conv.py 65.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from __future__ import print_function
15
from paddle.fluid.framework import _global_flags
16

17
import numpy as np
L
LielinJiang 已提交
18
from ...device import get_cudnn_version
19
from ...fluid.framework import Variable, in_dygraph_mode
20
from ...fluid import core, dygraph_utils, get_flags
21 22 23 24 25
from ...fluid.layers import nn, utils
from ...fluid.data_feeder import check_variable_and_dtype
from ...fluid.param_attr import ParamAttr
from ...fluid.layer_helper import LayerHelper

26 27
__all__ = []

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

def _is_list_or_tuple(input):
    return isinstance(input, (list, tuple))


def _zero_padding_in_batch_and_channel(padding, channel_last):
    if channel_last:
        return list(padding[0]) == [0, 0] and list(padding[-1]) == [0, 0]
    else:
        return list(padding[0]) == [0, 0] and list(padding[1]) == [0, 0]


def _exclude_padding_in_batch_and_channel(padding, channel_last):
    padding_ = padding[1:-1] if channel_last else padding[2:]
    padding_ = [elem for pad_a_dim in padding_ for elem in pad_a_dim]
    return padding_


def _update_padding_nd(padding, channel_last, num_dims):
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '{}'. It can only be 'SAME' or 'VALID'.".
                format(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0] * num_dims
        else:
            padding_algorithm = "SAME"
            padding = [0] * num_dims
    elif _is_list_or_tuple(padding):
        # for padding like
        # [(pad_before, pad_after), (pad_before, pad_after), ...]
        # padding for batch_dim and channel_dim included
        if len(padding) == 2 + num_dims and _is_list_or_tuple(padding[0]):
            if not _zero_padding_in_batch_and_channel(padding, channel_last):
                raise ValueError(
                    "Non-zero padding({}) in the batch or channel dimensions "
                    "is not supported.".format(padding))
            padding_algorithm = "EXPLICIT"
            padding = _exclude_padding_in_batch_and_channel(padding,
                                                            channel_last)
            if utils._is_symmetric_padding(padding, num_dims):
                padding = padding[0::2]
        # for padding like [pad_before, pad_after, pad_before, pad_after, ...]
        elif len(padding) == 2 * num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
            padding = utils.convert_to_list(padding, 2 * num_dims, 'padding')
            if utils._is_symmetric_padding(padding, num_dims):
                padding = padding[0::2]
        # for padding like [pad_d1, pad_d2, ...]
        elif len(padding) == num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
            padding = utils.convert_to_list(padding, num_dims, 'padding')
        else:
            raise ValueError("In valid padding: {}".format(padding))
    # for integer padding
    else:
        padding_algorithm = "EXPLICIT"
        padding = utils.convert_to_list(padding, num_dims, 'padding')
89 90 91 92
    if not all([p >= 0 for p in padding]):
        raise ValueError(
            "Invalid padding, all value should be larger than or equal to 0, but received: {}".
            format(padding))
93 94 95
    return padding, padding_algorithm


L
LielinJiang 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
def _conv_nd(x,
             weight,
             bias=None,
             stride=1,
             padding=0,
             padding_algorithm=None,
             dilation=1,
             groups=1,
             data_format="NCHW",
             channel_dim=1,
             op_type="conv2d",
             use_cudnn=True,
             use_mkldnn=False,
             name=None):

111 112
    # Due to the poor performance of NHWC, we transpose the input to NCHW.
    origin_format = data_format
L
LielinJiang 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
    if in_dygraph_mode():
        attrs = ('strides', stride, 'paddings', padding, 'dilations', dilation,
                 'groups', groups, 'use_cudnn', use_cudnn, 'use_mkldnn',
                 use_mkldnn, 'fuse_relu_before_depthwise_conv', False,
                 "padding_algorithm", padding_algorithm, "data_format",
                 data_format)
        pre_bias = getattr(core.ops, op_type)(x, weight, *attrs)
        if bias is not None:
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            out = pre_bias
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format
        }
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 op_type)
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        pre_bias = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [pre_bias]}
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs)
        if bias is not None:
            out = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [bias]},
                outputs={'Out': [out]},
                attrs={'axis': channel_dim,
                       'use_mkldnn': use_mkldnn})
        else:
            out = pre_bias
    return out


W
whs 已提交
159 160 161 162 163 164 165 166 167
def conv1d(x,
           weight,
           bias=None,
           stride=1,
           padding=0,
           dilation=1,
           groups=1,
           data_format='NCL',
           name=None):
168
    r"""
W
whs 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
    The convolution1D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCL format, where N is batch size, C is the number of
    channels, L is the length of the feature.
    Filter is in MCK format, where M is the number of output image channels,
    C is the number of input image channels, K is the size of the kernel.
    If the groups is greater than 1, C will equal the number of input image
    channels divided by the groups. If bias attribution and activation type
    are provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
184
        Out = \sigma (W \ast X + b)
W
whs 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210

    Where:

    * :math:`X`: Input value, a tensor with NCL format.
    * :math:`W`: Kernel value, a tensor with MCK format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

W
whs 已提交
211
            L_{out} = \frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1
W
whs 已提交
212 213 214 215 216 217 218

    Args:
        x (Tensor): The input is 3-D Tensor with shape [N, C, L], the data type 
            of input is float16 or float32 or float64.
        weight (Tensor): The convolution kernel with shape [M, C/g, K], where M is
            the number of output channels, g is the number of groups, K is the kernel's size. 
        bias (Tensor, optional): The bias with shape [M,]. Default: None.
219
        stride (int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
W
whs 已提交
220
            contain one integers, (stride_size). Default: 1.
221
        padding(int|str|tuple|list, optional): The padding size. Padding could be in one of the following forms.
W
whs 已提交
222 223 224 225 226 227
            1. a string in ['valid', 'same'].
            2. an int, which means the feature map is zero paded by size of `padding` on both sides.
            3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
            4. a list[int] or tuple[int] whose length is 2. It has the form  [pad_before, pad_after].
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
228
        dilation (int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
W
whs 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
            contain one integer, (dilation_size). Default: 1.
        groups (int, optional): The groups number of the conv1d function. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, feature_length]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
        A tensor representing the conv1d, whose data type is the 
        same with input.

    Raises:
248
        ValueError: If the channel dimension of the input is less than or equal to zero.
W
whs 已提交
249 250
        ValueError: If `data_format` is not "NCL" or "NLC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
251
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
W
whs 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 3-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 1.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn.functional as F
          import numpy as np
          x = np.array([[[4, 8, 1, 9],
            [7, 2, 0, 9],
            [6, 9, 2, 6]]]).astype(np.float32)
          w=np.array(
          [[[9, 3, 4],
            [0, 0, 7],
            [2, 5, 6]],
           [[0, 3, 4],
            [2, 9, 7],
            [5, 6, 8]]]).astype(np.float32)
L
LielinJiang 已提交
275
          
W
whs 已提交
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
          x_var = paddle.to_tensor(x)
          w_var = paddle.to_tensor(w)
          y_var = F.conv1d(x_var, w_var)
          y_np = y_var.numpy()
          print(y_np)
          
          # [[[133. 238.]
          #   [160. 211.]]]
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ["NCL", "NLC"]:
        raise ValueError("Attr(data_format) should be 'NCL' or 'NLC'. "
                         "Received Attr(data_format): {}.".format(data_format))

L
LielinJiang 已提交
295
    channel_last = (data_format == "NLC")
W
whs 已提交
296 297 298 299 300
    channel_dim = -1 if channel_last else 1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"
    num_channels = x.shape[channel_dim]
    num_filters = weight.shape[0]
    if num_channels < 0:
301
        raise ValueError("The channel dimension of the input({}) "
W
whs 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
                         "should be defined. Received: {}.".format(
                             x.shape, num_channels))
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
            ", the groups is {}".format(num_channels, x.shape, groups))
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
            ", the groups is {}".format(num_filters, weight.shape, groups))

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)
    if len(padding) == 2:
        padding = padding + [0] * 2
    elif len(padding) == 1:
        padding = padding + [0]
    else:
        raise ValueError(
323
            "The size of padding's dimension should be 1 or 2. But got padding={}".
W
whs 已提交
324 325 326 327 328 329
            format(padding))

    stride = utils.convert_to_list(stride, 1, 'stride') + [1]
    dilation = utils.convert_to_list(dilation, 1, 'dilation') + [1]

    l_type = "conv2d"
L
LielinJiang 已提交
330 331
    if (num_channels == groups and num_channels != 1 and
            num_filters % num_channels == 0 and not use_cudnn):
W
whs 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
        l_type = 'depthwise_conv2d'
        use_cudnn = False

    inputs = {'Input': [x], 'Filter': [weight]}
    attrs = {
        'strides': stride,
        'paddings': padding,
        'dilations': dilation,
        'groups': groups,
        'use_cudnn': use_cudnn,
        'use_mkldnn': False,
        'fuse_relu_before_depthwise_conv': False,
        "padding_algorithm": padding_algorithm,
        "data_format": conv2d_data_format
    }
    squeeze_aixs = -2 if channel_last else -1
    x = nn.unsqueeze(input=x, axes=[squeeze_aixs])
    weight = nn.unsqueeze(input=weight, axes=[-1])
    if in_dygraph_mode():
        attrs = ('strides', stride, 'paddings', padding, 'dilations', dilation,
                 'groups', groups, 'use_cudnn', use_cudnn, 'use_mkldnn', False,
                 'fuse_relu_before_depthwise_conv', False, "padding_algorithm",
                 padding_algorithm, "data_format", conv2d_data_format)
        out = getattr(core.ops, l_type)(x, weight, *attrs)
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': False,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": conv2d_data_format
        }
        check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
                                 'conv2d')
        helper = LayerHelper(l_type, **locals())
374
        dtype = helper.input_dtype(input_param_name='x')
W
whs 已提交
375 376 377 378 379 380 381 382 383 384
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
        helper.append_op(
            type=l_type, inputs=inputs, outputs=outputs, attrs=attrs)
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    out = nn.squeeze(input=out, axes=[squeeze_aixs])
    return out


385
def conv2d(x,
386 387 388
           weight,
           bias=None,
           stride=1,
389
           padding=0,
390 391 392 393
           dilation=1,
           groups=1,
           data_format="NCHW",
           name=None):
394
    r"""
S
swtkiwi 已提交
395

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
    channels, H is the height of the feature, and W is the width of the feature.
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

413
    ..  math::
414

415
        Out = \sigma (W \ast X + b)
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439

    Where:

    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

440
        ..  math::
441

442 443
            H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
444 445

    Args:
446
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W], the data type 
447
            of input is float16 or float32 or float64.
448
        weight (Tensor): The convolution kernel with shape [M, C/g, kH, kW], where M is
449 450
            the number of output channels, g is the number of groups, kH is the filter's
            height, kW is the filter's width. 
451
        bias (Tensor, optional): The bias with shape [M,].
452 453
        stride (int|list|tuple): The stride size. It means the stride in convolution. 
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width). 
454
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
455 456 457 458 459 460 461
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
            on both sides for each dimension.If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when 
            `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0], 
            [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
462
            when `data_format` is `"NHWC"`, `padding` can be in the form
463 464
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
465 466
        dilation (int|list|tuple): The dilation size. It means the spacing between the kernel
            points. If dilation is a list/tuple, it must contain two integers, (dilation_height, 
467 468
            dilation_width). Otherwise, dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
C
cnn 已提交
469
        groups (int): The groups number of the Conv2D Layer. According to grouped
470 471 472 473 474 475 476 477 478 479 480 481 482
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
483
        A Tensor representing the conv2d result, whose data type is the same with input. 
484 485 486

    Raises:
        ValueError: If `data_format` is not "NCHW" or "NHWC".
487
        ValueError: If the channel dimension of the input is less than or equal to zero.
488
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
489
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
490 491 492 493 494 495 496 497 498 499
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

    Examples:
        .. code-block:: python

500
          import paddle
501 502
          import paddle.nn.functional as F

503 504
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((6, 3, 3, 3), dtype='float32')
505 506 507 508

          y_var = F.conv2d(x_var, w_var)
          y_np = y_var.numpy()

509 510 511 512 513 514 515 516 517 518
          print(y_np.shape)
          # (2, 6, 6, 6)
    """
    # entry checks
    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError("Attr(data_format) should be 'NCHW' or 'NHWC'. "
                         "Received Attr(data_format): {}.".format(data_format))

    channel_last = (data_format == "NHWC")
    channel_dim = -1 if channel_last else 1
519
    num_channels = x.shape[channel_dim]
520 521
    num_filters = weight.shape[0]
    if num_channels < 0:
522
        raise ValueError("The channel dimension of the input({}) "
523
                         "should be defined. Received: {}.".format(
524
                             x.shape, num_channels))
525 526 527 528
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
529
            ", the groups is {}".format(num_channels, x.shape, groups))
530 531 532 533 534 535
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
            ", the groups is {}".format(num_filters, weight.shape, groups))

536 537 538 539 540
    cudnn_version = get_cudnn_version()

    use_cudnn = True if (core.is_compiled_with_cuda() and
                         cudnn_version is not None) else False

541
    use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
L
LielinJiang 已提交
542

543 544 545 546 547 548
    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')

    l_type = "conv2d"
L
LielinJiang 已提交
549 550
    if (num_channels == groups and num_channels != 1 and
            num_filters % num_channels == 0):
551
        l_type = 'depthwise_conv2d'
552 553 554 555 556 557 558
        if core.is_compiled_with_rocm():
            use_cudnn = True
        else:
            use_cudnn = False

    if (core.is_compiled_with_cuda() and get_flags("FLAGS_conv2d_disable_cudnn")
        ["FLAGS_conv2d_disable_cudnn"]):
559
        use_cudnn = False
560

L
LielinJiang 已提交
561 562 563
    return _conv_nd(x, weight, bias, stride, padding, padding_algorithm,
                    dilation, groups, data_format, channel_dim, l_type,
                    use_cudnn, use_mkldnn, name)
564 565


566
def conv1d_transpose(x,
567 568 569 570 571 572 573 574 575 576
                     weight,
                     bias=None,
                     stride=1,
                     padding=0,
                     output_padding=0,
                     groups=1,
                     dilation=1,
                     output_size=None,
                     data_format="NCL",
                     name=None):
577
    r"""
578 579 580 581 582 583 584 585 586 587 588 589 590 591
    The 1-D convolution transpose layer calculates the output based on the input,
    filter, and dilation, stride, padding. Input(Input) and output(Output)
    are in 'NCL' format or 'NLC' where N is batch size, C is the number of channels,
    L is the length of the feature. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
592
        Out = \sigma (W \ast X + b)
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627

    Where:

    * :math:`X`: Input value, a 3-D Tensor with 'NCL' format or 'NLC' format.
    * :math:`W`: Filter value, a 3-D Tensor with 'MCK' format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 3-D Tensor with data format 'NCL' or 'NLC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

           L^\prime_{out} &= (L_{in} - 1) * stride - pad_top - pad_bottom + dilation * (L_f - 1) + 1 + output_padding \\\\
           L_{out} &\in [ L^\prime_{out}, L^\prime_{out} + stride ]

    Note:
          The conv1d_transpose can be seen as the backward of the conv1d. For conv1d,
          when stride > 1, conv1d maps multiple input shape to the same output shape,
          so for conv1d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`L_{out} = L^\prime_{out}`;
          else, the :math:`L_{out}` of the output size must between :math:`L^\prime_{out}`
628
          and :math:`L^\prime_{out} + stride`.
629 630 631 632 633 634 635 636 637

    Args:
        x(Tensor): 3-D tensor with [N, C, L] or [N, L, C] format,
                         its data type is float32 or float64.
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, K],
            where M is the number of output channels(filters), g is the number of groups,
            K is the size of the kernel.
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
        stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
638
            If stride is a list/tuple, it must contain one integer, `(stride_size)`.
639 640 641 642 643 644 645
            Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in two forms:
             `[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
        output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
646
             If it is a list/tuple, it must contain one integer. Default: 0.
647 648 649 650 651 652 653
        groups(int, optional): The groups number of the conv1d transpose function. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
654
            If dilation is a list/tuple, it must contain one integer, `(dilation_size)`.
655 656
            Default: dilation = 1.
        output_size(int|tuple|list, optional): The output image size. If output size is a
657
            tuple/list, it must contain one integer, `(feature_length)`. None if use
658
            filter_size(shape of weight), padding, and stride to calculate output_size.
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, input_length]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
        A  tensor representing the result of 1-D transpose convolution, whose
        data type is the same with input. And its shape is (num_batches, channels, length)
        when data_format is `"NCL"` and (num_batches, length, channels) when data_format is
        `"NLC"`.

    Raises:
        ValueError: If `data_format` is a string, but not "NCL" or "NLC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
676
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
            or the element corresponding to the input's channel is not 0.
        ValueError: If `output_size` and filter_size are None at the same time.
        ValueError: If `output_padding` is greater than `stride`.
        ShapeError: If the input is not 3-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 1.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.

    Examples:
        .. code-block:: python



          import paddle
          import paddle.nn.functional as F
          import numpy as np
          
          # shape: (1, 2, 4)
          x=np.array([[[4, 0, 9, 7],
                       [8, 0, 9, 2,]]]).astype(np.float32)
          # shape: (2, 1, 2)
W
whs 已提交
699
          w=np.array([[[7, 0]],
700 701 702
                      [[4, 2]]]).astype(np.float32)
          x_var = paddle.to_tensor(x)
          w_var = paddle.to_tensor(w)
703
          y_var = F.conv1d_transpose(x_var, w_var)
W
whs 已提交
704
          print(y_var)
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
          
          # [[[60. 16. 99. 75.  4.]]]
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ['NCL', 'NLC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCL' or 'NLC' are supported.".format(
                data_format))
    channel_last = (data_format == "NLC")
    channel_dim = -1 if channel_last else 1

    num_channels = x.shape[channel_dim]
    if num_channels < 0:
724
        raise ValueError("The channel dimension of the input({}) "
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
                         "should be defined. Received: {}.".format(
                             x.shape, num_channels))
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
            ", the groups is {}".format(num_channels, x.shape, groups))

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)

    if len(padding) == 2:
        padding = padding + [0] * 2
    elif len(padding) == 1:
        padding = padding + [0]
    else:
        raise ValueError(
742
            "The size of padding's dimension should 1 or 2. But got padding={}".
743 744 745 746 747 748 749 750
            format(padding))

    stride = utils.convert_to_list(stride, 1, 'stride') + [1]
    dilation = utils.convert_to_list(dilation, 1, 'dilation') + [1]

    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
        if output_padding != 0:
            raise ValueError('output_padding option is mutually exclusive with '
                             'output_size')
        if isinstance(output_size, (list, tuple, int)):
            output_size = utils.convert_to_list(output_size, 1,
                                                'output_size') + [1]
        else:
            raise ValueError(
                "output_size should be int, or list, tuple of ints")

    if output_padding == 0:
        output_padding = []
    else:
        output_padding = utils.convert_to_list(output_padding, 1,
                                               'output_padding') + [0]

    if len(output_padding) > 0 and output_padding[0] > stride[0]:
        raise ValueError(
            "The size of output_padding should not be greater than stride."
            "But got output_padding={} and stride={}".format(output_padding[0],
                                                             stride[0]))
772 773 774

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
L
LielinJiang 已提交
775 776
    if (num_channels == groups and num_channels != 1 and num_filters == 1 and
            not use_cudnn):
777 778 779 780 781 782 783 784 785 786
        op_type = 'depthwise_conv2d_transpose'
        use_cudnn = False

    squeeze_axis = -2 if channel_last else -1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"

    x = nn.unsqueeze(input=x, axes=[squeeze_axis])
    weight = nn.unsqueeze(input=weight, axes=[-1])

    if in_dygraph_mode():
L
LielinJiang 已提交
787 788 789 790
        attrs = ('output_padding', output_padding, 'output_size', output_size,
                 'strides', stride, 'paddings', padding, 'padding_algorithm',
                 padding_algorithm, 'dilations', dilation, 'groups', groups,
                 'use_cudnn', use_cudnn, 'data_format', conv2d_data_format)
791 792 793 794 795 796
        out = getattr(core.ops, op_type)(x, weight, *attrs)
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
L
LielinJiang 已提交
797
            'output_padding': output_padding,
798 799 800 801 802 803 804 805 806 807 808 809
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'data_format': conv2d_data_format
        }
        check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
                                 'conv2d_transpose')
        helper = LayerHelper(op_type, **locals())
810
        dtype = helper.input_dtype(input_param_name='x')
811 812 813 814 815 816 817 818 819 820 821
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs)
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)

    out = nn.squeeze(input=out, axes=[squeeze_axis])
    return out


822
def conv2d_transpose(x,
823 824 825
                     weight,
                     bias=None,
                     stride=1,
L
LielinJiang 已提交
826 827 828
                     padding=0,
                     output_padding=0,
                     dilation=1,
829
                     groups=1,
L
LielinJiang 已提交
830
                     output_size=None,
831
                     data_format='NCHW',
832
                     name=None):
833
    r"""
S
swtkiwi 已提交
834

835 836 837 838 839 840 841 842 843 844 845
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW or NHWC format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
846
    See more detail in :ref:`api_nn_conv_ConvTranspose2d` .
847 848 849

    For each input :math:`X`, the equation is:

850
    ..  math::
851

852
        Out = \sigma (W \ast X + b)
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876

    Where:

    * :math:`X`: Input value, a 4-D Tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a 4-D Tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 4-D Tensor with data format 'NCHW' or 'NHWC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

877
        ..  math::
878 879 880 881 882 883 884 885 886 887 888 889 890

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - pad_width_left - pad_width_right + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ]

    Note:
          The conv2d_transpose can be seen as the backward of the conv2d. For conv2d, 
          when stride > 1, conv2d maps multiple input shape to the same output shape, 
          so for conv2d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`; 
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must 
891
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`.
892 893

    Args:
L
LielinJiang 已提交
894
        x(Tensor): 4-D Tensor with [N, C, H, W] or [N, H, W, C] format,
895
            whose data type is float32 or float64.
L
LielinJiang 已提交
896
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, kH, kW],
897 898
            where M is the number of output channels(filters), g is the number of groups,
            kH is the height of the kernel, and kW is the width of the kernel.
L
LielinJiang 已提交
899 900
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution. 
901
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width). 
L
LielinJiang 已提交
902
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
903 904 905 906 907
        padding(str|int|list|tuple, optional): The padding size. It means the number of zero-paddings 
            on both sides for each dimension. If `padding` is a string, either 'VALID' or 
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or 
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
908
            and when `data_format` is `"NCHW"`, `padding` can be in the form 
909
            `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
910
            when `data_format` is `"NHWC"`, `padding` can be in the form 
911 912
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
913 914
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
C
cnn 已提交
915
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
916 917 918 919 920
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
921
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points. 
922
            If dilation is a list/tuple, it must contain two integers, (dilation_height, dilation_width). 
923
            Otherwise, dilation_height = dilation_width = dilation. Default: dilation = 1.
L
LielinJiang 已提交
924
        output_size(int|tuple|list, optional): The output image size. If output size is a
925
            tuple/list, it must contain two integers, (image_height, image_width). None if use
926
            filter_size(shape of weight), padding, and stride to calculate output_size.
927 928 929 930 931 932 933 934 935
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
936
        A Tensor representing the conv2d_transpose, whose
937
        data type is the same with input and shape is (num_batches, channels, out_h, 
L
LielinJiang 已提交
938 939
        out_w) or (num_batches, out_h, out_w, channels). The tensor variable storing 
        transposed convolution result.
940 941 942 943

    Raises:
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
944
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
945
            or the element corresponding to the input's channel is not 0.
L
LielinJiang 已提交
946
        ValueError: If `output_size` and kernel_size are None at the same time.
947 948 949 950 951 952 953 954 955
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.

    Examples:
        .. code-block:: python

L
LielinJiang 已提交
956 957
          import paddle
          import paddle.nn.functional as F
958

959 960
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
961

962
          y_var = F.conv2d_transpose(x_var, w_var)
L
LielinJiang 已提交
963
          y_np = y_var.numpy()
964

965
          print(y_np.shape)
966 967 968 969 970 971 972 973 974 975
          # (2, 6, 10, 10)
    """

    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCHW' or 'NHWC' are supported.".format(
                data_format))
    channel_last = (data_format == "NHWC")
    channel_dim = -1 if channel_last else 1
L
LielinJiang 已提交
976
    num_channels = x.shape[channel_dim]
977
    if num_channels < 0:
978
        raise ValueError("The channel dimension of the input({}) "
979
                         "should be defined. Received: {}.".format(
L
LielinJiang 已提交
980
                             x.shape, num_channels))
981 982 983 984
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
L
LielinJiang 已提交
985 986 987 988 989 990
            ", the groups is {}".format(num_channels, x.shape, groups))

    cudnn_version = get_cudnn_version()

    use_cudnn = True if (core.is_compiled_with_cuda() and
                         cudnn_version is not None) else False
991 992 993 994 995

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
L
LielinJiang 已提交
996

997 998 999
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
        if output_padding != 0:
            raise ValueError('output_padding option is mutually exclusive with '
                             'output_size')
        if isinstance(output_size, (list, tuple, int)):
            output_size = utils.convert_to_list(output_size, 2, 'output_size')
        else:
            raise ValueError(
                "output_size should be int, or list, tuple of ints")

    if output_padding == 0:
        output_padding = []
    else:
        output_padding = utils.convert_to_list(output_padding, 2,
                                               'output_padding')
1014 1015 1016

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
L
LielinJiang 已提交
1017
    if (num_channels == groups and num_channels != 1 and num_filters == 1):
1018
        op_type = 'depthwise_conv2d_transpose'
L
LielinJiang 已提交
1019
        use_cudnn = False
1020 1021

    if in_dygraph_mode():
L
LielinJiang 已提交
1022 1023 1024 1025 1026
        attrs = ('output_padding', output_padding, 'output_size', output_size,
                 'strides', stride, 'paddings', padding, 'padding_algorithm',
                 padding_algorithm, 'dilations', dilation, 'groups', groups,
                 'use_cudnn', use_cudnn, 'data_format', data_format)
        pre_bias = getattr(core.ops, op_type)(x, weight, *attrs)
1027
        if bias is not None:
L
LielinJiang 已提交
1028
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1029
        else:
L
LielinJiang 已提交
1030
            out = pre_bias
1031
    else:
L
LielinJiang 已提交
1032
        inputs = {'Input': [x], 'Filter': [weight]}
1033
        attrs = {
L
LielinJiang 已提交
1034
            'output_padding': output_padding,
1035 1036 1037 1038 1039 1040 1041 1042 1043
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'data_format': data_format
        }
L
LielinJiang 已提交
1044
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
1045 1046
                                 'conv2d_transpose')
        helper = LayerHelper(op_type, **locals())
L
LielinJiang 已提交
1047
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1048 1049 1050
        outputs = {"Output": [pre_bias]}
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs)
L
LielinJiang 已提交
1051

1052
        if bias is not None:
L
LielinJiang 已提交
1053
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1054
        else:
L
LielinJiang 已提交
1055 1056
            out = pre_bias

1057 1058 1059
    return out


1060
def conv3d(x,
1061 1062 1063
           weight,
           bias=None,
           stride=1,
1064
           padding=0,
1065 1066 1067 1068
           dilation=1,
           groups=1,
           data_format="NCDHW",
           name=None):
1069
    r"""
S
swtkiwi 已提交
1070

1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are in NCDHW or NDHWC format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

1082
    ..  math::
1083

1084
        Out = \sigma (W \ast X + b)
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1108
        ..  math::
1109 1110 1111 1112 1113 1114

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
1115
        x (Tensor): The input is 5-D Tensor with shape [N, C, D, H, W], the data 
1116
            type of input is float16 or float32 or float64.
1117
        weight (Tensor): The convolution kernel, a Tensor with shape [M, C/g, kD, kH, kW],
1118 1119
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
1120
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
1121 1122
        stride (int|list|tuple): The stride size. It means the stride in convolution. If stride is a 
            list/tuple, it must contain three integers, (stride_depth, stride_height, stride_width). 
1123
            Otherwise, stride_depth = stride_height = stride_width = stride. Default: stride = 1.
1124 1125 1126 1127 1128
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings 
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1129
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1130
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1131
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1132 1133
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
1134 1135
        dilation (int|list|tuple): The dilation size. It means the spacing between the kernel points. 
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height,
1136 1137
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
C
cnn 已提交
1138
        groups (int): The groups number of the Conv3D Layer. According to grouped
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        name(str|None): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
1152
        A Tensor representing the conv3d, whose data type is 
1153 1154
        the same with input. If act is None, the tensor storing the 
        convolution result, and if act is not None, the tensor storing 
1155 1156 1157 1158 1159
        convolution and non-linearity activation result.

    Examples:
        .. code-block:: python

1160 1161
            import paddle
            import paddle.nn.functional as F
1162

1163 1164
            x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
            w_var = paddle.randn((6, 3, 3, 3, 3), dtype='float32')
1165

1166 1167
            y_var = F.conv3d(x_var, w_var)
            y_np = y_var.numpy()
1168

1169
            print(y_np.shape)
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
            # (2, 6, 6, 6, 6)
    """
    # entry check
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): {}.".format(data_format))

    channel_last = (data_format == "NDHWC")
    channel_dim = -1 if channel_last else 1
1180
    num_channels = x.shape[channel_dim]
1181 1182 1183
    num_filters = weight.shape[0]
    if num_channels < 0:
        raise ValueError(
1184
            "The channel dimension of the input({}) should be defined. "
1185
            "Received: {}.".format(x.shape, num_channels))
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
            "Received: number of channels({}), groups({}).".format(num_channels,
                                                                   groups))
    if num_filters % groups != 0:
        raise ValueError(
            "The number of filters must be divisible by Attr(groups). "
            "Received: number of filters({}), groups({}).".format(num_filters,
                                                                  groups))

1197 1198 1199 1200
    cudnn_version = get_cudnn_version()
    use_cudnn = True if (core.is_compiled_with_cuda() and
                         cudnn_version is not None) else False

1201 1202 1203 1204 1205
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
    op_type = "conv3d"

L
LielinJiang 已提交
1206 1207 1208
    return _conv_nd(x, weight, bias, stride, padding, padding_algorithm,
                    dilation, groups, data_format, channel_dim, op_type,
                    use_cudnn, False, name)
1209 1210


1211
def conv3d_transpose(x,
1212 1213 1214
                     weight,
                     bias=None,
                     stride=1,
L
LielinJiang 已提交
1215 1216
                     padding=0,
                     output_padding=0,
1217
                     groups=1,
L
LielinJiang 已提交
1218 1219
                     dilation=1,
                     output_size=None,
1220
                     data_format='NCDHW',
1221
                     name=None):
1222
    r"""
L
LielinJiang 已提交
1223
    The convolution3d transpose layer calculates the output based on the input,
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW or NDHWC format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
1234
    See more detail in :ref:`api_nn_conv_ConvTranspose3d` .
1235 1236 1237

    For each input :math:`X`, the equation is:

1238
    ..  math::
1239

1240
        Out = \sigma (W \ast X + b)
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264

    In the above equation:

    * :math:`X`: Input value, a Tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a Tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1265
        ..  math::
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282

           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[2] ]

    Note:
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
1283
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`.
1284 1285

    Args:
L
LielinJiang 已提交
1286
        x(Tensor): The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C], the data type 
1287
            of input is float32 or float64.
L
LielinJiang 已提交
1288
        weight (Tensor): The convolution kernel, a Tensor with shape [C, M/g, kD, kH, kW],
1289 1290
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
L
LielinJiang 已提交
1291 1292
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution. 
1293
            If stride is a list/tuple, it must contain three integers, (stride_depth, stride_height, 
L
LielinJiang 已提交
1294 1295
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            Default: stride = 1.
1296 1297 1298 1299
        padding (string|int|list|tuple, optional): The padding size. It means the number of zero-paddings 
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
1300
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1301
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1302
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1303
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1304 1305
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
1306 1307
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
C
cnn 已提交
1308
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
1309 1310 1311 1312 1313
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
1314
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points. 
1315
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height, 
1316 1317
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
L
LielinJiang 已提交
1318
        output_size(int|list|tuple, optional): The output image size. If output size is a
1319
            list/tuple, it must contain three integers, (image_depth, image_height, image_width).
1320
            None if use filter_size(shape of weight), padding, and stride to calculate output_size.
1321 1322 1323 1324
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
1325 1326 1327 1328 1329
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
1330
        A Tensor representing the conv3d_transpose, whose data
1331 1332 1333 1334 1335 1336 1337 1338
        type is the same with input and shape is (num_batches, channels, out_d, out_h, 
        out_w) or (num_batches, out_d, out_h, out_w, channels). If act is None, the tensor 
        variable storing the transposed convolution result, and if act is not None, the tensor 
        variable storing transposed convolution and non-linearity activation result.

    Raises:
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
1339
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
1340
            or the element corresponding to the input's channel is not 0.
L
LielinJiang 已提交
1341
        ValueError: If `output_size` and kernel_size are None at the same time.
1342 1343 1344 1345 1346 1347 1348 1349
        ShapeError: If the input is not 5-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.

    Examples:
       .. code-block:: python
L
LielinJiang 已提交
1350 1351
          
          import paddle
1352 1353
          import paddle.nn.functional as F

1354 1355
          x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3, 3), dtype='float32')
1356

1357
          y_var = F.conv3d_transpose(x_var, w_var)
L
LielinJiang 已提交
1358
          y_np = y_var.numpy()
1359

1360
          print(y_np.shape)
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
          # (2, 6, 10, 10, 10)
    """
    # entry checks
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): {}.".format(data_format))

    channel_last = (data_format == "NDHWC")
    channel_dim = -1 if channel_last else 1
L
LielinJiang 已提交
1371
    num_channels = x.shape[channel_dim]
1372 1373 1374
    num_filters = weight.shape[1]
    if num_channels < 0:
        raise ValueError(
1375
            "The channel dimension of the input({}) should be defined. "
L
LielinJiang 已提交
1376
            "Received: {}.".format(x.shape, num_channels))
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
            "Received: number of channels({}), groups({}).".format(num_channels,
                                                                   groups))

    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
        if output_padding != 0:
            raise ValueError('output_padding option is mutually exclusive with '
                             'output_size')
        if isinstance(output_size, (list, tuple, int)):
            output_size = utils.convert_to_list(output_size, 3, 'output_size')
        else:
            raise ValueError(
                "output_size should be int, or list, tuple of ints")

    if output_padding == 0:
        output_padding = []
    else:
        output_padding = utils.convert_to_list(output_padding, 3,
                                               'output_padding')

    cudnn_version = get_cudnn_version()

    #TODO(LielinJiang): whether to use cudnn according to the version of cudnn
    use_cudnn = True if (core.is_compiled_with_cuda() and
                         cudnn_version is not None) else False
1409 1410 1411 1412 1413

    op_type = 'conv3d_transpose'
    data_format_ = "NHWC" if channel_last else "NCHW"

    if in_dygraph_mode():
L
LielinJiang 已提交
1414 1415 1416 1417 1418
        attrs = ('output_padding', output_padding, 'output_size', output_size,
                 'paddings', padding, "padding_algorithm", padding_algorithm,
                 'strides', stride, 'dilations', dilation, 'groups', groups,
                 'use_cudnn', use_cudnn, "data_format", data_format_)
        pre_bias = getattr(core.ops, op_type)(x, weight, *attrs)
1419
        if bias is not None:
L
LielinJiang 已提交
1420
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1421
        else:
L
LielinJiang 已提交
1422
            out = pre_bias
1423
    else:
L
LielinJiang 已提交
1424
        inputs = {'Input': [x], 'Filter': [weight]}
1425
        attrs = {
L
LielinJiang 已提交
1426
            'output_padding': output_padding,
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
            'output_size': output_size,
            'paddings': padding,
            "padding_algorithm": padding_algorithm,
            'strides': stride,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            "data_format": data_format_
        }
        helper = LayerHelper(op_type, **locals())
L
LielinJiang 已提交
1437 1438
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'conv3d')
1439

L
LielinJiang 已提交
1440
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1441 1442 1443 1444 1445
        outputs = {"Output": [pre_bias]}

        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs)
        if bias is not None:
L
LielinJiang 已提交
1446
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1447
        else:
L
LielinJiang 已提交
1448
            out = pre_bias
1449 1450

    return out