test_pixel_unshuffle.py 10.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

17
import numpy as np
18
from op_test import OpTest
19

20 21
import paddle
import paddle.fluid as fluid
22 23
import paddle.fluid.core as core
import paddle.nn.functional as F
24 25 26 27 28 29 30


def pixel_unshuffle_np(x, down_factor, data_format="NCHW"):
    '''Numpy implementation of pixel unshuffle'''

    if data_format == "NCHW":
        n, c, h, w = x.shape
31 32 33 34 35 36 37 38
        new_shape = (
            n,
            c,
            h // down_factor,
            down_factor,
            w // down_factor,
            down_factor,
        )
39 40 41
        npresult = np.reshape(x, new_shape)
        npresult = npresult.transpose(0, 1, 3, 5, 2, 4)
        oshape = [
42 43 44 45
            n,
            c * down_factor * down_factor,
            h // down_factor,
            w // down_factor,
46 47 48 49 50
        ]
        npresult = np.reshape(npresult, oshape)
        return npresult
    else:
        n, h, w, c = x.shape
51 52 53 54 55 56 57 58
        new_shape = (
            n,
            h // down_factor,
            down_factor,
            w // down_factor,
            down_factor,
            c,
        )
59 60 61
        npresult = np.reshape(x, new_shape)
        npresult = npresult.transpose(0, 1, 3, 5, 2, 4)
        oshape = [
62 63 64 65
            n,
            h // down_factor,
            w // down_factor,
            c * down_factor * down_factor,
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
        ]
        npresult = np.reshape(npresult, oshape)
        return npresult


class TestPixelUnshuffleOp(OpTest):
    '''TestPixelUnshuffleOp'''

    def setUp(self):
        '''setUp'''

        self.op_type = "pixel_unshuffle"
        self.init_data_format()
        n, c, h, w = 2, 1, 12, 12

        if self.format == "NCHW":
            shape = [n, c, h, w]
        if self.format == "NHWC":
            shape = [n, h, w, c]

        down_factor = 3

        x = np.random.random(shape).astype("float64")
        npresult = pixel_unshuffle_np(x, down_factor, self.format)

        self.inputs = {"X": x}
        self.outputs = {"Out": npresult}
        self.attrs = {
            "downscale_factor": down_factor,
95
            "data_format": self.format,
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
        }

    def init_data_format(self):
        '''init_data_format'''

        self.format = "NCHW"

    def test_check_output(self):
        '''test_check_output'''

        self.check_output()

    def test_check_grad(self):
        '''test_check_grad'''

        self.check_grad(["X"], "Out")


class TestChannelLast(TestPixelUnshuffleOp):
    '''TestChannelLast'''

    def init_data_format(self):
        '''init_data_format'''

        self.format = "NHWC"


class TestPixelUnshuffleAPI(unittest.TestCase):
    '''TestPixelUnshuffleAPI'''

    def setUp(self):
        '''setUp'''

        self.x_1_np = np.random.random([2, 1, 12, 12]).astype("float64")
        self.x_2_np = np.random.random([2, 12, 12, 1]).astype("float64")
        self.out_1_np = pixel_unshuffle_np(self.x_1_np, 3)
        self.out_2_np = pixel_unshuffle_np(self.x_2_np, 3, "NHWC")

    def test_static_graph_functional(self):
        '''test_static_graph_functional'''

137 138 139
        for use_cuda in (
            [False, True] if core.is_compiled_with_cuda() else [False]
        ):
140 141 142
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()

            paddle.enable_static()
143
            x_1 = paddle.static.data(
144 145
                name="x", shape=[2, 1, 12, 12], dtype="float64"
            )
146
            x_2 = paddle.static.data(
147 148
                name="x2", shape=[2, 12, 12, 1], dtype="float64"
            )
149 150 151 152
            out_1 = F.pixel_unshuffle(x_1, 3)
            out_2 = F.pixel_unshuffle(x_2, 3, "NHWC")

            exe = paddle.static.Executor(place=place)
153 154 155 156 157 158 159 160 161 162 163 164 165
            res_1 = exe.run(
                fluid.default_main_program(),
                feed={"x": self.x_1_np},
                fetch_list=out_1,
                use_prune=True,
            )

            res_2 = exe.run(
                fluid.default_main_program(),
                feed={"x2": self.x_2_np},
                fetch_list=out_2,
                use_prune=True,
            )
166 167 168 169 170 171 172 173

            assert np.allclose(res_1, self.out_1_np)
            assert np.allclose(res_2, self.out_2_np)

    # same test between layer and functional in this op.
    def test_static_graph_layer(self):
        '''test_static_graph_layer'''

174 175 176
        for use_cuda in (
            [False, True] if core.is_compiled_with_cuda() else [False]
        ):
177 178 179
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()

            paddle.enable_static()
180
            x_1 = paddle.static.data(
181 182
                name="x", shape=[2, 1, 12, 12], dtype="float64"
            )
183
            x_2 = paddle.static.data(
184 185
                name="x2", shape=[2, 12, 12, 1], dtype="float64"
            )
186 187 188 189 190 191 192 193 194
            # init instance
            ps_1 = paddle.nn.PixelUnshuffle(3)
            ps_2 = paddle.nn.PixelUnshuffle(3, "NHWC")
            out_1 = ps_1(x_1)
            out_2 = ps_2(x_2)
            out_1_np = pixel_unshuffle_np(self.x_1_np, 3)
            out_2_np = pixel_unshuffle_np(self.x_2_np, 3, "NHWC")

            exe = paddle.static.Executor(place=place)
195 196 197 198 199 200 201 202 203 204 205 206 207
            res_1 = exe.run(
                fluid.default_main_program(),
                feed={"x": self.x_1_np},
                fetch_list=out_1,
                use_prune=True,
            )

            res_2 = exe.run(
                fluid.default_main_program(),
                feed={"x2": self.x_2_np},
                fetch_list=out_2,
                use_prune=True,
            )
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

            assert np.allclose(res_1, out_1_np)
            assert np.allclose(res_2, out_2_np)

    def run_dygraph(self, down_factor, data_format):
        '''run_dygraph'''

        n, c, h, w = 2, 1, 12, 12

        if data_format == "NCHW":
            shape = [n, c, h, w]
        if data_format == "NHWC":
            shape = [n, h, w, c]

        x = np.random.random(shape).astype("float64")

        npresult = pixel_unshuffle_np(x, down_factor, data_format)

226 227 228
        for use_cuda in (
            [False, True] if core.is_compiled_with_cuda() else [False]
        ):
229 230 231 232
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()

            paddle.disable_static(place=place)

233 234 235
            pixel_unshuffle = paddle.nn.PixelUnshuffle(
                down_factor, data_format=data_format
            )
236 237
            result = pixel_unshuffle(paddle.to_tensor(x))

238
            np.testing.assert_allclose(result.numpy(), npresult, rtol=1e-05)
239

240 241 242 243 244 245
            result_functional = F.pixel_unshuffle(
                paddle.to_tensor(x), 3, data_format
            )
            np.testing.assert_allclose(
                result_functional.numpy(), npresult, rtol=1e-05
            )
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292

            pixel_unshuffle_str = 'downscale_factor={}'.format(down_factor)
            if data_format != 'NCHW':
                pixel_unshuffle_str += ', data_format={}'.format(data_format)
            self.assertEqual(pixel_unshuffle.extra_repr(), pixel_unshuffle_str)

    def test_dygraph1(self):
        '''test_dygraph1'''

        self.run_dygraph(3, "NCHW")

    def test_dygraph2(self):
        '''test_dygraph2'''

        self.run_dygraph(3, "NHWC")


class TestPixelUnshuffleError(unittest.TestCase):
    '''TestPixelUnshuffleError'''

    def test_error_functional(self):
        '''test_error_functional'''

        def error_input():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([4, 12, 12]).astype("float64")
                pixel_unshuffle = F.pixel_unshuffle(paddle.to_tensor(x), 2)

        self.assertRaises(ValueError, error_input)

        def error_downscale_factor_1():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 1, 12, 12]).astype("float64")
                pixel_unshuffle = F.pixel_unshuffle(paddle.to_tensor(x), 3.33)

        self.assertRaises(TypeError, error_downscale_factor_1)

        def error_downscale_factor_2():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 1, 12, 12]).astype("float64")
                pixel_unshuffle = F.pixel_unshuffle(paddle.to_tensor(x), -1)

        self.assertRaises(ValueError, error_downscale_factor_2)

        def error_data_format():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 1, 12, 12]).astype("float64")
293 294 295
                pixel_unshuffle = F.pixel_unshuffle(
                    paddle.to_tensor(x), 3, "WOW"
                )
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333

        self.assertRaises(ValueError, error_data_format)

    def test_error_layer(self):
        '''test_error_layer'''

        def error_input_layer():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([4, 12, 12]).astype("float64")
                ps = paddle.nn.PixelUnshuffle(2)
                ps(paddle.to_tensor(x))

        self.assertRaises(ValueError, error_input_layer)

        def error_downscale_factor_layer_1():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 1, 12, 12]).astype("float64")
                ps = paddle.nn.PixelUnshuffle(3.33)

        self.assertRaises(TypeError, error_downscale_factor_layer_1)

        def error_downscale_factor_layer_2():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 1, 12, 12]).astype("float64")
                ps = paddle.nn.PixelUnshuffle(-1)

        self.assertRaises(ValueError, error_downscale_factor_layer_2)

        def error_data_format_layer():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 1, 12, 12]).astype("float64")
                ps = paddle.nn.PixelUnshuffle(3, "MEOW")

        self.assertRaises(ValueError, error_data_format_layer)


if __name__ == "__main__":
    unittest.main()