conv_op_xpu.cc 9.8 KB
Newer Older
X
xiaoting 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <memory>
#include <string>
#include <vector>
14 15

#include "paddle/fluid/operators/conv_op.h"
X
xiaoting 已提交
16 17 18 19 20 21 22
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
#ifdef PADDLE_WITH_XPU
namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class GemmConvXPUKernel : public framework::OpKernel<T> {
23 24
  using XPUT = typename XPUTypeTrait<T>::Type;

X
xiaoting 已提交
25
 public:
26 27
  void Compute(const framework::ExecutionContext &context) const override {
    const Tensor *input = context.Input<Tensor>("Input");
X
xiaoting 已提交
28 29 30 31
    // The filter will be reshaped in the calculations,
    // so here use an assignment operation,
    // that avoids modifying the variable in the Scope.
    Tensor filter = *context.Input<Tensor>("Filter");
32
    Tensor *output = context.Output<Tensor>("Output");
X
xiaoting 已提交
33 34 35 36 37
    output->mutable_data<T>(context.GetPlace());
    int groups = context.Attr<int>("groups");
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
38 39 40 41
    const std::string data_format = context.Attr<std::string>("data_format");
    const std::string padding_algorithm =
        context.Attr<std::string>("padding_algorithm");

42
    PADDLE_ENFORCE_EQ(
43 44
        data_format == "NDHWC",
        false,
45 46
        platform::errors::InvalidArgument(
            ("XPU does not support data_format is NDHWC in conv op.")));
47 48

    framework::DDim in_data_dims =
49
        phi::slice_ddim(input->dims(), 2, input->dims().size());
50
    framework::DDim filter_data_dims =
51 52
        phi::slice_ddim(filter.dims(), 2, filter.dims().size());
    std::vector<int> ksize = phi::vectorize<int>(filter_data_dims);
53 54
    UpdatePaddingAndDilation(
        &paddings, &dilations, padding_algorithm, in_data_dims, strides, ksize);
55

56 57 58 59 60 61 62 63 64 65 66 67
    int batch_size = static_cast<int>(input->dims()[0]);
    int img_c = static_cast<int>(input->dims()[1]);
    int img_h = static_cast<int>(input->dims()[2]);
    int img_w = static_cast<int>(input->dims()[3]);
    int f = static_cast<int>(filter.dims()[0]);
    bool is_nchw = true;
    if (data_format == "NHWC") {
      img_c = static_cast<int>(input->dims()[3]);
      img_h = static_cast<int>(input->dims()[1]);
      img_w = static_cast<int>(input->dims()[2]);
      is_nchw = false;
    }
68 69 70 71 72 73

    const XPUT *input_data = reinterpret_cast<const XPUT *>(input->data<T>());
    const XPUT *filter_data = reinterpret_cast<const XPUT *>(filter.data<T>());
    XPUT *output_data = reinterpret_cast<XPUT *>(output->data<T>());

    auto &dev_ctx = context.template device_context<DeviceContext>();
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
    int r = xpu::conv2d<XPUT, XPUT, XPUT, int16_t>(dev_ctx.x_context(),
                                                   input_data,
                                                   filter_data,
                                                   output_data,
                                                   batch_size,
                                                   img_c,
                                                   img_h,
                                                   img_w,
                                                   f,
                                                   ksize,
                                                   strides,
                                                   paddings,
                                                   dilations,
                                                   groups,
                                                   nullptr,
                                                   nullptr,
                                                   nullptr,
                                                   is_nchw);
92
    PADDLE_ENFORCE_EQ(
93 94 95 96
        r,
        XPU_SUCCESS,
        platform::errors::External(
            "XPU conv kernel return wrong value[%d %s]", r, XPUAPIErrorMsg[r]));
X
xiaoting 已提交
97 98
  }
};
99

X
xiaoting 已提交
100 101
template <typename DeviceContext, typename T>
class GemmConvGradXPUKernel : public framework::OpKernel<T> {
102 103
  using XPUT = typename XPUTypeTrait<T>::Type;

X
xiaoting 已提交
104
 public:
105 106 107
  void Compute(const framework::ExecutionContext &context) const override {
    const Tensor *input = context.Input<Tensor>("Input");
    const Tensor *output_grad =
X
xiaoting 已提交
108
        context.Input<Tensor>(framework::GradVarName("Output"));
109
    Tensor *input_grad =
X
xiaoting 已提交
110
        context.Output<Tensor>(framework::GradVarName("Input"));
111
    Tensor *filter_grad =
X
xiaoting 已提交
112 113 114 115 116 117 118 119 120 121
        context.Output<Tensor>(framework::GradVarName("Filter"));
    // The filter and filter_grad will be reshaped in the calculations,
    // so here use an assignment operation,
    // that avoids modifying the variable in the Scope.
    Tensor filter = *context.Input<Tensor>("Filter");
    if (!input_grad && !filter_grad) return;
    int groups = context.Attr<int>("groups");
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
122 123 124 125 126
    const std::string data_format = context.Attr<std::string>("data_format");
    const std::string padding_algorithm =
        context.Attr<std::string>("padding_algorithm");

    PADDLE_ENFORCE_EQ(
127 128
        data_format == "NDHWC",
        false,
129
        platform::errors::InvalidArgument(
130
            ("XPU doesn't support data_format is NDHWC in conv grad op.")));
131 132

    framework::DDim in_data_dims =
133
        phi::slice_ddim(input->dims(), 2, input->dims().size());
134
    framework::DDim filter_data_dims =
135 136
        phi::slice_ddim(filter.dims(), 2, filter.dims().size());
    std::vector<int> ksize = phi::vectorize<int>(filter_data_dims);
137 138
    UpdatePaddingAndDilation(
        &paddings, &dilations, padding_algorithm, in_data_dims, strides, ksize);
139

140 141 142 143 144 145 146 147 148 149 150 151
    int batch_size = static_cast<int>(input->dims()[0]);
    int img_c = static_cast<int>(input->dims()[1]);
    int img_h = static_cast<int>(input->dims()[2]);
    int img_w = static_cast<int>(input->dims()[3]);
    int f = static_cast<int>(filter.dims()[0]);
    bool is_nchw = true;
    if (data_format == "NHWC") {
      img_c = static_cast<int>(input->dims()[3]);
      img_h = static_cast<int>(input->dims()[1]);
      img_w = static_cast<int>(input->dims()[2]);
      is_nchw = false;
    }
152 153 154 155 156 157

    const XPUT *input_data = reinterpret_cast<const XPUT *>(input->data<T>());
    const XPUT *filter_data = reinterpret_cast<const XPUT *>(filter.data<T>());
    const XPUT *output_grad_data =
        reinterpret_cast<const XPUT *>(output_grad->data<T>());
    XPUT *input_grad_data = nullptr;
X
xiaoting 已提交
158 159
    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());
160
      input_grad_data = reinterpret_cast<XPUT *>(input_grad->data<T>());
X
xiaoting 已提交
161
    }
162
    XPUT *filter_grad_data = nullptr;
X
xiaoting 已提交
163 164
    if (filter_grad) {
      filter_grad->mutable_data<T>(context.GetPlace());
165
      filter_grad_data = reinterpret_cast<XPUT *>(filter_grad->data<T>());
X
xiaoting 已提交
166
    }
167
    auto &dev_ctx = context.template device_context<DeviceContext>();
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
    int r = xpu::conv2d_grad<XPUT, XPUT, XPUT, int16_t>(dev_ctx.x_context(),
                                                        input_data,
                                                        filter_data,
                                                        output_grad_data,
                                                        input_grad_data,
                                                        filter_grad_data,
                                                        batch_size,
                                                        img_c,
                                                        img_h,
                                                        img_w,
                                                        f,
                                                        ksize,
                                                        strides,
                                                        paddings,
                                                        dilations,
                                                        groups,
                                                        nullptr,
                                                        nullptr,
                                                        nullptr,
                                                        nullptr,
                                                        nullptr,
                                                        is_nchw);
190
    PADDLE_ENFORCE_EQ(
191 192 193 194
        r,
        XPU_SUCCESS,
        platform::errors::External(
            "XPU conv kernel return wrong value[%d %s]", r, XPUAPIErrorMsg[r]));
X
xiaoting 已提交
195 196 197 198 199 200
  }
};
}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(
201 202
    conv2d,
    ops::GemmConvXPUKernel<paddle::platform::XPUDeviceContext, float>,
203 204
    ops::GemmConvXPUKernel<paddle::platform::XPUDeviceContext,
                           paddle::platform::float16>);
X
xiaoting 已提交
205 206
REGISTER_OP_XPU_KERNEL(
    conv2d_grad,
207 208 209 210 211
    ops::GemmConvGradXPUKernel<paddle::platform::XPUDeviceContext, float>,
    ops::GemmConvGradXPUKernel<paddle::platform::XPUDeviceContext,
                               paddle::platform::float16>);
REGISTER_OP_XPU_KERNEL(
    depthwise_conv2d,
212
    ops::GemmConvXPUKernel<paddle::platform::XPUDeviceContext, float>);
213 214
REGISTER_OP_XPU_KERNEL(
    depthwise_conv2d_grad,
215
    ops::GemmConvGradXPUKernel<paddle::platform::XPUDeviceContext, float>);
X
xiaoting 已提交
216
#endif