conv_op_xpu.cc 8.2 KB
Newer Older
X
xiaoting 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/conv_op.h"
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
#ifdef PADDLE_WITH_XPU
namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class GemmConvXPUKernel : public framework::OpKernel<T> {
22 23
  using XPUT = typename XPUTypeTrait<T>::Type;

X
xiaoting 已提交
24
 public:
25 26
  void Compute(const framework::ExecutionContext &context) const override {
    const Tensor *input = context.Input<Tensor>("Input");
X
xiaoting 已提交
27 28 29 30
    // The filter will be reshaped in the calculations,
    // so here use an assignment operation,
    // that avoids modifying the variable in the Scope.
    Tensor filter = *context.Input<Tensor>("Filter");
31
    Tensor *output = context.Output<Tensor>("Output");
X
xiaoting 已提交
32 33 34 35 36
    output->mutable_data<T>(context.GetPlace());
    int groups = context.Attr<int>("groups");
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
37 38 39 40
    const std::string data_format = context.Attr<std::string>("data_format");
    const std::string padding_algorithm =
        context.Attr<std::string>("padding_algorithm");

41 42 43 44
    PADDLE_ENFORCE_EQ(
        data_format == "NDHWC", false,
        platform::errors::InvalidArgument(
            ("XPU does not support data_format is NDHWC in conv op.")));
45 46

    framework::DDim in_data_dims =
47
        phi::slice_ddim(input->dims(), 2, input->dims().size());
48
    framework::DDim filter_data_dims =
49 50
        phi::slice_ddim(filter.dims(), 2, filter.dims().size());
    std::vector<int> ksize = phi::vectorize<int>(filter_data_dims);
51 52 53
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

54 55 56 57 58 59 60 61 62 63 64 65
    int batch_size = static_cast<int>(input->dims()[0]);
    int img_c = static_cast<int>(input->dims()[1]);
    int img_h = static_cast<int>(input->dims()[2]);
    int img_w = static_cast<int>(input->dims()[3]);
    int f = static_cast<int>(filter.dims()[0]);
    bool is_nchw = true;
    if (data_format == "NHWC") {
      img_c = static_cast<int>(input->dims()[3]);
      img_h = static_cast<int>(input->dims()[1]);
      img_w = static_cast<int>(input->dims()[2]);
      is_nchw = false;
    }
66 67 68 69 70 71 72 73 74

    const XPUT *input_data = reinterpret_cast<const XPUT *>(input->data<T>());
    const XPUT *filter_data = reinterpret_cast<const XPUT *>(filter.data<T>());
    XPUT *output_data = reinterpret_cast<XPUT *>(output->data<T>());

    auto &dev_ctx = context.template device_context<DeviceContext>();
    int r = xpu::conv2d<XPUT, XPUT, XPUT, int16_t>(
        dev_ctx.x_context(), input_data, filter_data, output_data, batch_size,
        img_c, img_h, img_w, f, ksize, strides, paddings, dilations, groups,
75
        nullptr, nullptr, nullptr, is_nchw);
76 77 78 79
    PADDLE_ENFORCE_EQ(
        r, XPU_SUCCESS,
        platform::errors::External("XPU conv kernel return wrong value[%d %s]",
                                   r, XPUAPIErrorMsg[r]));
X
xiaoting 已提交
80 81
  }
};
82

X
xiaoting 已提交
83 84
template <typename DeviceContext, typename T>
class GemmConvGradXPUKernel : public framework::OpKernel<T> {
85 86
  using XPUT = typename XPUTypeTrait<T>::Type;

X
xiaoting 已提交
87
 public:
88 89 90
  void Compute(const framework::ExecutionContext &context) const override {
    const Tensor *input = context.Input<Tensor>("Input");
    const Tensor *output_grad =
X
xiaoting 已提交
91
        context.Input<Tensor>(framework::GradVarName("Output"));
92
    Tensor *input_grad =
X
xiaoting 已提交
93
        context.Output<Tensor>(framework::GradVarName("Input"));
94
    Tensor *filter_grad =
X
xiaoting 已提交
95 96 97 98 99 100 101 102 103 104
        context.Output<Tensor>(framework::GradVarName("Filter"));
    // The filter and filter_grad will be reshaped in the calculations,
    // so here use an assignment operation,
    // that avoids modifying the variable in the Scope.
    Tensor filter = *context.Input<Tensor>("Filter");
    if (!input_grad && !filter_grad) return;
    int groups = context.Attr<int>("groups");
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
105 106 107 108 109
    const std::string data_format = context.Attr<std::string>("data_format");
    const std::string padding_algorithm =
        context.Attr<std::string>("padding_algorithm");

    PADDLE_ENFORCE_EQ(
110
        data_format == "NDHWC", false,
111
        platform::errors::InvalidArgument(
112
            ("XPU doesn't support data_format is NDHWC in conv grad op.")));
113 114

    framework::DDim in_data_dims =
115
        phi::slice_ddim(input->dims(), 2, input->dims().size());
116
    framework::DDim filter_data_dims =
117 118
        phi::slice_ddim(filter.dims(), 2, filter.dims().size());
    std::vector<int> ksize = phi::vectorize<int>(filter_data_dims);
119 120 121
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

122 123 124 125 126 127 128 129 130 131 132 133
    int batch_size = static_cast<int>(input->dims()[0]);
    int img_c = static_cast<int>(input->dims()[1]);
    int img_h = static_cast<int>(input->dims()[2]);
    int img_w = static_cast<int>(input->dims()[3]);
    int f = static_cast<int>(filter.dims()[0]);
    bool is_nchw = true;
    if (data_format == "NHWC") {
      img_c = static_cast<int>(input->dims()[3]);
      img_h = static_cast<int>(input->dims()[1]);
      img_w = static_cast<int>(input->dims()[2]);
      is_nchw = false;
    }
134 135 136 137 138 139

    const XPUT *input_data = reinterpret_cast<const XPUT *>(input->data<T>());
    const XPUT *filter_data = reinterpret_cast<const XPUT *>(filter.data<T>());
    const XPUT *output_grad_data =
        reinterpret_cast<const XPUT *>(output_grad->data<T>());
    XPUT *input_grad_data = nullptr;
X
xiaoting 已提交
140 141
    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());
142
      input_grad_data = reinterpret_cast<XPUT *>(input_grad->data<T>());
X
xiaoting 已提交
143
    }
144
    XPUT *filter_grad_data = nullptr;
X
xiaoting 已提交
145 146
    if (filter_grad) {
      filter_grad->mutable_data<T>(context.GetPlace());
147
      filter_grad_data = reinterpret_cast<XPUT *>(filter_grad->data<T>());
X
xiaoting 已提交
148
    }
149 150 151 152 153
    auto &dev_ctx = context.template device_context<DeviceContext>();
    int r = xpu::conv2d_grad<XPUT, XPUT, XPUT, int16_t>(
        dev_ctx.x_context(), input_data, filter_data, output_grad_data,
        input_grad_data, filter_grad_data, batch_size, img_c, img_h, img_w, f,
        ksize, strides, paddings, dilations, groups, nullptr, nullptr, nullptr,
154
        nullptr, nullptr, is_nchw);
155 156 157 158
    PADDLE_ENFORCE_EQ(
        r, XPU_SUCCESS,
        platform::errors::External("XPU conv kernel return wrong value[%d %s]",
                                   r, XPUAPIErrorMsg[r]));
X
xiaoting 已提交
159 160 161 162 163 164
  }
};
}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(
165 166 167
    conv2d, ops::GemmConvXPUKernel<paddle::platform::XPUDeviceContext, float>,
    ops::GemmConvXPUKernel<paddle::platform::XPUDeviceContext,
                           paddle::platform::float16>);
X
xiaoting 已提交
168 169
REGISTER_OP_XPU_KERNEL(
    conv2d_grad,
170 171 172 173 174 175 176 177
    ops::GemmConvGradXPUKernel<paddle::platform::XPUDeviceContext, float>,
    ops::GemmConvGradXPUKernel<paddle::platform::XPUDeviceContext,
                               paddle::platform::float16>);
REGISTER_OP_XPU_KERNEL(
    depthwise_conv2d,
    ops::GemmConvXPUKernel<paddle::platform::XPUDeviceContext, float>,
    ops::GemmConvXPUKernel<paddle::platform::XPUDeviceContext,
                           paddle::platform::float16>);
178 179
REGISTER_OP_XPU_KERNEL(
    depthwise_conv2d_grad,
180 181 182
    ops::GemmConvGradXPUKernel<paddle::platform::XPUDeviceContext, float>,
    ops::GemmConvGradXPUKernel<paddle::platform::XPUDeviceContext,
                               paddle::platform::float16>);
X
xiaoting 已提交
183
#endif