Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
89dee160
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
89dee160
编写于
3月 05, 2019
作者:
Z
Zhen Wang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add channel wise dequantize op.
上级
545247d7
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
201 addition
and
4 deletion
+201
-4
paddle/fluid/operators/fake_dequantize_op.cc
paddle/fluid/operators/fake_dequantize_op.cc
+72
-0
paddle/fluid/operators/fake_dequantize_op.cu
paddle/fluid/operators/fake_dequantize_op.cu
+4
-0
paddle/fluid/operators/fake_dequantize_op.h
paddle/fluid/operators/fake_dequantize_op.h
+51
-0
paddle/fluid/operators/fake_quantize_op.cc
paddle/fluid/operators/fake_quantize_op.cc
+3
-4
python/paddle/fluid/tests/unittests/test_fake_dequantize_op.py
...n/paddle/fluid/tests/unittests/test_fake_dequantize_op.py
+71
-0
未找到文件。
paddle/fluid/operators/fake_dequantize_op.cc
浏览文件 @
89dee160
...
...
@@ -76,6 +76,70 @@ $$Out = \frac{scale*X}{ max_range }$$
}
};
class
FakeChannelWiseDequantizeMaxAbsOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of FakeChannelWiseDequantizeMaxAbsOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"WeightScales"
),
"Input(WeightScales) of FakeChannelWiseDequantizeMaxAbsOp "
"should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of FakeChannelWiseDequantizeMaxAbsOp should not be null."
);
ctx
->
ShareDim
(
"X"
,
/*->*/
"Out"
);
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
};
class
FakeChannelWiseDequantizeMaxAbsOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"(Tensor) The input with float-32/64 type is the "
"low precision tensor."
);
AddInput
(
"ActivationScale"
,
"(float) The activation scale in quantization stage."
)
.
AsDispensable
();
AddInput
(
"WeightScales"
,
"(float array) The weight scales in quantization stage."
);
AddOutput
(
"Out"
,
"(Tensor) The output is the dequantized high "
"precision tensor."
);
AddAttr
<
int
>
(
"activation_bits"
,
"Quantization bit number for activation."
)
.
SetDefault
(
8
)
.
AddCustomChecker
([](
const
int
&
bit_length
)
{
PADDLE_ENFORCE
(
bit_length
>=
1
&&
bit_length
<=
16
,
"'activation_bits' should be between 1 and 16."
);
});
AddAttr
<
int
>
(
"weight_bits"
,
"Quantization bit number for weights."
)
.
SetDefault
(
8
)
.
AddCustomChecker
([](
const
int
&
bit_length
)
{
PADDLE_ENFORCE
(
bit_length
>=
1
&&
bit_length
<=
16
,
"'weight_bits' should be between 1 and 16."
);
});
AddComment
(
R"DOC(
FakeChannelWiseDequantizeMaxAbsOp operator.
This calculation is an opposite operation of FakeChannelWiseQuantizeMaxAbsOp:
$$Out_c = \frac{ActivationScale*WeightScale_c*X_c}{(2^{weight\_bits-1}-1)*(2^{activation\_bits-1}-1)}$$
In the above formula, the range value of c is as follow:
$$0 \leq c \lt \ the\ channel\ number\ of\ X$$
Notes: Tha per-channel quantization is only applied to weights(channel size scale).
And the activations use per-layer quantization(only one scale).
)DOC"
);
}
};
}
// namespace operators
}
// namespace paddle
...
...
@@ -88,3 +152,11 @@ REGISTER_OPERATOR(fake_dequantize_max_abs, ops::FakeDequantizeMaxAbsOp,
REGISTER_OP_CPU_KERNEL
(
fake_dequantize_max_abs
,
ops
::
FakeDequantizeMaxAbsKernel
<
CPU
,
float
>
,
ops
::
FakeDequantizeMaxAbsKernel
<
CPU
,
double
>
);
REGISTER_OPERATOR
(
fake_channel_wise_dequantize_max_abs
,
ops
::
FakeChannelWiseDequantizeMaxAbsOp
,
ops
::
FakeChannelWiseDequantizeMaxAbsOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
);
REGISTER_OP_CPU_KERNEL
(
fake_channel_wise_dequantize_max_abs
,
ops
::
FakeChannelWiseDequantizeMaxAbsKernel
<
CPU
,
float
>
,
ops
::
FakeChannelWiseDequantizeMaxAbsKernel
<
CPU
,
double
>
);
paddle/fluid/operators/fake_dequantize_op.cu
浏览文件 @
89dee160
...
...
@@ -55,3 +55,7 @@ using CUDA = paddle::platform::CUDADeviceContext;
REGISTER_OP_CUDA_KERNEL
(
fake_dequantize_max_abs
,
ops
::
FakeDequantizeMaxAbsKernel
<
CUDA
,
float
>
,
ops
::
FakeDequantizeMaxAbsKernel
<
CUDA
,
double
>
);
REGISTER_OP_CUDA_KERNEL
(
fake_channel_wise_dequantize_max_abs
,
ops
::
FakeChannelWiseDequantizeMaxAbsKernel
<
CUDA
,
float
>
,
ops
::
FakeChannelWiseDequantizeMaxAbsKernel
<
CUDA
,
double
>
);
paddle/fluid/operators/fake_dequantize_op.h
浏览文件 @
89dee160
...
...
@@ -45,5 +45,56 @@ class FakeDequantizeMaxAbsKernel : public framework::OpKernel<T> {
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
FakeChannelWiseDequantizeMaxAbsKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
virtual
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
auto
*
in
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
weight_scales
=
ctx
.
Input
<
framework
::
Tensor
>
(
"WeightScales"
);
auto
*
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
PADDLE_ENFORCE_EQ
(
weight_scales
->
numel
(),
in
->
dims
()[
0
],
"The weight uses the per-channel quantization type, so "
"the number of weight scale values must be the same with "
"first dimension value of Input(X)."
);
int
ativation_bits
=
ctx
.
Attr
<
int
>
(
"activation_bits"
);
int
weight_bits
=
ctx
.
Attr
<
int
>
(
"weight_bits"
);
int
range
=
std
::
pow
(
2
,
weight_bits
-
1
)
-
1
;
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
out
->
mutable_data
<
T
>
(
dev_ctx
.
GetPlace
());
auto
dequant
=
DequantizeFunctor
<
DeviceContext
,
T
>
();
if
(
ctx
.
HasInput
(
"ActivationScale"
))
{
auto
*
activation_scale
=
ctx
.
Input
<
framework
::
Tensor
>
(
"ActivationScale"
);
PADDLE_ENFORCE_EQ
(
activation_scale
->
numel
(),
1
,
"The activation uses per-layer quantization type, so "
"it must have only one value."
);
framework
::
Tensor
cpu_weigth_scales
;
framework
::
TensorCopy
(
*
weight_scales
,
platform
::
CPUPlace
(),
&
cpu_weigth_scales
);
dev_ctx
.
Wait
();
const
T
*
weight_scales_data
=
cpu_weigth_scales
.
data
<
T
>
();
range
*=
(
std
::
pow
(
2
,
ativation_bits
-
1
)
-
1
);
for
(
int64_t
i
=
0
;
i
<
in
->
dims
()[
0
];
i
++
)
{
framework
::
Tensor
one_channel_in
=
in
->
Slice
(
i
,
i
+
1
);
framework
::
Tensor
one_channel_out
=
out
->
Slice
(
i
,
i
+
1
);
auto
max_range
=
range
/
weight_scales_data
[
i
];
dequant
(
dev_ctx
,
&
one_channel_in
,
activation_scale
,
static_cast
<
T
>
(
max_range
),
&
one_channel_out
);
}
}
else
{
for
(
int64_t
i
=
0
;
i
<
in
->
dims
()[
0
];
i
++
)
{
framework
::
Tensor
one_channel_in
=
in
->
Slice
(
i
,
i
+
1
);
framework
::
Tensor
one_channel_out
=
out
->
Slice
(
i
,
i
+
1
);
framework
::
Tensor
one_channel_scale
=
weight_scales
->
Slice
(
i
,
i
+
1
);
dequant
(
dev_ctx
,
&
one_channel_in
,
&
one_channel_scale
,
static_cast
<
T
>
(
range
),
&
one_channel_out
);
}
}
}
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/fake_quantize_op.cc
浏览文件 @
89dee160
...
...
@@ -180,11 +180,10 @@ The scale of FakeChannelWiseQuantize operator is a vector.
In detail, each channel of the input X has a scale value.
$$scale_c = max(abs(X_c))$$
$$range = 2^{bit_length - 1} - 1$$
$$Out_c = round(X_c / scale_c * range)$$
$$range = 2^{bit\_length - 1} - 1$$
$$Out_c = round(\frac{X_c * range} {scale_c})$$
In above three formulas, the range value of c is as follow:
$$0 \leq c \l
eq
\ the\ channel\ number\ of\ X$$
$$0 \leq c \l
t
\ the\ channel\ number\ of\ X$$
)DOC"
);
}
};
...
...
python/paddle/fluid/tests/unittests/test_fake_dequantize_op.py
浏览文件 @
89dee160
...
...
@@ -31,6 +31,77 @@ def dequantize_max_abs(x, scale, max_range):
return
y
def
channel_wise_quantize_max_abs
(
x
,
max_range
):
scales
=
[]
for
i
in
range
(
x
.
shape
[
0
]):
scales
.
append
(
np
.
max
(
np
.
abs
(
x
[
i
])).
astype
(
"float32"
))
y
=
x
.
copy
()
for
i
,
scale
in
enumerate
(
scales
):
y
[
i
]
=
np
.
round
(
y
[
i
]
/
scale
*
max_range
)
return
y
,
scales
def
channel_wise_dequantize_max_abs
(
x
,
scales
,
max_range
):
y
=
x
.
copy
()
for
i
in
range
(
x
.
shape
[
0
]):
y
[
i
]
=
(
scales
[
i
]
/
max_range
)
*
y
[
i
]
return
y
class
TestFakeChannelWiseDequantizeMaxAbsOp
(
OpTest
):
def
set_args
(
self
):
self
.
weight_bits
=
8
self
.
activation_bits
=
2
self
.
data_type
=
"float32"
def
setUp
(
self
):
self
.
set_args
()
self
.
op_type
=
"fake_channel_wise_dequantize_max_abs"
x
=
np
.
random
.
randn
(
4
,
3
,
64
,
64
).
astype
(
self
.
data_type
)
max_range
=
math
.
pow
(
2
,
self
.
weight_bits
-
1
)
-
1
yq
,
scales
=
channel_wise_quantize_max_abs
(
x
,
max_range
)
ydq
=
channel_wise_dequantize_max_abs
(
yq
,
scales
,
max_range
)
self
.
inputs
=
{
'X'
:
yq
,
'ActivationScale'
:
np
.
array
(
1.0
).
astype
(
self
.
data_type
),
'WeightScales'
:
np
.
array
(
scales
).
astype
(
self
.
data_type
)
}
self
.
attrs
=
{
'weight_bits'
:
self
.
weight_bits
,
'activation_bits'
:
self
.
activation_bits
}
self
.
outputs
=
{
'Out'
:
ydq
}
def
test_check_output
(
self
):
self
.
check_output
()
class
TestFakeChannelWiseDequantizeMaxAbsOpNoActivationScale
(
OpTest
):
def
set_args
(
self
):
self
.
weight_bits
=
8
self
.
data_type
=
"float32"
def
setUp
(
self
):
self
.
set_args
()
self
.
op_type
=
"fake_channel_wise_dequantize_max_abs"
x
=
np
.
random
.
randn
(
4
,
3
,
64
,
64
).
astype
(
self
.
data_type
)
max_range
=
math
.
pow
(
2
,
self
.
weight_bits
-
1
)
-
1
yq
,
scales
=
channel_wise_quantize_max_abs
(
x
,
max_range
)
ydq
=
channel_wise_dequantize_max_abs
(
yq
,
scales
,
max_range
)
self
.
inputs
=
{
'X'
:
yq
,
'WeightScales'
:
np
.
array
(
scales
).
astype
(
self
.
data_type
)
}
self
.
attrs
=
{
'weight_bits'
:
self
.
weight_bits
}
self
.
outputs
=
{
'Out'
:
ydq
}
def
test_check_output
(
self
):
self
.
check_output
()
class
TestFakeDequantizeMaxAbsOp
(
OpTest
):
def
set_args
(
self
):
self
.
num_bits
=
8
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录