fake_dequantize_op.cc 7.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fake_dequantize_op.h"
#include <string>
17
#include <vector>
18 19 20 21

namespace paddle {
namespace operators {

22 23 24 25 26 27 28 29 30 31
template <typename T>
struct DequantizeFunctor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& dev_ctx,
                  const framework::Tensor* in, const framework::Tensor* scale,
                  T max_range, framework::Tensor* out) {
    auto in_e = framework::EigenVector<T>::Flatten(*in);
    const T* scale_factor = scale->data<T>();
    auto out_e = framework::EigenVector<T>::Flatten(*out);

    auto& dev = *dev_ctx.eigen_device();
32
    out_e.device(dev) = in_e * scale_factor[0] / max_range;
33 34 35
  }
};

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
template <typename T>
struct ChannelDequantizeFunctor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& dev_ctx,
                  const framework::Tensor* in, const framework::Tensor** scales,
                  const int scale_num, T max_range, framework::Tensor* out) {
    if (scale_num == 1) {
      const int channel = in->dims()[0];
      const T* scale_factor = scales[0]->data<T>();
      for (int i = 0; i < channel; i++) {
        T s = scale_factor[i];
        framework::Tensor one_channel_in = in->Slice(i, i + 1);
        framework::Tensor one_channel_out = out->Slice(i, i + 1);
        auto in_e = framework::EigenVector<T>::Flatten(one_channel_in);
        auto out_e = framework::EigenVector<T>::Flatten(one_channel_out);
        auto& dev = *dev_ctx.eigen_device();
51
        out_e.device(dev) = in_e * s / max_range;
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
      }
    } else if (scale_num == 2) {
      int batch_size = in->dims()[0];
      int channel = in->dims()[1];
      const T* scale_one = scales[0]->data<T>();
      const T* scale_two = scales[1]->data<T>();
      for (int i = 0; i < batch_size; i++) {
        framework::Tensor one_batch_in = in->Slice(i, i + 1).Resize(
            framework::slice_ddim(in->dims(), 1, in->dims().size()));
        framework::Tensor one_batch_out = out->Slice(i, i + 1).Resize(
            framework::slice_ddim(out->dims(), 1, out->dims().size()));
        for (int j = 0; j < channel; j++) {
          T s = scale_one[j];
          framework::Tensor one_channel_in = one_batch_in.Slice(j, j + 1);
          framework::Tensor one_channel_out = one_batch_out.Slice(j, j + 1);
          auto in_e = framework::EigenVector<T>::Flatten(one_channel_in);
          auto out_e = framework::EigenVector<T>::Flatten(one_channel_out);
          auto& dev = *dev_ctx.eigen_device();
70
          out_e.device(dev) = in_e * s * scale_two[0] / max_range;
71 72 73 74 75 76
        }
      }
    }
  }
};

77 78
template struct DequantizeFunctor<platform::CPUDeviceContext, float>;
template struct DequantizeFunctor<platform::CPUDeviceContext, double>;
79 80
template struct ChannelDequantizeFunctor<platform::CPUDeviceContext, float>;
template struct ChannelDequantizeFunctor<platform::CPUDeviceContext, double>;
81

82 83
class FakeDequantizeMaxAbsOp : public framework::OperatorWithKernel {
 public:
84 85 86 87
  FakeDequantizeMaxAbsOp(const std::string& type,
                         const framework::VariableNameMap& inputs,
                         const framework::VariableNameMap& outputs,
                         const framework::AttributeMap& attrs)
88 89
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

90
  void InferShape(framework::InferShapeContext* ctx) const override {
91 92 93
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "FakeDequantizeMaxAbs");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out",
                   "FakeDequantizeMaxAbs");
94 95

    ctx->ShareDim("X", /*->*/ "Out");
96 97 98 99 100 101 102 103 104 105
    ctx->ShareLoD("X", /*->*/ "Out");
  }
};

class FakeDequantizeMaxAbsOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(Tensor) The input with float-32/64 type is the "
             "low precision tensor.");
106
    AddInput("Scale", "(float) The scale in quantization stage.");
107 108 109
    AddOutput("Out",
              "(Tensor) The output is the dequantized high "
              "precision tensor.");
110
    AddAttr<float>("max_range", "(float) The max range in quantization stage.");
111 112 113 114 115
    AddComment(R"DOC(
FakeDequantizeMaxAbsOp operator.

This calculation is an opposite operation of FakeQuantizeMaxAbsOp:

116
$$Out = \frac{scale*X}{ max_range }$$
117 118 119 120 121

)DOC");
  }
};

Z
Zhen Wang 已提交
122 123 124 125 126
class FakeChannelWiseDequantizeMaxAbsOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
127 128 129 130 131 132
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X",
                   "FakeChannelWiseDequantizeMaxAbs");
    OP_INOUT_CHECK(ctx->HasInputs("Scales"), "Input", "Scales",
                   "FakeChannelWiseDequantizeMaxAbs");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out",
                   "FakeChannelWiseDequantizeMaxAbs");
Z
Zhen Wang 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145

    ctx->ShareDim("X", /*->*/ "Out");
    ctx->ShareLoD("X", /*->*/ "Out");
  }
};

class FakeChannelWiseDequantizeMaxAbsOpMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(Tensor) The input with float-32/64 type is the "
             "low precision tensor.");
146 147 148 149 150 151
    AddInput("Scales",
             "(Tensors) The scales in quantization stage. "
             "Now, `Scales` is a vector with at most two tensors. "
             "If Scales has two elements, the second tensor should only have "
             "one value.")
        .AsDuplicable();
Z
Zhen Wang 已提交
152 153 154
    AddOutput("Out",
              "(Tensor) The output is the dequantized high "
              "precision tensor.");
155 156 157 158 159
    AddAttr<std::vector<int>>(
        "quant_bits",
        "Quantization bit numbers in quantization stage. "
        "The size of `quant_bits` should be equal to the size of `Scales`.")
        .SetDefault({8});
Z
Zhen Wang 已提交
160 161 162 163 164 165

    AddComment(R"DOC(
FakeChannelWiseDequantizeMaxAbsOp operator.

This calculation is an opposite operation of FakeChannelWiseQuantizeMaxAbsOp:

166
$$Out_c = \frac{X_c\prod_{i=1}^{n}Scales_{ic}}{\prod_{i=1}^{n}(2^{quant\_bits_i-1}-1)}$$
Z
Zhen Wang 已提交
167

168 169
In the above formula, the range value of $c$ can be represented as $0 \leq c \lt \ the\ channel\ number\ of\ X$.
Besides, the size of $quant\_bits$ should be equal to the size of $Scales$, and it is called $n$  in the formula.
Z
Zhen Wang 已提交
170

171
Notes: In general, the per-channel quantization is only applied to weights and the activations use per-layer quantization.
Z
Zhen Wang 已提交
172 173 174 175
)DOC");
  }
};

176 177 178 179 180 181
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
using CPU = paddle::platform::CPUDeviceContext;

H
hong 已提交
182 183 184 185 186
REGISTER_OPERATOR(
    fake_dequantize_max_abs, ops::FakeDequantizeMaxAbsOp,
    ops::FakeDequantizeMaxAbsOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
187 188 189
REGISTER_OP_CPU_KERNEL(fake_dequantize_max_abs,
                       ops::FakeDequantizeMaxAbsKernel<CPU, float>,
                       ops::FakeDequantizeMaxAbsKernel<CPU, double>);
Z
Zhen Wang 已提交
190

H
hong 已提交
191 192 193 194 195 196
REGISTER_OPERATOR(
    fake_channel_wise_dequantize_max_abs,
    ops::FakeChannelWiseDequantizeMaxAbsOp,
    ops::FakeChannelWiseDequantizeMaxAbsOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
Z
Zhen Wang 已提交
197 198 199
REGISTER_OP_CPU_KERNEL(fake_channel_wise_dequantize_max_abs,
                       ops::FakeChannelWiseDequantizeMaxAbsKernel<CPU, float>,
                       ops::FakeChannelWiseDequantizeMaxAbsKernel<CPU, double>);