common.py 7.1 KB
Newer Older
Y
Yi Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import paddle.fluid as fluid
from paddle.fluid import core, unique_name
from ..base.private_helper_function import wait_server_ready

OpRole = core.op_proto_and_checker_maker.OpRole

OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()
OP_ROLE_VAR_KEY = core.op_proto_and_checker_maker.kOpRoleVarAttrName()


def is_update_op(op):
    return 'Param' in op.input_names and 'Grad' in op.input_names and \
            "LearningRate" in op.input_names


def is_loss_grad_op(op):
    if OP_ROLE_KEY not in op.attr_names:
        return False
    op_role = int(op.all_attrs()[OP_ROLE_KEY])
    return op_role & int(OpRole.Backward) and op_role & int(OpRole.Loss)


def is_backward_op(op):
    return OP_ROLE_KEY in op.attr_names and \
            int(op.all_attrs()[OP_ROLE_KEY]) & int(OpRole.Backward)


def is_optimizer_op(op):
    return OP_ROLE_KEY in op.attr_names and \
            int(op.all_attrs()[OP_ROLE_KEY]) & int(OpRole.Optimize)


class CollectiveHelper(object):
50
    def __init__(self, role_maker, nrings=1, wait_port=True):
Y
Yi Liu 已提交
51 52 53 54 55 56 57 58 59
        self.nrings = nrings
        self.wait_port = wait_port
        self.role_maker = role_maker

    def update_startup_program(self, startup_program=None):
        self.startup_program = startup_program
        if startup_program is None:
            self.startup_program = fluid.default_startup_program()

60 61
        endpoints = self.role_maker._get_trainer_endpoints()
        current_endpoint = endpoints[self.role_maker._worker_index()]
Y
Yi Liu 已提交
62 63 64
        for ring_id in range(self.nrings):
            self._init_communicator(
                self.startup_program, current_endpoint, endpoints,
65
                self.role_maker._worker_index(), ring_id, self.wait_port)
Y
Yi Liu 已提交
66 67
        self._broadcast_params()

68 69 70 71 72 73 74 75 76
    def _init_communicator(self,
                           program,
                           current_endpoint,
                           endpoints,
                           rank,
                           ring_id,
                           wait_port,
                           global_ring_id=None,
                           sync=True):
Y
Yi Liu 已提交
77 78 79 80 81 82
        nranks = len(endpoints)
        other_endpoints = endpoints[:]
        other_endpoints.remove(current_endpoint)
        if rank == 0 and wait_port:
            wait_server_ready(other_endpoints)

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
        def _add_sync_by_allreduce(block):
            sync_var = block.create_var(
                name=unique_name.generate('sync_var'),
                dtype=core.VarDesc.VarType.INT32,
                persistable=False,
                stop_gradient=True)
            block.append_op(
                type='fill_constant',
                inputs={},
                outputs={'Out': [sync_var]},
                attrs={
                    'shape': [1],
                    'dtype': sync_var.dtype,
                    'value': 1,
                    'force_cpu': False,
                    OP_ROLE_KEY: OpRole.Forward
                })
            block.append_op(
                type='c_allreduce_sum',
                inputs={'X': [sync_var]},
                outputs={'Out': [sync_var]},
                attrs={
                    'ring_id': global_ring_id,
                    'use_calc_stream': True,
                    OP_ROLE_KEY: OpRole.Forward
                })
109 110 111 112 113
            block.append_op(
                type='c_sync_calc_stream',
                inputs={'X': sync_var},
                outputs={'Out': sync_var},
                attrs={OP_ROLE_KEY: OpRole.Forward})
114

Y
Yi Liu 已提交
115
        block = program.global_block()
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
        if core.is_compiled_with_cuda():
            comm_id_var = block.create_var(
                name=unique_name.generate('nccl_id'),
                persistable=True,
                type=core.VarDesc.VarType.RAW)
            block.append_op(
                type='c_gen_nccl_id',
                inputs={},
                outputs={'Out': comm_id_var},
                attrs={
                    'rank': rank,
                    'endpoint': current_endpoint,
                    'other_endpoints': other_endpoints,
                    OP_ROLE_KEY: OpRole.Forward
                })
            block.append_op(
                type='c_comm_init',
                inputs={'X': comm_id_var},
                outputs={},
                attrs={
                    'nranks': nranks,
                    'rank': rank,
                    'ring_id': ring_id,
                    OP_ROLE_KEY: OpRole.Forward
                })
        elif core.is_compiled_with_xpu():
            comm_id_var = block.create_var(
                name=unique_name.generate('bkcl_id'),
                persistable=True,
                type=core.VarDesc.VarType.RAW)
            block.append_op(
                type='c_gen_bkcl_id',
                inputs={},
                outputs={'Out': comm_id_var},
                attrs={
                    'rank': rank,
                    'endpoint': current_endpoint,
                    'other_endpoints': other_endpoints,
                    OP_ROLE_KEY: OpRole.Forward
                })
            block.append_op(
                type='c_comm_init',
                inputs={'X': comm_id_var},
                outputs={},
                attrs={
                    'nranks': nranks,
                    'rank': rank,
                    'ring_id': ring_id,
                    OP_ROLE_KEY: OpRole.Forward
                })
        else:
            raise ValueError(
                "comm_id must be generated in paddlepaddle-xpu or paddlepaddle-xpu."
            )
170
        if sync: _add_sync_by_allreduce(block)
Y
Yi Liu 已提交
171

172 173 174 175 176 177
    def _wait(self, current_endpoint, endpoints):
        assert (self.wait_port)
        other_endpoints = endpoints[:]
        other_endpoints.remove(current_endpoint)
        wait_server_ready(other_endpoints)

Y
Yi Liu 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
    def _broadcast_params(self):
        block = self.startup_program.global_block()
        ring_id = -1
        for param in block.iter_parameters():
            if param.is_distributed:
                continue

            ring_id = (ring_id + 1) % self.nrings
            block.append_op(
                type='c_broadcast',
                inputs={'X': param},
                outputs={'Out': param},
                attrs={
                    'ring_id': ring_id,
                    'root': 0,
                    OP_ROLE_KEY: OpRole.Forward
                })

        for ring_id in range(self.nrings):
            block.append_op(
                type='c_sync_comm_stream',
                inputs={'X': param},
                outputs={'Out': param},
                attrs={'ring_id': ring_id,
                       OP_ROLE_KEY: OpRole.Forward})