test_pixel_unshuffle.py 10.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

17
import numpy as np
W
wanghuancoder 已提交
18
from eager_op_test import OpTest
19

20
import paddle
21
import paddle.nn.functional as F
22 23
from paddle import fluid
from paddle.fluid import core
24 25 26 27 28 29 30


def pixel_unshuffle_np(x, down_factor, data_format="NCHW"):
    '''Numpy implementation of pixel unshuffle'''

    if data_format == "NCHW":
        n, c, h, w = x.shape
31 32 33 34 35 36 37 38
        new_shape = (
            n,
            c,
            h // down_factor,
            down_factor,
            w // down_factor,
            down_factor,
        )
39 40 41
        npresult = np.reshape(x, new_shape)
        npresult = npresult.transpose(0, 1, 3, 5, 2, 4)
        oshape = [
42 43 44 45
            n,
            c * down_factor * down_factor,
            h // down_factor,
            w // down_factor,
46 47 48 49 50
        ]
        npresult = np.reshape(npresult, oshape)
        return npresult
    else:
        n, h, w, c = x.shape
51 52 53 54 55 56 57 58
        new_shape = (
            n,
            h // down_factor,
            down_factor,
            w // down_factor,
            down_factor,
            c,
        )
59 60 61
        npresult = np.reshape(x, new_shape)
        npresult = npresult.transpose(0, 1, 3, 5, 2, 4)
        oshape = [
62 63 64 65
            n,
            h // down_factor,
            w // down_factor,
            c * down_factor * down_factor,
66 67 68 69 70
        ]
        npresult = np.reshape(npresult, oshape)
        return npresult


W
wanghuancoder 已提交
71 72 73 74 75 76
def pixel_unshuffle_wrapper(x, downscale_factor, data_format):
    return paddle._legacy_C_ops.pixel_unshuffle(
        x, "downscale_factor", downscale_factor, "data_format", data_format
    )


77 78 79 80 81 82 83
class TestPixelUnshuffleOp(OpTest):
    '''TestPixelUnshuffleOp'''

    def setUp(self):
        '''setUp'''

        self.op_type = "pixel_unshuffle"
W
wanghuancoder 已提交
84
        self.python_api = pixel_unshuffle_wrapper
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
        self.init_data_format()
        n, c, h, w = 2, 1, 12, 12

        if self.format == "NCHW":
            shape = [n, c, h, w]
        if self.format == "NHWC":
            shape = [n, h, w, c]

        down_factor = 3

        x = np.random.random(shape).astype("float64")
        npresult = pixel_unshuffle_np(x, down_factor, self.format)

        self.inputs = {"X": x}
        self.outputs = {"Out": npresult}
        self.attrs = {
            "downscale_factor": down_factor,
102
            "data_format": self.format,
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
        }

    def init_data_format(self):
        '''init_data_format'''

        self.format = "NCHW"

    def test_check_output(self):
        '''test_check_output'''

        self.check_output()

    def test_check_grad(self):
        '''test_check_grad'''

        self.check_grad(["X"], "Out")


class TestChannelLast(TestPixelUnshuffleOp):
    '''TestChannelLast'''

    def init_data_format(self):
        '''init_data_format'''

        self.format = "NHWC"


class TestPixelUnshuffleAPI(unittest.TestCase):
    '''TestPixelUnshuffleAPI'''

    def setUp(self):
        '''setUp'''

        self.x_1_np = np.random.random([2, 1, 12, 12]).astype("float64")
        self.x_2_np = np.random.random([2, 12, 12, 1]).astype("float64")
        self.out_1_np = pixel_unshuffle_np(self.x_1_np, 3)
        self.out_2_np = pixel_unshuffle_np(self.x_2_np, 3, "NHWC")

    def test_static_graph_functional(self):
        '''test_static_graph_functional'''

144 145 146
        for use_cuda in (
            [False, True] if core.is_compiled_with_cuda() else [False]
        ):
147 148 149
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()

            paddle.enable_static()
150
            x_1 = paddle.static.data(
151 152
                name="x", shape=[2, 1, 12, 12], dtype="float64"
            )
153
            x_2 = paddle.static.data(
154 155
                name="x2", shape=[2, 12, 12, 1], dtype="float64"
            )
156 157 158 159
            out_1 = F.pixel_unshuffle(x_1, 3)
            out_2 = F.pixel_unshuffle(x_2, 3, "NHWC")

            exe = paddle.static.Executor(place=place)
160 161 162 163 164 165 166 167 168 169 170 171 172
            res_1 = exe.run(
                fluid.default_main_program(),
                feed={"x": self.x_1_np},
                fetch_list=out_1,
                use_prune=True,
            )

            res_2 = exe.run(
                fluid.default_main_program(),
                feed={"x2": self.x_2_np},
                fetch_list=out_2,
                use_prune=True,
            )
173 174 175 176 177 178 179 180

            assert np.allclose(res_1, self.out_1_np)
            assert np.allclose(res_2, self.out_2_np)

    # same test between layer and functional in this op.
    def test_static_graph_layer(self):
        '''test_static_graph_layer'''

181 182 183
        for use_cuda in (
            [False, True] if core.is_compiled_with_cuda() else [False]
        ):
184 185 186
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()

            paddle.enable_static()
187
            x_1 = paddle.static.data(
188 189
                name="x", shape=[2, 1, 12, 12], dtype="float64"
            )
190
            x_2 = paddle.static.data(
191 192
                name="x2", shape=[2, 12, 12, 1], dtype="float64"
            )
193 194 195 196 197 198 199 200 201
            # init instance
            ps_1 = paddle.nn.PixelUnshuffle(3)
            ps_2 = paddle.nn.PixelUnshuffle(3, "NHWC")
            out_1 = ps_1(x_1)
            out_2 = ps_2(x_2)
            out_1_np = pixel_unshuffle_np(self.x_1_np, 3)
            out_2_np = pixel_unshuffle_np(self.x_2_np, 3, "NHWC")

            exe = paddle.static.Executor(place=place)
202 203 204 205 206 207 208 209 210 211 212 213 214
            res_1 = exe.run(
                fluid.default_main_program(),
                feed={"x": self.x_1_np},
                fetch_list=out_1,
                use_prune=True,
            )

            res_2 = exe.run(
                fluid.default_main_program(),
                feed={"x2": self.x_2_np},
                fetch_list=out_2,
                use_prune=True,
            )
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232

            assert np.allclose(res_1, out_1_np)
            assert np.allclose(res_2, out_2_np)

    def run_dygraph(self, down_factor, data_format):
        '''run_dygraph'''

        n, c, h, w = 2, 1, 12, 12

        if data_format == "NCHW":
            shape = [n, c, h, w]
        if data_format == "NHWC":
            shape = [n, h, w, c]

        x = np.random.random(shape).astype("float64")

        npresult = pixel_unshuffle_np(x, down_factor, data_format)

233 234 235
        for use_cuda in (
            [False, True] if core.is_compiled_with_cuda() else [False]
        ):
236 237 238 239
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()

            paddle.disable_static(place=place)

240 241 242
            pixel_unshuffle = paddle.nn.PixelUnshuffle(
                down_factor, data_format=data_format
            )
243 244
            result = pixel_unshuffle(paddle.to_tensor(x))

245
            np.testing.assert_allclose(result.numpy(), npresult, rtol=1e-05)
246

247 248 249 250 251 252
            result_functional = F.pixel_unshuffle(
                paddle.to_tensor(x), 3, data_format
            )
            np.testing.assert_allclose(
                result_functional.numpy(), npresult, rtol=1e-05
            )
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299

            pixel_unshuffle_str = 'downscale_factor={}'.format(down_factor)
            if data_format != 'NCHW':
                pixel_unshuffle_str += ', data_format={}'.format(data_format)
            self.assertEqual(pixel_unshuffle.extra_repr(), pixel_unshuffle_str)

    def test_dygraph1(self):
        '''test_dygraph1'''

        self.run_dygraph(3, "NCHW")

    def test_dygraph2(self):
        '''test_dygraph2'''

        self.run_dygraph(3, "NHWC")


class TestPixelUnshuffleError(unittest.TestCase):
    '''TestPixelUnshuffleError'''

    def test_error_functional(self):
        '''test_error_functional'''

        def error_input():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([4, 12, 12]).astype("float64")
                pixel_unshuffle = F.pixel_unshuffle(paddle.to_tensor(x), 2)

        self.assertRaises(ValueError, error_input)

        def error_downscale_factor_1():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 1, 12, 12]).astype("float64")
                pixel_unshuffle = F.pixel_unshuffle(paddle.to_tensor(x), 3.33)

        self.assertRaises(TypeError, error_downscale_factor_1)

        def error_downscale_factor_2():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 1, 12, 12]).astype("float64")
                pixel_unshuffle = F.pixel_unshuffle(paddle.to_tensor(x), -1)

        self.assertRaises(ValueError, error_downscale_factor_2)

        def error_data_format():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 1, 12, 12]).astype("float64")
300 301 302
                pixel_unshuffle = F.pixel_unshuffle(
                    paddle.to_tensor(x), 3, "WOW"
                )
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340

        self.assertRaises(ValueError, error_data_format)

    def test_error_layer(self):
        '''test_error_layer'''

        def error_input_layer():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([4, 12, 12]).astype("float64")
                ps = paddle.nn.PixelUnshuffle(2)
                ps(paddle.to_tensor(x))

        self.assertRaises(ValueError, error_input_layer)

        def error_downscale_factor_layer_1():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 1, 12, 12]).astype("float64")
                ps = paddle.nn.PixelUnshuffle(3.33)

        self.assertRaises(TypeError, error_downscale_factor_layer_1)

        def error_downscale_factor_layer_2():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 1, 12, 12]).astype("float64")
                ps = paddle.nn.PixelUnshuffle(-1)

        self.assertRaises(ValueError, error_downscale_factor_layer_2)

        def error_data_format_layer():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 1, 12, 12]).astype("float64")
                ps = paddle.nn.PixelUnshuffle(3, "MEOW")

        self.assertRaises(ValueError, error_data_format_layer)


if __name__ == "__main__":
    unittest.main()