nan_inf_utils_detail.cu 18.5 KB
Newer Older
W
WangXi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16 17
#include "paddle/fluid/framework/details/nan_inf_utils_detail.h"
#include "paddle/fluid/framework/details/nan_inf_utils.h"

W
WangXi 已提交
18 19 20 21
#include <algorithm>
#include <unordered_map>
#include <utility>
#include <vector>
22

23
#include "paddle/fluid/framework/convert_utils.h"
24
#include "paddle/fluid/framework/scope.h"
25 26 27
#include "paddle/phi/common/amp_type_traits.h"
#include "paddle/phi/kernels/funcs/math_cuda_utils.h"

28
DECLARE_int32(check_nan_inf_level);
W
WangXi 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

namespace paddle {
namespace framework {
namespace details {

static std::once_flag init_multi_gpu_op_var_map_flag;

// lazy init
static std::vector<std::unordered_map<std::string, memory::AllocationPtr>>&
multi_op_var2gpu_str() {
  static std::vector<std::unordered_map<std::string, memory::AllocationPtr>>
      _multi_op_var2gpu_str;
  return _multi_op_var2gpu_str;
}

static std::vector<std::mutex>& multi_op_var2gpu_str_mutex() {
  static std::vector<std::mutex> _multi_op_var2gpu_str_mutex;
  return _multi_op_var2gpu_str_mutex;
}

static void InitMultiGPUOpVarMap() {
50
  int dev_count = platform::GetGPUDeviceCount();
51 52
  PADDLE_ENFORCE_GT(dev_count,
                    0,
W
WangXi 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
                    platform::errors::NotFound(
                        "cuda device must > 0, now dev_count=%d", dev_count));

  // https://stackoverflow.com/questions/16465633/how-can-i-use-something-like-stdvectorstdmutex
  std::vector<std::unordered_map<std::string, memory::AllocationPtr>> tmp_multi(
      dev_count);
  std::vector<std::mutex> tmp_multi_mutex(dev_count);

  multi_op_var2gpu_str().swap(tmp_multi);
  multi_op_var2gpu_str_mutex().swap(tmp_multi_mutex);
}

template <typename T>
__device__ __forceinline__ void PrintNanInfKernel(const T* value,
                                                  const size_t numel,
                                                  int print_num,
                                                  char* debug_info) {
  const size_t tid = threadIdx.x + blockIdx.x * blockDim.x;

  __shared__ unsigned int nan_count, inf_count, num_count;
  if (threadIdx.x == 0) nan_count = inf_count = num_count = 0;
  __syncthreads;

  for (size_t i = tid; i < numel; i += blockDim.x * gridDim.x) {
    unsigned int count = 0;
    if (isnan(value[i])) {
      count = atomicAdd(&nan_count, 1);
    } else if (isinf(value[i])) {
      count = atomicAdd(&inf_count, 1);
    } else {
      count = atomicAdd(&num_count, 1);
    }
    // for cuda, print in every block
    if (count < print_num) {
87 88 89 90
      printf("numel:%lu idx:%lu value:%f\n",
             static_cast<uint64_t>(numel),
             static_cast<uint64_t>(i),
             static_cast<float>(value[i]));
W
WangXi 已提交
91 92 93 94
    }
  }
  __syncthreads;

95
#ifdef __HIPCC__
96
  if (true && hipThreadIdx_x == 0) {
97 98 99 100 101
    printf("In block %d, there has %u,%u,%u nan,inf,num\n",
           hipBlockIdx_x,
           nan_count,
           inf_count,
           num_count);
102
#else
W
WangXi 已提交
103
  if (true && threadIdx.x == 0) {
104 105 106 107 108
    printf("In block %d, there has %u,%u,%u nan,inf,num\n",
           blockIdx.x,
           nan_count,
           inf_count,
           num_count);
109
#endif
W
WangXi 已提交
110 111 112 113 114 115
    PADDLE_ENFORCE(false, "===ERROR: in %s find nan or inf===", debug_info);
  }
}

// Resnet 2gpus speed test, no check 270 images/s, this check 229 images/s
template <typename T>
116 117 118 119
__global__ void CheckNanInfKernel(const T* value,
                                  const size_t numel,
                                  int print_num,
                                  char* debug_info) {
W
WangXi 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
  /// step 1, judge wheater has nan or inf
  __shared__ volatile int has_nan_inf;
  if (threadIdx.x == 0) has_nan_inf = false;
  __syncthreads();

  const size_t tid = threadIdx.x + blockIdx.x * blockDim.x;
  T sum = static_cast<T>(0.0);
  // Todo(wangxi). simd speed up
  for (size_t i = tid; i < numel; i += blockDim.x * gridDim.x) {
    sum += (value[i] - value[i]);
  }

  if (isnan(sum) || isinf(sum)) has_nan_inf = true;
  __syncthreads();

  /// Note. different blocks may behave differently
  if (!has_nan_inf) return;

  PrintNanInfKernel(value, numel, print_num, debug_info);
}

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
template <typename T, int ReduceType>
__device__ T BlockReduce(T value) {
  __shared__ T shared_mem[1024];

  shared_mem[threadIdx.x] = value;
  __syncthreads();

  for (int stride = blockDim.x >> 1; stride > 0; stride = stride >> 1) {
    if (threadIdx.x < stride) {
      T value0 = shared_mem[threadIdx.x];
      T value1 = shared_mem[threadIdx.x + stride];
      T reduce_value;
      if (ReduceType == 0) {
        // max
        reduce_value = value0 > value1 ? value0 : value1;
      } else if (ReduceType == 1) {
        // min
        reduce_value = value0 < value1 ? value0 : value1;
      } else if (ReduceType == 2) {
        // sum
        reduce_value = value0 + value1;
      }
      shared_mem[threadIdx.x] = reduce_value;
    }

    if (stride > 16) {
      __syncthreads();
    }
  }

  __syncthreads();
  return shared_mem[0];
}

__device__ void BlockReduceNumNanInfAndWrite(const int64_t num_nan,
                                             const int64_t num_inf,
                                             int64_t offset,
                                             int64_t* num_nan_ptr,
                                             int64_t* num_inf_ptr) {
  int64_t block_num_nan = BlockReduce<int64_t, 2>(num_nan);
  int64_t block_num_inf = BlockReduce<int64_t, 2>(num_inf);

  if (threadIdx.x == 0) {
    num_nan_ptr[offset] = block_num_nan;
    num_inf_ptr[offset] = block_num_inf;
  }
}

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
template <
    typename T,
    std::enable_if_t<std::is_same<T, phi::dtype::complex<float>>::value ||
                         std::is_same<T, phi::dtype::complex<double>>::value,
                     bool> = true>
__device__ void BlockReduceMaxMinAndWrite(const T max_value,
                                          const T min_value,
                                          const T mean_value,
                                          int64_t offset,
                                          T* max_ptr,
                                          T* min_ptr,
                                          T* mean_ptr) {
  // TODO(Xreki): support complex
}

template <
    typename T,
    std::enable_if_t<!std::is_same<T, phi::dtype::complex<float>>::value &&
                         !std::is_same<T, phi::dtype::complex<double>>::value,
                     bool> = true>
__device__ void BlockReduceMaxMinAndWrite(const T max_value,
                                          const T min_value,
                                          const T mean_value,
                                          int64_t offset,
                                          T* max_ptr,
                                          T* min_ptr,
                                          T* mean_ptr) {
  if (max_ptr && min_ptr && mean_ptr) {
    __syncthreads();

219 220 221
    T block_max_value = phi::funcs::BlockReduceMax<T>(max_value, FINAL_MASK);
    T block_min_value = phi::funcs::BlockReduceMin<T>(min_value, FINAL_MASK);
    T block_mean_value = phi::funcs::BlockReduceSum<T>(mean_value, FINAL_MASK);
222 223 224 225 226 227 228 229 230 231 232 233

    if (threadIdx.x == 0) {
      max_ptr[offset] = block_max_value;
      min_ptr[offset] = block_min_value;
      mean_ptr[offset] = block_mean_value;
    }
  }
}

template <typename T, typename MT>
__global__ void FindNanInfAndBlockMaxMin(const T* value_ptr,
                                         const int64_t numel,
234 235
                                         int64_t* block_num_nan_ptr,
                                         int64_t* block_num_inf_ptr,
236 237 238 239 240
                                         MT* tensor_block_max_ptr,
                                         MT* tensor_block_min_ptr,
                                         MT* tensor_block_mean_ptr) {
  int64_t i = threadIdx.x + blockIdx.x * blockDim.x;

241 242 243
  int64_t num_nan = 0;
  int64_t num_inf = 0;

244 245 246 247 248 249 250 251 252 253 254
  MT max_value = static_cast<MT>(i < numel ? value_ptr[i] : value_ptr[0]);
  MT min_value = static_cast<MT>(i < numel ? value_ptr[i] : value_ptr[0]);
  MT mean_value = static_cast<MT>(0);
  for (; i < numel; i += blockDim.x * gridDim.x) {
    MT value = static_cast<MT>(value_ptr[i]);

    max_value = value > max_value ? value : max_value;
    min_value = value < min_value ? value : min_value;
    mean_value += value / static_cast<MT>(numel);

    if (isnan(value)) {
255 256 257
      num_nan += 1;
    } else if (isinf(value)) {
      num_inf += 1;
258 259
    }
  }
260 261 262

  BlockReduceNumNanInfAndWrite(
      num_nan, num_inf, blockIdx.x, block_num_nan_ptr, block_num_inf_ptr);
263 264 265 266 267 268 269 270 271 272

  BlockReduceMaxMinAndWrite<MT>(max_value,
                                min_value,
                                mean_value,
                                blockIdx.x,
                                tensor_block_max_ptr,
                                tensor_block_min_ptr,
                                tensor_block_mean_ptr);
}

273
template <typename T, typename MT>
274 275
__global__ void FindGlobalMaxMinAndPrint(const int64_t* block_num_nan_ptr,
                                         const int64_t* block_num_inf_ptr,
276 277 278
                                         const MT* tensor_block_max_ptr,
                                         const MT* tensor_block_min_ptr,
                                         const MT* tensor_block_mean_ptr,
279 280 281
                                         const char* debug_info,
                                         int64_t numel,
                                         int64_t numel_max_min,
282
                                         int check_nan_inf_level) {
283
  if (blockIdx.x == 0 && threadIdx.x == 0) {
284 285 286 287 288 289 290 291
    int64_t num_nan = 0;
    int64_t num_inf = 0;

    // numel_max_min <= 128
    for (int64_t i = 0; i < numel_max_min; ++i) {
      num_nan += block_num_nan_ptr[i];
      num_inf += block_num_inf_ptr[i];
    }
292

293 294 295
    MT max_value = static_cast<MT>(0);
    MT min_value = static_cast<MT>(0);
    MT mean_value = static_cast<MT>(0);
296 297 298 299 300 301 302
    if (tensor_block_max_ptr && tensor_block_min_ptr && tensor_block_mean_ptr) {
      max_value = tensor_block_max_ptr[0];
      min_value = tensor_block_min_ptr[0];
      mean_value = tensor_block_mean_ptr[0];

      // numel_max_min <= 128
      for (int64_t i = 1; i < numel_max_min; ++i) {
303 304 305
        MT tmp_max_value = tensor_block_max_ptr[i];
        MT tmp_min_value = tensor_block_min_ptr[i];
        MT tmp_mean_value = tensor_block_mean_ptr[i];
306 307 308 309 310 311 312

        max_value = tmp_max_value > max_value ? tmp_max_value : max_value;
        min_value = tmp_min_value < min_value ? tmp_min_value : min_value;
        mean_value += tmp_mean_value;
      }
    }

313 314 315 316 317 318 319 320
    PrintForDifferentLevel<T, MT>(debug_info,
                                  numel,
                                  num_nan,
                                  num_inf,
                                  max_value,
                                  min_value,
                                  mean_value,
                                  check_nan_inf_level);
321 322 323
  }
}

W
WangXi 已提交
324
template <typename T>
325
inline std::string GetHintString(const std::string& op_type,
326
                                 const std::string& var_name,
327 328 329
                                 const phi::Place& place,
                                 int dev_id = -1) {
  std::string op_var = GetCpuHintString<T>(op_type, var_name, place, dev_id);
W
WangXi 已提交
330
  PADDLE_ENFORCE_EQ(
331 332
      (dev_id >= 0 && dev_id < multi_op_var2gpu_str_mutex().size()),
      true,
W
WangXi 已提交
333 334
      platform::errors::OutOfRange("GPU dev_id must >=0 and < dev_count=%d",
                                   multi_op_var2gpu_str_mutex().size()));
335 336
  return op_var;
}
W
WangXi 已提交
337

338 339 340 341 342
template <typename T>
static char* GetGpuHintStringPtr(const phi::GPUContext& ctx,
                                 const std::string& op_type,
                                 const std::string& var_name,
                                 int dev_id) {
343
  std::string op_var =
344
      GetHintString<T>(op_type, var_name, ctx.GetPlace(), dev_id);
345
  char* gpu_str_ptr = nullptr;
W
WangXi 已提交
346 347 348 349 350 351 352

  {
    auto& op_var2gpu_str_mutex = multi_op_var2gpu_str_mutex().at(dev_id);
    auto& op_var2gpu_str = multi_op_var2gpu_str().at(dev_id);

    std::lock_guard<std::mutex> guard(op_var2gpu_str_mutex);
    if (op_var2gpu_str.find(op_var) == op_var2gpu_str.end()) {  // insert
353
      auto gpu_str_tensor = paddle::memory::Alloc(
354
          ctx.GetPlace(),
355
          op_var.length() + 1,
356
          phi::Stream(reinterpret_cast<phi::StreamId>(ctx.stream())));
W
WangXi 已提交
357 358 359 360 361
      gpu_str_ptr = reinterpret_cast<char*>(gpu_str_tensor->ptr());

      op_var2gpu_str.emplace(op_var, std::move(gpu_str_tensor));

      auto iter = op_var2gpu_str.find(op_var);
362 363
      PADDLE_ENFORCE_EQ(iter != op_var2gpu_str.end(),
                        true,
W
WangXi 已提交
364 365 366 367 368
                        platform::errors::PreconditionNotMet(
                            "op_var=%s should successed insert into "
                            "op_var2gpu_str, but now failed",
                            op_var));

369
#ifdef __HIPCC__
370 371 372 373
      PADDLE_ENFORCE_GPU_SUCCESS(hipMemcpyAsync(gpu_str_ptr,
                                                iter->first.c_str(),
                                                op_var.length() + 1,
                                                hipMemcpyHostToDevice,
374
                                                ctx.stream()));
375
#else
376 377 378 379
      PADDLE_ENFORCE_GPU_SUCCESS(cudaMemcpyAsync(gpu_str_ptr,
                                                 iter->first.c_str(),
                                                 op_var.length() + 1,
                                                 cudaMemcpyHostToDevice,
380
                                                 ctx.stream()));
381
#endif
W
WangXi 已提交
382 383
    } else {  // get
      auto iter = op_var2gpu_str.find(op_var);
384 385
      PADDLE_ENFORCE_EQ(iter != op_var2gpu_str.end(),
                        true,
W
WangXi 已提交
386 387 388 389 390 391 392
                        platform::errors::PreconditionNotMet(
                            "op_var=%s should be in the op_var2gpu_str, but "
                            "now can't find it",
                            op_var));
      gpu_str_ptr = reinterpret_cast<char*>(iter->second->ptr());
    }
  }
393 394 395 396 397 398 399 400 401 402 403 404 405 406
  return gpu_str_ptr;
}

template <>
template <typename T>
void TensorCheckerVisitor<phi::GPUContext>::apply(
    typename std::enable_if<
        std::is_floating_point<T>::value ||
        std::is_same<T, ::paddle::platform::complex<float>>::value ||
        std::is_same<T, ::paddle::platform::complex<double>>::value>::type*)
    const {
  auto* dev_ctx = reinterpret_cast<phi::GPUContext*>(
      platform::DeviceContextPool::Instance().Get(tensor.place()));
  int dev_id = tensor.place().device;
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
  // Write log to file
  auto file_path = GetNanPath();
  if (file_path.size() > 0) {
    phi::DenseTensor cpu_tensor;
    platform::CPUPlace cpu_place;
    cpu_tensor.Resize(tensor.dims());
    // 1. copy from gpu to cpu
    paddle::framework::TensorCopySync(tensor, cpu_place, &cpu_tensor);
    auto* dev_ctx = reinterpret_cast<phi::GPUContext*>(
        platform::DeviceContextPool::Instance().Get(tensor.place()));
    const std::string debug_info =
        GetHintString<T>(op_type, var_name, place, dev_id);
    // 2. write log to file
    CheckNanInfCpuImpl(cpu_tensor.data<T>(), tensor.numel(), debug_info, "gpu");
    return;
  }

  // Write log to window
425 426
  char* gpu_str_ptr =
      GetGpuHintStringPtr<T>(*dev_ctx, op_type, var_name, dev_id);
W
WangXi 已提交
427

428 429 430 431
#ifdef __HIPCC__
  // HIP will throw GPU memory access fault if threads > 256
  const size_t threads = 256;
#else
W
WangXi 已提交
432
  const size_t threads = 1024;
433
#endif
434 435
  size_t blocks =
      std::min(static_cast<size_t>(128),
436
               static_cast<size_t>((tensor.numel() + threads - 1) / threads));
437
#ifdef __HIPCC__
438 439
  int print_num = 3;

440 441 442 443 444
  hipLaunchKernelGGL(CheckNanInfKernel,
                     dim3(blocks),
                     dim3(threads),
                     0,
                     dev_ctx->stream(),
445 446
                     tensor.data<T>(),
                     tensor.numel(),
447 448
                     print_num,
                     gpu_str_ptr);
449
#else
450 451 452 453
  using MT = typename phi::dtype::MPTypeTrait<T>::Type;

  int64_t numel_max_min = blocks;

454 455 456
  phi::DenseTensor block_num_nan_inf;
  block_num_nan_inf.Resize({static_cast<int64_t>(2 * numel_max_min)});
  int64_t* block_num_nan_ptr =
457
      dev_ctx->template Alloc<int64_t>(&block_num_nan_inf);
458 459
  int64_t* block_num_inf_ptr = block_num_nan_ptr + numel_max_min;

460 461
  phi::DenseTensor tensor_block_max_min;
  tensor_block_max_min.Resize({static_cast<int64_t>(3 * numel_max_min)});
462
  MT* tensor_block_max_ptr = dev_ctx->template Alloc<MT>(&tensor_block_max_min);
463 464 465 466
  MT* tensor_block_min_ptr = tensor_block_max_ptr + numel_max_min;
  MT* tensor_block_mean_ptr = tensor_block_max_ptr + 2 * numel_max_min;

  FindNanInfAndBlockMaxMin<T, MT>
467 468 469 470
      <<<blocks, threads, 0, dev_ctx->stream()>>>(tensor.data<T>(),
                                                  tensor.numel(),
                                                  block_num_nan_ptr,
                                                  block_num_inf_ptr,
471 472 473 474
                                                  tensor_block_max_ptr,
                                                  tensor_block_min_ptr,
                                                  tensor_block_mean_ptr);

475 476
  int check_nan_inf_level = FLAGS_check_nan_inf_level;
  FindGlobalMaxMinAndPrint<T, MT>
477 478
      <<<1, 1, 0, dev_ctx->stream()>>>(block_num_nan_ptr,
                                       block_num_inf_ptr,
479 480 481 482
                                       tensor_block_max_ptr,
                                       tensor_block_min_ptr,
                                       tensor_block_mean_ptr,
                                       gpu_str_ptr,
483
                                       tensor.numel(),
484
                                       numel_max_min,
485
                                       check_nan_inf_level);
486
#endif
W
WangXi 已提交
487 488 489
}

template <>
L
Leo Chen 已提交
490 491
void tensor_check<phi::GPUContext>(const std::string& op_type,
                                   const std::string& var_name,
492
                                   const phi::DenseTensor& tensor,
L
Leo Chen 已提交
493
                                   const platform::Place& place) {
W
WangXi 已提交
494 495
  std::call_once(init_multi_gpu_op_var_map_flag, InitMultiGPUOpVarMap);

L
Leo Chen 已提交
496
  TensorCheckerVisitor<phi::GPUContext> vistor(
497
      op_type, var_name, tensor, place);
498
  VisitDataType(framework::TransToProtoVarType(tensor.dtype()), vistor);
W
WangXi 已提交
499 500 501 502 503
}

}  // namespace details
}  // namespace framework
}  // namespace paddle