nan_inf_utils_detail.cu 19.5 KB
Newer Older
W
WangXi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16 17
#include "paddle/fluid/framework/details/nan_inf_utils_detail.h"
#include "paddle/fluid/framework/details/nan_inf_utils.h"

W
WangXi 已提交
18 19 20 21
#include <algorithm>
#include <unordered_map>
#include <utility>
#include <vector>
22

23
#include "paddle/fluid/framework/convert_utils.h"
24
#include "paddle/fluid/framework/scope.h"
25 26 27
#include "paddle/phi/common/amp_type_traits.h"
#include "paddle/phi/kernels/funcs/math_cuda_utils.h"

28
DECLARE_int32(check_nan_inf_level);
W
WangXi 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

namespace paddle {
namespace framework {
namespace details {

static std::once_flag init_multi_gpu_op_var_map_flag;

// lazy init
static std::vector<std::unordered_map<std::string, memory::AllocationPtr>>&
multi_op_var2gpu_str() {
  static std::vector<std::unordered_map<std::string, memory::AllocationPtr>>
      _multi_op_var2gpu_str;
  return _multi_op_var2gpu_str;
}

static std::vector<std::mutex>& multi_op_var2gpu_str_mutex() {
  static std::vector<std::mutex> _multi_op_var2gpu_str_mutex;
  return _multi_op_var2gpu_str_mutex;
}

static void InitMultiGPUOpVarMap() {
50
  int dev_count = platform::GetGPUDeviceCount();
51 52
  PADDLE_ENFORCE_GT(dev_count,
                    0,
W
WangXi 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
                    platform::errors::NotFound(
                        "cuda device must > 0, now dev_count=%d", dev_count));

  // https://stackoverflow.com/questions/16465633/how-can-i-use-something-like-stdvectorstdmutex
  std::vector<std::unordered_map<std::string, memory::AllocationPtr>> tmp_multi(
      dev_count);
  std::vector<std::mutex> tmp_multi_mutex(dev_count);

  multi_op_var2gpu_str().swap(tmp_multi);
  multi_op_var2gpu_str_mutex().swap(tmp_multi_mutex);
}

template <typename T>
__device__ __forceinline__ void PrintNanInfKernel(const T* value,
                                                  const size_t numel,
                                                  int print_num,
                                                  char* debug_info) {
  const size_t tid = threadIdx.x + blockIdx.x * blockDim.x;

  __shared__ unsigned int nan_count, inf_count, num_count;
  if (threadIdx.x == 0) nan_count = inf_count = num_count = 0;
  __syncthreads;

  for (size_t i = tid; i < numel; i += blockDim.x * gridDim.x) {
    unsigned int count = 0;
    if (isnan(value[i])) {
      count = atomicAdd(&nan_count, 1);
    } else if (isinf(value[i])) {
      count = atomicAdd(&inf_count, 1);
    } else {
      count = atomicAdd(&num_count, 1);
    }
    // for cuda, print in every block
    if (count < print_num) {
87 88 89 90
      printf("numel:%lu idx:%lu value:%f\n",
             static_cast<uint64_t>(numel),
             static_cast<uint64_t>(i),
             static_cast<float>(value[i]));
W
WangXi 已提交
91 92 93 94
    }
  }
  __syncthreads;

95
#ifdef __HIPCC__
96
  if (true && hipThreadIdx_x == 0) {
97 98 99 100 101
    printf("In block %d, there has %u,%u,%u nan,inf,num\n",
           hipBlockIdx_x,
           nan_count,
           inf_count,
           num_count);
102
#else
W
WangXi 已提交
103
  if (true && threadIdx.x == 0) {
104 105 106 107 108
    printf("In block %d, there has %u,%u,%u nan,inf,num\n",
           blockIdx.x,
           nan_count,
           inf_count,
           num_count);
109
#endif
W
WangXi 已提交
110 111 112 113 114 115
    PADDLE_ENFORCE(false, "===ERROR: in %s find nan or inf===", debug_info);
  }
}

// Resnet 2gpus speed test, no check 270 images/s, this check 229 images/s
template <typename T>
116 117 118 119
__global__ void CheckNanInfKernel(const T* value,
                                  const size_t numel,
                                  int print_num,
                                  char* debug_info) {
W
WangXi 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
  /// step 1, judge wheater has nan or inf
  __shared__ volatile int has_nan_inf;
  if (threadIdx.x == 0) has_nan_inf = false;
  __syncthreads();

  const size_t tid = threadIdx.x + blockIdx.x * blockDim.x;
  T sum = static_cast<T>(0.0);
  // Todo(wangxi). simd speed up
  for (size_t i = tid; i < numel; i += blockDim.x * gridDim.x) {
    sum += (value[i] - value[i]);
  }

  if (isnan(sum) || isinf(sum)) has_nan_inf = true;
  __syncthreads();

  /// Note. different blocks may behave differently
  if (!has_nan_inf) return;

  PrintNanInfKernel(value, numel, print_num, debug_info);
}

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
template <typename T, int ReduceType>
__device__ T BlockReduce(T value) {
  __shared__ T shared_mem[1024];

  shared_mem[threadIdx.x] = value;
  __syncthreads();

  for (int stride = blockDim.x >> 1; stride > 0; stride = stride >> 1) {
    if (threadIdx.x < stride) {
      T value0 = shared_mem[threadIdx.x];
      T value1 = shared_mem[threadIdx.x + stride];
      T reduce_value;
      if (ReduceType == 0) {
        // max
        reduce_value = value0 > value1 ? value0 : value1;
      } else if (ReduceType == 1) {
        // min
        reduce_value = value0 < value1 ? value0 : value1;
      } else if (ReduceType == 2) {
        // sum
        reduce_value = value0 + value1;
      }
      shared_mem[threadIdx.x] = reduce_value;
    }

    if (stride > 16) {
      __syncthreads();
    }
  }

  __syncthreads();
  return shared_mem[0];
}

__device__ void BlockReduceNumNanInfAndWrite(const int64_t num_nan,
                                             const int64_t num_inf,
177
                                             const int64_t num_zero,
178 179
                                             int64_t offset,
                                             int64_t* num_nan_ptr,
180 181
                                             int64_t* num_inf_ptr,
                                             int64_t* num_zero_ptr) {
182 183
  int64_t block_num_nan = BlockReduce<int64_t, 2>(num_nan);
  int64_t block_num_inf = BlockReduce<int64_t, 2>(num_inf);
184
  int64_t block_num_zero = BlockReduce<int64_t, 2>(num_zero);
185 186 187 188

  if (threadIdx.x == 0) {
    num_nan_ptr[offset] = block_num_nan;
    num_inf_ptr[offset] = block_num_inf;
189
    num_zero_ptr[offset] = block_num_zero;
190 191 192
  }
}

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
template <
    typename T,
    std::enable_if_t<std::is_same<T, phi::dtype::complex<float>>::value ||
                         std::is_same<T, phi::dtype::complex<double>>::value,
                     bool> = true>
__device__ void BlockReduceMaxMinAndWrite(const T max_value,
                                          const T min_value,
                                          const T mean_value,
                                          int64_t offset,
                                          T* max_ptr,
                                          T* min_ptr,
                                          T* mean_ptr) {
  // TODO(Xreki): support complex
}

template <
    typename T,
    std::enable_if_t<!std::is_same<T, phi::dtype::complex<float>>::value &&
                         !std::is_same<T, phi::dtype::complex<double>>::value,
                     bool> = true>
__device__ void BlockReduceMaxMinAndWrite(const T max_value,
                                          const T min_value,
                                          const T mean_value,
                                          int64_t offset,
                                          T* max_ptr,
                                          T* min_ptr,
                                          T* mean_ptr) {
  if (max_ptr && min_ptr && mean_ptr) {
    __syncthreads();

223 224 225
    T block_max_value = phi::funcs::BlockReduceMax<T>(max_value, FINAL_MASK);
    T block_min_value = phi::funcs::BlockReduceMin<T>(min_value, FINAL_MASK);
    T block_mean_value = phi::funcs::BlockReduceSum<T>(mean_value, FINAL_MASK);
226 227 228 229 230 231 232 233 234 235 236 237

    if (threadIdx.x == 0) {
      max_ptr[offset] = block_max_value;
      min_ptr[offset] = block_min_value;
      mean_ptr[offset] = block_mean_value;
    }
  }
}

template <typename T, typename MT>
__global__ void FindNanInfAndBlockMaxMin(const T* value_ptr,
                                         const int64_t numel,
238 239
                                         int64_t* block_num_nan_ptr,
                                         int64_t* block_num_inf_ptr,
240
                                         int64_t* block_num_zero_ptr,
241 242 243 244 245
                                         MT* tensor_block_max_ptr,
                                         MT* tensor_block_min_ptr,
                                         MT* tensor_block_mean_ptr) {
  int64_t i = threadIdx.x + blockIdx.x * blockDim.x;

246 247
  int64_t num_nan = 0;
  int64_t num_inf = 0;
248
  int64_t num_zero = 0;
249

250 251 252 253 254 255 256 257 258 259 260
  MT max_value = static_cast<MT>(i < numel ? value_ptr[i] : value_ptr[0]);
  MT min_value = static_cast<MT>(i < numel ? value_ptr[i] : value_ptr[0]);
  MT mean_value = static_cast<MT>(0);
  for (; i < numel; i += blockDim.x * gridDim.x) {
    MT value = static_cast<MT>(value_ptr[i]);

    max_value = value > max_value ? value : max_value;
    min_value = value < min_value ? value : min_value;
    mean_value += value / static_cast<MT>(numel);

    if (isnan(value)) {
261 262 263
      num_nan += 1;
    } else if (isinf(value)) {
      num_inf += 1;
264
    }
265 266 267
    if (value == static_cast<MT>(0)) {
      num_zero += 1;
    }
268
  }
269

270 271 272 273 274 275 276
  BlockReduceNumNanInfAndWrite(num_nan,
                               num_inf,
                               num_zero,
                               blockIdx.x,
                               block_num_nan_ptr,
                               block_num_inf_ptr,
                               block_num_zero_ptr);
277 278 279 280 281 282 283 284 285 286

  BlockReduceMaxMinAndWrite<MT>(max_value,
                                min_value,
                                mean_value,
                                blockIdx.x,
                                tensor_block_max_ptr,
                                tensor_block_min_ptr,
                                tensor_block_mean_ptr);
}

287
template <typename T, typename MT>
288 289
__global__ void FindGlobalMaxMinAndPrint(const int64_t* block_num_nan_ptr,
                                         const int64_t* block_num_inf_ptr,
290
                                         const int64_t* block_num_zero_ptr,
291 292 293
                                         const MT* tensor_block_max_ptr,
                                         const MT* tensor_block_min_ptr,
                                         const MT* tensor_block_mean_ptr,
294 295 296
                                         const char* debug_info,
                                         int64_t numel,
                                         int64_t numel_max_min,
297
                                         int check_nan_inf_level) {
298
  if (blockIdx.x == 0 && threadIdx.x == 0) {
299 300
    int64_t num_nan = 0;
    int64_t num_inf = 0;
301
    int64_t num_zero = 0;
302 303 304 305 306

    // numel_max_min <= 128
    for (int64_t i = 0; i < numel_max_min; ++i) {
      num_nan += block_num_nan_ptr[i];
      num_inf += block_num_inf_ptr[i];
307
      num_zero += block_num_zero_ptr[i];
308
    }
309

310 311 312
    MT max_value = static_cast<MT>(0);
    MT min_value = static_cast<MT>(0);
    MT mean_value = static_cast<MT>(0);
313 314 315 316 317 318 319
    if (tensor_block_max_ptr && tensor_block_min_ptr && tensor_block_mean_ptr) {
      max_value = tensor_block_max_ptr[0];
      min_value = tensor_block_min_ptr[0];
      mean_value = tensor_block_mean_ptr[0];

      // numel_max_min <= 128
      for (int64_t i = 1; i < numel_max_min; ++i) {
320 321 322
        MT tmp_max_value = tensor_block_max_ptr[i];
        MT tmp_min_value = tensor_block_min_ptr[i];
        MT tmp_mean_value = tensor_block_mean_ptr[i];
323 324 325 326 327 328 329

        max_value = tmp_max_value > max_value ? tmp_max_value : max_value;
        min_value = tmp_min_value < min_value ? tmp_min_value : min_value;
        mean_value += tmp_mean_value;
      }
    }

330 331 332 333
    PrintForDifferentLevel<T, MT>(debug_info,
                                  numel,
                                  num_nan,
                                  num_inf,
334
                                  num_zero,
335 336 337 338
                                  max_value,
                                  min_value,
                                  mean_value,
                                  check_nan_inf_level);
339 340 341
  }
}

W
WangXi 已提交
342
template <typename T>
343
inline std::string GetHintString(const std::string& op_type,
344
                                 const std::string& var_name,
345 346 347
                                 const phi::Place& place,
                                 int dev_id = -1) {
  std::string op_var = GetCpuHintString<T>(op_type, var_name, place, dev_id);
W
WangXi 已提交
348
  PADDLE_ENFORCE_EQ(
349 350
      (dev_id >= 0 && dev_id < multi_op_var2gpu_str_mutex().size()),
      true,
W
WangXi 已提交
351 352
      platform::errors::OutOfRange("GPU dev_id must >=0 and < dev_count=%d",
                                   multi_op_var2gpu_str_mutex().size()));
353 354
  return op_var;
}
W
WangXi 已提交
355

356 357 358 359 360
template <typename T>
static char* GetGpuHintStringPtr(const phi::GPUContext& ctx,
                                 const std::string& op_type,
                                 const std::string& var_name,
                                 int dev_id) {
361
  std::string op_var =
362
      GetHintString<T>(op_type, var_name, ctx.GetPlace(), dev_id);
363
  char* gpu_str_ptr = nullptr;
W
WangXi 已提交
364 365 366 367 368 369 370

  {
    auto& op_var2gpu_str_mutex = multi_op_var2gpu_str_mutex().at(dev_id);
    auto& op_var2gpu_str = multi_op_var2gpu_str().at(dev_id);

    std::lock_guard<std::mutex> guard(op_var2gpu_str_mutex);
    if (op_var2gpu_str.find(op_var) == op_var2gpu_str.end()) {  // insert
371
      auto gpu_str_tensor = paddle::memory::Alloc(
372
          ctx.GetPlace(),
373
          op_var.length() + 1,
374
          phi::Stream(reinterpret_cast<phi::StreamId>(ctx.stream())));
W
WangXi 已提交
375 376 377 378 379
      gpu_str_ptr = reinterpret_cast<char*>(gpu_str_tensor->ptr());

      op_var2gpu_str.emplace(op_var, std::move(gpu_str_tensor));

      auto iter = op_var2gpu_str.find(op_var);
380 381
      PADDLE_ENFORCE_EQ(iter != op_var2gpu_str.end(),
                        true,
W
WangXi 已提交
382 383 384 385 386
                        platform::errors::PreconditionNotMet(
                            "op_var=%s should successed insert into "
                            "op_var2gpu_str, but now failed",
                            op_var));

387
#ifdef __HIPCC__
388 389 390 391
      PADDLE_ENFORCE_GPU_SUCCESS(hipMemcpyAsync(gpu_str_ptr,
                                                iter->first.c_str(),
                                                op_var.length() + 1,
                                                hipMemcpyHostToDevice,
392
                                                ctx.stream()));
393
#else
394 395 396 397
      PADDLE_ENFORCE_GPU_SUCCESS(cudaMemcpyAsync(gpu_str_ptr,
                                                 iter->first.c_str(),
                                                 op_var.length() + 1,
                                                 cudaMemcpyHostToDevice,
398
                                                 ctx.stream()));
399
#endif
W
WangXi 已提交
400 401
    } else {  // get
      auto iter = op_var2gpu_str.find(op_var);
402 403
      PADDLE_ENFORCE_EQ(iter != op_var2gpu_str.end(),
                        true,
W
WangXi 已提交
404 405 406 407 408 409 410
                        platform::errors::PreconditionNotMet(
                            "op_var=%s should be in the op_var2gpu_str, but "
                            "now can't find it",
                            op_var));
      gpu_str_ptr = reinterpret_cast<char*>(iter->second->ptr());
    }
  }
411 412 413 414 415 416 417 418 419 420 421 422 423 424
  return gpu_str_ptr;
}

template <>
template <typename T>
void TensorCheckerVisitor<phi::GPUContext>::apply(
    typename std::enable_if<
        std::is_floating_point<T>::value ||
        std::is_same<T, ::paddle::platform::complex<float>>::value ||
        std::is_same<T, ::paddle::platform::complex<double>>::value>::type*)
    const {
  auto* dev_ctx = reinterpret_cast<phi::GPUContext*>(
      platform::DeviceContextPool::Instance().Get(tensor.place()));
  int dev_id = tensor.place().device;
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
  // Write log to file
  auto file_path = GetNanPath();
  if (file_path.size() > 0) {
    phi::DenseTensor cpu_tensor;
    platform::CPUPlace cpu_place;
    cpu_tensor.Resize(tensor.dims());
    // 1. copy from gpu to cpu
    paddle::framework::TensorCopySync(tensor, cpu_place, &cpu_tensor);
    auto* dev_ctx = reinterpret_cast<phi::GPUContext*>(
        platform::DeviceContextPool::Instance().Get(tensor.place()));
    const std::string debug_info =
        GetHintString<T>(op_type, var_name, place, dev_id);
    // 2. write log to file
    CheckNanInfCpuImpl(cpu_tensor.data<T>(), tensor.numel(), debug_info, "gpu");
    return;
  }

  // Write log to window
443 444
  char* gpu_str_ptr =
      GetGpuHintStringPtr<T>(*dev_ctx, op_type, var_name, dev_id);
W
WangXi 已提交
445

446 447 448 449
#ifdef __HIPCC__
  // HIP will throw GPU memory access fault if threads > 256
  const size_t threads = 256;
#else
W
WangXi 已提交
450
  const size_t threads = 1024;
451
#endif
452 453
  size_t blocks =
      std::min(static_cast<size_t>(128),
454
               static_cast<size_t>((tensor.numel() + threads - 1) / threads));
455
#ifdef __HIPCC__
456 457
  int print_num = 3;

458 459 460 461 462
  hipLaunchKernelGGL(CheckNanInfKernel,
                     dim3(blocks),
                     dim3(threads),
                     0,
                     dev_ctx->stream(),
463 464
                     tensor.data<T>(),
                     tensor.numel(),
465 466
                     print_num,
                     gpu_str_ptr);
467
#else
468 469 470 471
  using MT = typename phi::dtype::MPTypeTrait<T>::Type;

  int64_t numel_max_min = blocks;

472 473
  phi::DenseTensor block_num_nan_inf_zero;
  block_num_nan_inf_zero.Resize({static_cast<int64_t>(3 * numel_max_min)});
474
  int64_t* block_num_nan_ptr =
475
      dev_ctx->template Alloc<int64_t>(&block_num_nan_inf_zero);
476
  int64_t* block_num_inf_ptr = block_num_nan_ptr + numel_max_min;
477
  int64_t* block_num_zero_ptr = block_num_inf_ptr + numel_max_min;
478

479 480
  phi::DenseTensor tensor_block_max_min;
  tensor_block_max_min.Resize({static_cast<int64_t>(3 * numel_max_min)});
481
  MT* tensor_block_max_ptr = dev_ctx->template Alloc<MT>(&tensor_block_max_min);
482 483 484 485
  MT* tensor_block_min_ptr = tensor_block_max_ptr + numel_max_min;
  MT* tensor_block_mean_ptr = tensor_block_max_ptr + 2 * numel_max_min;

  FindNanInfAndBlockMaxMin<T, MT>
486 487 488 489
      <<<blocks, threads, 0, dev_ctx->stream()>>>(tensor.data<T>(),
                                                  tensor.numel(),
                                                  block_num_nan_ptr,
                                                  block_num_inf_ptr,
490
                                                  block_num_zero_ptr,
491 492 493 494
                                                  tensor_block_max_ptr,
                                                  tensor_block_min_ptr,
                                                  tensor_block_mean_ptr);

495 496
  int check_nan_inf_level = FLAGS_check_nan_inf_level;
  FindGlobalMaxMinAndPrint<T, MT>
497 498
      <<<1, 1, 0, dev_ctx->stream()>>>(block_num_nan_ptr,
                                       block_num_inf_ptr,
499
                                       block_num_zero_ptr,
500 501 502 503
                                       tensor_block_max_ptr,
                                       tensor_block_min_ptr,
                                       tensor_block_mean_ptr,
                                       gpu_str_ptr,
504
                                       tensor.numel(),
505
                                       numel_max_min,
506
                                       check_nan_inf_level);
507
#endif
W
WangXi 已提交
508 509 510
}

template <>
L
Leo Chen 已提交
511 512
void tensor_check<phi::GPUContext>(const std::string& op_type,
                                   const std::string& var_name,
513
                                   const phi::DenseTensor& tensor,
L
Leo Chen 已提交
514
                                   const platform::Place& place) {
W
WangXi 已提交
515 516
  std::call_once(init_multi_gpu_op_var_map_flag, InitMultiGPUOpVarMap);

L
Leo Chen 已提交
517
  TensorCheckerVisitor<phi::GPUContext> vistor(
518
      op_type, var_name, tensor, place);
519
  VisitDataType(framework::TransToProtoVarType(tensor.dtype()), vistor);
W
WangXi 已提交
520 521 522 523 524
}

}  // namespace details
}  // namespace framework
}  // namespace paddle