Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
6be3ee26
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
6be3ee26
编写于
6月 16, 2022
作者:
Z
zhangyikun02
提交者:
GitHub
6月 16, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
remove fp16 support of depthwise_conv2d and add unittest for depthwise_conv2d, test=kunlun (#43483)
上级
4002f320
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
230 addition
and
10 deletion
+230
-10
paddle/fluid/operators/conv_op_xpu.cc
paddle/fluid/operators/conv_op_xpu.cc
+2
-6
paddle/fluid/platform/device/xpu/xpu2_op_list.h
paddle/fluid/platform/device/xpu/xpu2_op_list.h
+2
-4
python/paddle/fluid/tests/unittests/xpu/test_depthwise_conv2d_op_xpu.py
...fluid/tests/unittests/xpu/test_depthwise_conv2d_op_xpu.py
+226
-0
未找到文件。
paddle/fluid/operators/conv_op_xpu.cc
浏览文件 @
6be3ee26
...
...
@@ -173,12 +173,8 @@ REGISTER_OP_XPU_KERNEL(
paddle
::
platform
::
float16
>
);
REGISTER_OP_XPU_KERNEL
(
depthwise_conv2d
,
ops
::
GemmConvXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
,
ops
::
GemmConvXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
paddle
::
platform
::
float16
>
);
ops
::
GemmConvXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
REGISTER_OP_XPU_KERNEL
(
depthwise_conv2d_grad
,
ops
::
GemmConvGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
,
ops
::
GemmConvGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
paddle
::
platform
::
float16
>
);
ops
::
GemmConvGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
#endif
paddle/fluid/platform/device/xpu/xpu2_op_list.h
浏览文件 @
6be3ee26
...
...
@@ -79,11 +79,9 @@ XPUOpMap& get_kl2_ops() {
{
"conv2d_transpose"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"depthwise_conv2d_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"depthwise_conv2d"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"dropout_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
...
...
python/paddle/fluid/tests/unittests/xpu/test_depthwise_conv2d_op_xpu.py
0 → 100644
浏览文件 @
6be3ee26
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
sys
sys
.
path
.
append
(
".."
)
import
unittest
import
numpy
as
np
import
paddle
paddle
.
enable_static
()
import
paddle.fluid.core
as
core
import
paddle.fluid
as
fluid
from
op_test_xpu
import
XPUOpTest
from
paddle.fluid
import
Program
,
program_guard
from
test_conv2d_op_xpu
import
XPUTestConv2DOp
,
XPUTestConv2DOp_v2
from
xpu.get_test_cover_info
import
create_test_class
,
get_xpu_op_support_types
,
XPUOpTestWrapper
class
XPUTestDepthwiseConv2DOp
(
XPUOpTestWrapper
):
def
__init__
(
self
):
self
.
op_name
=
'depthwise_conv2d'
self
.
use_dynamic_create_class
=
False
class
TestDepthwiseConv
(
XPUTestConv2DOp
.
TestConv2DOp
):
def
init_test_case
(
self
):
self
.
use_cuda
=
False
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
2
,
2
]
self
.
input_size
=
[
2
,
12
,
5
,
5
]
# NCHW
self
.
groups
=
12
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
12
,
f_c
,
3
,
3
]
self
.
op_type
=
"depthwise_conv2d"
class
TestDepthwiseConv2
(
XPUTestConv2DOp
.
TestConv2DOp
):
def
init_test_case
(
self
):
self
.
use_cuda
=
False
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
2
,
12
,
5
,
5
]
# NCHW
self
.
groups
=
12
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
12
,
f_c
,
3
,
3
]
self
.
op_type
=
"depthwise_conv2d"
class
TestDepthwiseConv3
(
XPUTestConv2DOp
.
TestConv2DOp
):
def
init_test_case
(
self
):
self
.
use_cuda
=
False
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
2
,
24
,
5
,
5
]
# NCHW
self
.
groups
=
24
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
24
,
f_c
,
3
,
3
]
self
.
op_type
=
"depthwise_conv2d"
class
TestDepthwiseConvWithDilation
(
XPUTestConv2DOp
.
TestConv2DOp
):
def
init_test_case
(
self
):
self
.
use_cuda
=
False
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
2
,
2
]
self
.
input_size
=
[
2
,
24
,
5
,
5
]
# NCHW
self
.
groups
=
24
self
.
dilations
=
[
2
,
2
]
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
24
,
f_c
,
3
,
3
]
self
.
op_type
=
"depthwise_conv2d"
class
TestDepthwiseConvWithDilation2
(
XPUTestConv2DOp
.
TestConv2DOp
):
def
init_test_case
(
self
):
self
.
use_cuda
=
False
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
2
,
24
,
5
,
5
]
# NCHW
self
.
groups
=
24
self
.
dilations
=
[
2
,
2
]
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
24
,
f_c
,
3
,
3
]
self
.
op_type
=
"depthwise_conv2d"
class
XPUTestDepthwiseConv2DOp_v2
(
XPUOpTestWrapper
):
def
__init__
(
self
):
self
.
op_name
=
'depthwise_conv2d'
self
.
use_dynamic_create_class
=
False
class
TestDepthwiseConv_AsyPadding
(
XPUTestConv2DOp_v2
.
TestConv2DOp_v2
):
def
init_test_case
(
self
):
self
.
use_cuda
=
False
self
.
stride
=
[
2
,
2
]
self
.
input_size
=
[
2
,
12
,
5
,
5
]
# NCHW
self
.
groups
=
12
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
12
,
f_c
,
3
,
3
]
self
.
op_type
=
"depthwise_conv2d"
def
init_paddings
(
self
):
self
.
pad
=
[
1
,
1
,
0
,
1
]
self
.
padding_algorithm
=
"EXPLICIT"
class
TestDepthwiseConv2_AsyPadding
(
XPUTestConv2DOp_v2
.
TestConv2DOp_v2
):
def
init_test_case
(
self
):
self
.
use_cuda
=
False
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
2
,
12
,
5
,
5
]
# NCHW
self
.
groups
=
12
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
12
,
f_c
,
3
,
3
]
self
.
op_type
=
"depthwise_conv2d"
def
init_paddings
(
self
):
self
.
pad
=
[
0
,
1
,
0
,
2
]
self
.
padding_algorithm
=
"EXPLICIT"
class
TestDepthwiseConv3_AsyPadding
(
XPUTestConv2DOp_v2
.
TestConv2DOp_v2
):
def
init_test_case
(
self
):
self
.
use_cuda
=
False
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
2
,
24
,
5
,
5
]
# NCHW
self
.
groups
=
24
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
24
,
f_c
,
3
,
3
]
self
.
op_type
=
"depthwise_conv2d"
def
init_paddings
(
self
):
self
.
pad
=
[
1
,
1
,
0
,
0
]
self
.
padding_algorithm
=
"EXPLICIT"
class
TestDepthwiseConvWithDilation_AsyPadding
(
XPUTestConv2DOp_v2
.
TestConv2DOp_v2
):
def
init_test_case
(
self
):
self
.
use_cuda
=
False
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
2
,
2
]
self
.
input_size
=
[
2
,
24
,
5
,
5
]
# NCHW
self
.
groups
=
24
self
.
dilations
=
[
2
,
2
]
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
24
,
f_c
,
3
,
3
]
self
.
op_type
=
"depthwise_conv2d"
def
init_paddings
(
self
):
self
.
pad
=
[
1
,
1
,
2
,
1
]
self
.
padding_algorithm
=
"EXPLICIT"
class
TestDepthwiseConvWithDilation2_AsyPadding
(
XPUTestConv2DOp_v2
.
TestConv2DOp_v2
):
def
init_test_case
(
self
):
self
.
use_cuda
=
True
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
2
,
24
,
5
,
5
]
# NCHW
self
.
groups
=
24
self
.
dilations
=
[
2
,
2
]
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
24
,
f_c
,
3
,
3
]
self
.
op_type
=
"depthwise_conv2d"
def
init_paddings
(
self
):
self
.
pad
=
[
0
,
1
,
1
,
0
]
self
.
padding_algorithm
=
"EXPLICIT"
support_types
=
get_xpu_op_support_types
(
'depthwise_conv2d'
)
for
stype
in
support_types
:
create_test_class
(
globals
(),
XPUTestDepthwiseConv2DOp
,
stype
)
create_test_class
(
globals
(),
XPUTestDepthwiseConv2DOp_v2
,
stype
)
#### depthwise conv2d
# create_test_padding_SAME_class(TestDepthwiseConv_AsyPadding)
# create_test_padding_SAME_class(TestDepthwiseConvWithDilation_AsyPadding)
# create_test_padding_SAME_class(TestDepthwiseConvandFuse_AsyPadding)
# create_test_padding_SAME_class(TestDepthwiseConvWithDilationandFuse_AsyPadding)
# create_test_padding_VALID_class(TestDepthwiseConv_AsyPadding)
# create_test_padding_VALID_class(TestDepthwiseConvWithDilation_AsyPadding)
# create_test_padding_VALID_class(TestDepthwiseConvandFuse_AsyPadding)
# create_test_padding_VALID_class(TestDepthwiseConvWithDilationandFuse_AsyPadding)
#### channel last
# create_test_channel_last_class(TestDepthwiseConv_AsyPadding)
# create_test_channel_last_class(TestDepthwiseConvWithDilation2_AsyPadding)
# create_test_channel_last_class(TestDepthwiseConvandFuse_AsyPadding)
# create_test_channel_last_class(TestDepthwiseConvWithDilationandFuse_AsyPadding)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录