metric.py 14.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
X
xujiaqi01 已提交
14 15 16 17
"""Fleet Metrics"""

import math
import numpy as np
18 19
from paddle.static import Variable
import paddle
X
xujiaqi01 已提交
20

21 22
__all__ = []

X
xujiaqi01 已提交
23

T
tangwei12 已提交
24
def sum(input, scope=None, util=None):
X
xujiaqi01 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
    """
    distributed sum in fleet

    Args:
        input(numpy.array|Variable|string): output of a layer
        scope(Scope): specific scope

    Returns:
        global_metric(numpy.array): sum array

    Example:
        .. code-block:: python

          # in model.py
          input = fluid.layers.cast(some_input, dtype='float32')
          cnt = fluid.layers.reduce_sum(input)
          global_cnt = fluid.layers.create_global_var(persistable=True, dtype='float32', shape=[1], value=0)
          tmp = fluid.layers.elementwise_add(cnt, global_cnt)
          fluid.layers.assign(tmp, global_cnt)
44

X
xujiaqi01 已提交
45 46
          # in train.py, after train or infer
          res = np.array(scope.find_var(global_cnt.name).get_tensor())
47
          print("sum array: ", paddle.distributed.fleet.sum(res))
X
xujiaqi01 已提交
48 49
    """
    if scope is None:
50
        scope = paddle.static.global_scope()
T
tangwei12 已提交
51
    if util is None:
52
        util = paddle.distributed.fleet.util
X
xujiaqi01 已提交
53 54 55 56 57 58
    if isinstance(input, Variable):
        input = np.array(scope.find_var(input.name).get_tensor())
    elif isinstance(input, str):
        input = np.array(scope.find_var(input).get_tensor())
    old_shape = np.array(input.shape)
    output = np.copy(input) * 0
T
tangwei12 已提交
59
    output = util.all_reduce(input, "sum")
X
xujiaqi01 已提交
60 61 62 63
    output = output.reshape(old_shape)
    return output


T
tangwei12 已提交
64
def max(input, scope=None, util=None):
X
xujiaqi01 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
    """
    distributed max in fleet

    Args:
        input(numpy.array|Variable|string): output of a layer
        scope(Scope): specific scope

    Returns:
        global_metric(numpy.array): max array

    Example:
        .. code-block:: python

          # in model.py
          input = fluid.layers.cast(some_input, dtype='float32')
          cnt = fluid.layers.reduce_sum(input)
          global_cnt = fluid.layers.create_global_var(persistable=True, dtype='float32', shape=[1], value=0)
82
          tmp = paddle.maximum(cnt, global_cnt)
X
xujiaqi01 已提交
83 84 85 86
          fluid.layers.assign(tmp, global_cnt)

          # in train.py, after train or infer
          res = np.array(scope.find_var(global_cnt.name).get_tensor())
87
          print("max array: ", paddle.distributed.fleet.max(res))
X
xujiaqi01 已提交
88 89
    """
    if scope is None:
90
        scope = paddle.static.global_scope()
T
tangwei12 已提交
91
    if util is None:
92
        util = paddle.distributed.fleet.util
X
xujiaqi01 已提交
93 94 95 96 97 98
    if isinstance(input, Variable):
        input = np.array(scope.find_var(input.name).get_tensor())
    elif isinstance(input, str):
        input = np.array(scope.find_var(input).get_tensor())
    old_shape = np.array(input.shape)
    output = np.copy(input) * 0
T
tangwei12 已提交
99
    output = util.all_reduce(input, "max")
X
xujiaqi01 已提交
100 101 102 103
    output = output.reshape(old_shape)
    return output


T
tangwei12 已提交
104
def min(input, scope=None, util=None):
X
xujiaqi01 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
    """
    distributed min in fleet

    Args:
        input(numpy.array|Variable|string): output of a layer
        scope(Scope): specific scope

    Returns:
        global_metric(numpy.array): min array

    Example:
        .. code-block:: python

          # in model.py
          input = fluid.layers.cast(some_input, dtype='float32')
          cnt = fluid.layers.reduce_sum(input)
          global_cnt = fluid.layers.create_global_var(persistable=True, dtype='float32', shape=[1], value=0)
          tmp = fluid.layers.elementwise_min(cnt, global_cnt)
          fluid.layers.assign(tmp, global_cnt)

          # in train.py, after train or infer
          res = np.array(scope.find_var(global_cnt.name).get_tensor())
127
          print("min array: ", paddle.distributed.fleet.min(res))
X
xujiaqi01 已提交
128 129
    """
    if scope is None:
130
        scope = paddle.static.global_scope()
T
tangwei12 已提交
131
    if util is None:
132
        util = paddle.distributed.fleet.util
X
xujiaqi01 已提交
133 134 135 136 137 138
    if isinstance(input, Variable):
        input = np.array(scope.find_var(input.name).get_tensor())
    elif isinstance(input, str):
        input = np.array(scope.find_var(input).get_tensor())
    old_shape = np.array(input.shape)
    output = np.copy(input) * 0
T
tangwei12 已提交
139
    output = util.all_reduce(input, "min")
X
xujiaqi01 已提交
140 141 142 143
    output = output.reshape(old_shape)
    return output


T
tangwei12 已提交
144
def auc(stat_pos, stat_neg, scope=None, util=None):
X
xujiaqi01 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    """
    distributed auc in fleet

    Args:
        stat_pos(numpy.array|Variable|string): stat_pos in output of fluid.layers.auc
        stat_neg(numpy.array|Variable|string): stat_neg in output of fluid.layers.auc
        scope(Scope): specific scope

    Returns:
        auc_value(float): auc value

    Example:
        .. code-block:: python

          # in model.py
          similarity_norm = fluid.layers.sigmoid(fluid.layers.clip(output, min=-15.0, max=15.0))
          binary_predict = fluid.layers.concat(
              input=[fluid.layers.elementwise_sub(fluid.layers.ceil(similarity_norm), similarity_norm), similarity_norm], axis=1)
          self.auc, batch_auc, [batch_stat_pos, batch_stat_neg, stat_pos, stat_neg] =
              fluid.layers.auc(input=binary_predict, label=label, curve='ROC', num_thresholds=4096)

          # in train.py, after train or infer
          pos = np.array(scope.find_var(stat_pos.name).get_tensor())
          neg = np.array(scope.find_var(stat_neg.name).get_tensor())
169
          print("auc: ", paddle.distributed.fleet.auc(pos, neg))
X
xujiaqi01 已提交
170 171
    """
    if scope is None:
172
        scope = paddle.static.global_scope()
T
tangwei12 已提交
173
    if util is None:
174
        util = paddle.distributed.fleet.util
T
tangwei12 已提交
175

X
xujiaqi01 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189
    if isinstance(stat_pos, Variable):
        stat_pos = np.array(scope.find_var(stat_pos.name).get_tensor())
    elif isinstance(stat_pos, str):
        stat_pos = np.array(scope.find_var(stat_pos).get_tensor())
    if isinstance(stat_neg, Variable):
        stat_neg = np.array(scope.find_var(stat_neg.name).get_tensor())
    elif isinstance(stat_neg, str):
        stat_neg = np.array(scope.find_var(stat_neg).get_tensor())
    # auc pos bucket shape
    old_pos_shape = np.array(stat_pos.shape)
    # reshape to one dim
    stat_pos = stat_pos.reshape(-1)
    global_pos = np.copy(stat_pos) * 0
    # mpi allreduce
T
tangwei12 已提交
190
    global_pos = util.all_reduce(stat_pos, "sum")
X
xujiaqi01 已提交
191 192 193 194 195 196
    global_pos = global_pos.reshape(old_pos_shape)

    # auc neg bucket
    old_neg_shape = np.array(stat_neg.shape)
    stat_neg = stat_neg.reshape(-1)
    global_neg = np.copy(stat_neg) * 0
T
tangwei12 已提交
197
    global_neg = util.all_reduce(stat_neg, "sum")
X
xujiaqi01 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
    global_neg = global_neg.reshape(old_neg_shape)

    # calculate auc
    num_bucket = len(global_pos[0])
    area = 0.0
    pos = 0.0
    neg = 0.0
    new_pos = 0.0
    new_neg = 0.0
    total_ins_num = 0
    for i in range(num_bucket):
        index = num_bucket - 1 - i
        new_pos = pos + global_pos[0][index]
        total_ins_num += global_pos[0][index]
        new_neg = neg + global_neg[0][index]
        total_ins_num += global_neg[0][index]
        area += (new_neg - neg) * (pos + new_pos) / 2
        pos = new_pos
        neg = new_neg

    auc_value = None
    if pos * neg == 0 or total_ins_num == 0:
        auc_value = 0.5
    else:
        auc_value = area / (pos * neg)

    return auc_value


T
tangwei12 已提交
227
def mae(abserr, total_ins_num, scope=None, util=None):
X
xujiaqi01 已提交
228 229 230 231 232
    """
    distributed mae in fleet

    Args:
        abserr(numpy.array|Variable|string): abserr in output of fluid.contrib.layers.ctr_metric_bundle
233
        total_ins_num(numpy.array|Variable|string): total variable
X
xujiaqi01 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246
        scope(Scope): specific scope

    Returns:
        mae(float): mae value

    Example:
        .. code-block:: python

          # in model.py
          sqrerr, abserr, prob, q, pos, total = fluid.contrib.layers.ctr_metric_bundle(similarity_norm, fluid.layers.cast(x=label, dtype='float32'))

          # in train.py, after train or infer
          res = np.array(scope.find_var(abserr.name).get_tensor())
247
          print("mae: ", paddle.distributed.fleet.mae(res, total_ins_num))
X
xujiaqi01 已提交
248 249
    """
    if scope is None:
250
        scope = paddle.static.global_scope()
T
tangwei12 已提交
251
    if util is None:
252
        util = paddle.distributed.fleet.util
T
tangwei12 已提交
253

X
xujiaqi01 已提交
254 255 256 257
    if isinstance(abserr, Variable):
        abserr = np.array(scope.find_var(abserr.name).get_tensor())
    elif isinstance(abserr, str):
        abserr = np.array(scope.find_var(abserr).get_tensor())
258 259
    if isinstance(total_ins_num, Variable):
        total_ins_num = np.array(
260 261
            scope.find_var(total_ins_num.name).get_tensor()
        )
262 263
    elif isinstance(total_ins_num, str):
        total_ins_num = np.array(scope.find_var(total_ins_num).get_tensor())
T
tangwei12 已提交
264

X
xujiaqi01 已提交
265 266 267
    old_metric_shape = np.array(abserr.shape)
    abserr = abserr.reshape(-1)
    global_metric = np.copy(abserr) * 0
T
tangwei12 已提交
268 269

    global_metric = util.all_reduce(abserr, "sum")
X
xujiaqi01 已提交
270
    global_metric = global_metric.reshape(old_metric_shape)
271
    global_total_num = util.all_reduce(total_ins_num, "sum")
T
tangwei12 已提交
272

273
    mae_value = float(global_metric[0]) / float(global_total_num[0])
X
xujiaqi01 已提交
274 275 276
    return mae_value


T
tangwei12 已提交
277
def rmse(sqrerr, total_ins_num, scope=None, util=None):
X
xujiaqi01 已提交
278 279 280 281 282
    """
    distributed rmse in fleet

    Args:
        sqrerr(numpy.array|Variable|string): sqrerr in output of fluid.contrib.layers.ctr_metric_bundle
283
        total_ins_num(numpy.array|Variable|string): total variable
X
xujiaqi01 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296
        scope(Scope): specific scope

    Returns:
        rmse(float): rmse value

    Example:
        .. code-block:: python

          # in model.py
          sqrerr, abserr, prob, q, pos, total = fluid.contrib.layers.ctr_metric_bundle(similarity_norm, fluid.layers.cast(x=label, dtype='float32'))

          # in train.py, after train or infer
          res = np.array(scope.find_var(sqrerr.name).get_tensor())
297
          print("rmse: ", paddle.distributed.fleet.rmse(res, total_ins_num))
X
xujiaqi01 已提交
298 299
    """
    if scope is None:
300
        scope = paddle.static.global_scope()
T
tangwei12 已提交
301
    if util is None:
302
        util = paddle.distributed.fleet.util
T
tangwei12 已提交
303

X
xujiaqi01 已提交
304 305 306 307
    if isinstance(sqrerr, Variable):
        sqrerr = np.array(scope.find_var(sqrerr.name).get_tensor())
    elif isinstance(sqrerr, str):
        sqrerr = np.array(scope.find_var(sqrerr).get_tensor())
308 309
    if isinstance(total_ins_num, Variable):
        total_ins_num = np.array(
310 311
            scope.find_var(total_ins_num.name).get_tensor()
        )
312 313
    elif isinstance(total_ins_num, str):
        total_ins_num = np.array(scope.find_var(total_ins_num).get_tensor())
X
xujiaqi01 已提交
314 315 316
    old_metric_shape = np.array(sqrerr.shape)
    sqrerr = sqrerr.reshape(-1)
    global_metric = np.copy(sqrerr) * 0
T
tangwei12 已提交
317 318

    global_metric = util.all_reduce(sqrerr, "sum")
X
xujiaqi01 已提交
319
    global_metric = global_metric.reshape(old_metric_shape)
320 321 322
    global_total_num = util.all_reduce(total_ins_num, "sum")

    rmse_value = math.sqrt(float(global_metric[0]) / float(global_total_num[0]))
T
tangwei12 已提交
323

X
xujiaqi01 已提交
324 325 326
    return rmse_value


T
tangwei12 已提交
327
def mse(sqrerr, total_ins_num, scope=None, util=None):
X
xujiaqi01 已提交
328 329 330 331 332
    """
    distributed mse in fleet

    Args:
        sqrerr(numpy.array|Variable|string): sqrerr in output of fluid.contrib.layers.ctr_metric_bundle
333
        total_ins_num(numpy.array|Variable|string): total variable
X
xujiaqi01 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346
        scope(Scope): specific scope

    Returns:
        mse(float): mse value

    Example:
        .. code-block:: python

          # in model.py
          sqrerr, abserr, prob, q, pos, total = fluid.contrib.layers.ctr_metric_bundle(similarity_norm, fluid.layers.cast(x=label, dtype='float32'))

          # in train.py, after train or infer
          metric = np.array(scope.find_var(sqrerr.name).get_tensor())
347
          print("mse: ", paddle.distributed.fleet.mse(metric, total_ins_num))
X
xujiaqi01 已提交
348 349
    """
    if scope is None:
350
        scope = paddle.static.global_scope()
T
tangwei12 已提交
351
    if util is None:
352
        util = paddle.distributed.fleet.util
T
tangwei12 已提交
353

X
xujiaqi01 已提交
354 355 356 357
    if isinstance(sqrerr, Variable):
        sqrerr = np.array(scope.find_var(sqrerr.name).get_tensor())
    elif isinstance(sqrerr, str):
        sqrerr = np.array(scope.find_var(sqrerr).get_tensor())
358 359
    if isinstance(total_ins_num, Variable):
        total_ins_num = np.array(
360 361
            scope.find_var(total_ins_num.name).get_tensor()
        )
362 363
    elif isinstance(total_ins_num, str):
        total_ins_num = np.array(scope.find_var(total_ins_num).get_tensor())
X
xujiaqi01 已提交
364 365 366
    old_metric_shape = np.array(sqrerr.shape)
    sqrerr = sqrerr.reshape(-1)
    global_metric = np.copy(sqrerr) * 0
T
tangwei12 已提交
367 368

    global_metric = util.all_reduce(sqrerr, "sum")
X
xujiaqi01 已提交
369
    global_metric = global_metric.reshape(old_metric_shape)
370
    global_total_num = util.all_reduce(total_ins_num, "sum")
T
tangwei12 已提交
371

372
    mse_value = float(global_metric[0]) / float(global_total_num[0])
X
xujiaqi01 已提交
373 374 375
    return mse_value


T
tangwei12 已提交
376
def acc(correct, total, scope=None, util=None):
X
xujiaqi01 已提交
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
    """
    distributed accuracy in fleet

    Args:
        correct(numpy.array|Variable|string): correct Variable
        total(numpy.array|Variable): total Variable
        scope(Scope): specific scope

    Returns:
        acc(float): accuracy value

    Example:
        .. code-block:: python

          # in model.py
          correct = fluid.layers.create_global_var(dtype='float32', shape=[1], value=0)
          total = fluid.layers.create_global_var(dtype='float32', shape=[1], value=0)
          acc = fluid.layers.acc(predict, label, k=1, correct=correct, total=total)

          global_correct = fluid.layers.create_global_var(persistable=True, dtype='float32', shape=[1], value=0)
          tmp1 = fluid.layers.elementwise_min(correct, global_correct)
          fluid.layers.assign(tmp1, global_correct)

          global_total = fluid.layers.create_global_var(persistable=True, dtype='float32', shape=[1], value=0)
          tmp2 = fluid.layers.elementwise_min(total, global_total)
          fluid.layers.assign(tmp2, global_total)

          # in train.py, after train or infer
          correct_num = np.array(scope.find_var(correct.name).get_tensor())
          total_num = np.array(scope.find_var(total.name).get_tensor())
407
          print("accuracy: ", paddle.distributed.fleet.acc(correct_num, total_num))
X
xujiaqi01 已提交
408 409
    """
    if scope is None:
410
        scope = paddle.static.global_scope()
T
tangwei12 已提交
411
    if util is None:
412
        util = paddle.distributed.fleet.util
T
tangwei12 已提交
413

X
xujiaqi01 已提交
414 415 416 417 418 419 420 421
    if isinstance(correct, Variable):
        correct = np.array(scope.find_var(correct.name).get_tensor())
    elif isinstance(correct, str):
        correct = np.array(scope.find_var(correct).get_tensor())
    if isinstance(total, Variable):
        total = np.array(scope.find_var(total.name).get_tensor())
    elif isinstance(total, str):
        total = np.array(scope.find_var(total).get_tensor())
T
tangwei12 已提交
422

X
xujiaqi01 已提交
423 424
    global_correct_num = np.copy(correct) * 0
    global_total_num = np.copy(total) * 0
T
tangwei12 已提交
425 426 427 428

    global_correct_num = util.all_reduce(correct, "sum")
    global_total_num = util.all_reduce(total, "sum")

X
xujiaqi01 已提交
429
    return float(global_correct_num[0]) / float(global_total_num[0])