = parse_forward(api_name, api_entry["forward"])
            # validate_fb
            validate_backward_inputs(api_name, forward["inputs"],
                                     forward["outputs"], inputs)
            validate_backward_attrs(api_name, forward["attrs"], attrs)
            validate_backward_outputs(api_name, forward["inputs"], outputs)
        else:
            forward = None
        api["forward"] = forward
    return api


def validate_backward_attrs(api, forward_attrs, backward_attrs):
    if len(forward_attrs) >= len(backward_attrs):
        return
    num_exceptional_attrs = len(backward_attrs) - len(forward_attrs)
    # this is a not-that-clean trick to allow backward api to has more attrs
    # than the forward api, as long as they all have default value
    for i in range(-num_exceptional_attrs, 0):
        assert "default_value" in backward_attrs[
            i], f"{api} has exceptional attr without default value"


def validate_backward_inputs(api, forward_inputs, forward_outputs,
                             backward_inputs):
    foward_input_names = [item["name"] for item in forward_inputs]
    forward_output_names = [item["name"] for item in forward_outputs]
    backward_input_names = [item["name"] for item in backward_inputs]

    assert len(backward_input_names) <= len(foward_input_names) + 2 * len(
        forward_output_names), f"{api} has too many inputs."


def validate_backward_outputs(api, forward_inputs, backward_outputs):
    assert len(backward_outputs) <= len(
        forward_inputs), f"{api} has too many outputs"


def cross_validate(apis):
    for name, api in apis.items():
        if "forward" in api:
            fw_call = api["forward"]
            fw_name = fw_call["name"]
            if fw_name not in apis:
                print(
                    f"Something Wrong here, this backward api({name})'s forward api({fw_name}) does not exist."
                )
            else:
                fw_api = apis[fw_name]
                if "backward" not in fw_api or fw_api["backward"] is None:
                    print(
                        f"Something Wrong here, {name}'s forward api({fw_name}) does not claim {name} as its backward."
                    )
                else:
                    assert fw_api[
                        "backward"] == name, f"{name}: backward and forward name mismatch"

                assert len(fw_call["inputs"]) <= len(
                    fw_api["inputs"]
                ), f"{name}: forward call has more inputs than the api"
                for (input, input_) in zip(fw_call["inputs"], fw_api["inputs"]):
                    assert input["typename"] == input_[
                        "typename"], f"type mismatch in {name} and {fw_name}"

                assert len(fw_call["attrs"]) <= len(
                    fw_api["attrs"]
                ), f"{name}: forward call has more attrs than the api"
                for (attr, attr_) in zip(fw_call["attrs"], fw_api["attrs"]):
                    if attr["typename"] == "Scalar":
                        # special case for Scalar, fw_call can omit the type
                        assert re.match(
                            r"Scalar(\(\w+\))*", attr_["typename"]
                        ), f"type mismatch in {name} and {fw_name}"
                    else:
                        assert attr["typename"] == attr_[
                            "typename"], f"type mismatch in {name} and {fw_name}"

                assert len(fw_call["outputs"]) == len(
                    fw_api["outputs"]
                ), f"{name}: forward call has more outputs than the api"
                for (output, output_) in zip(fw_call["outputs"],
                                             fw_api["outputs"]):
                    assert output["typename"] == output_[
                        "typename"], f"type mismatch in {name} and {fw_name}"