test_pixel_unshuffle.py 10.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np

from op_test import OpTest
import paddle
import paddle.nn.functional as F
import paddle.fluid.core as core
import paddle.fluid as fluid


def pixel_unshuffle_np(x, down_factor, data_format="NCHW"):
    '''Numpy implementation of pixel unshuffle'''

    if data_format == "NCHW":
        n, c, h, w = x.shape
30 31 32 33 34 35 36 37
        new_shape = (
            n,
            c,
            h // down_factor,
            down_factor,
            w // down_factor,
            down_factor,
        )
38 39 40
        npresult = np.reshape(x, new_shape)
        npresult = npresult.transpose(0, 1, 3, 5, 2, 4)
        oshape = [
41 42 43 44
            n,
            c * down_factor * down_factor,
            h // down_factor,
            w // down_factor,
45 46 47 48 49
        ]
        npresult = np.reshape(npresult, oshape)
        return npresult
    else:
        n, h, w, c = x.shape
50 51 52 53 54 55 56 57
        new_shape = (
            n,
            h // down_factor,
            down_factor,
            w // down_factor,
            down_factor,
            c,
        )
58 59 60
        npresult = np.reshape(x, new_shape)
        npresult = npresult.transpose(0, 1, 3, 5, 2, 4)
        oshape = [
61 62 63 64
            n,
            h // down_factor,
            w // down_factor,
            c * down_factor * down_factor,
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
        ]
        npresult = np.reshape(npresult, oshape)
        return npresult


class TestPixelUnshuffleOp(OpTest):
    '''TestPixelUnshuffleOp'''

    def setUp(self):
        '''setUp'''

        self.op_type = "pixel_unshuffle"
        self.init_data_format()
        n, c, h, w = 2, 1, 12, 12

        if self.format == "NCHW":
            shape = [n, c, h, w]
        if self.format == "NHWC":
            shape = [n, h, w, c]

        down_factor = 3

        x = np.random.random(shape).astype("float64")
        npresult = pixel_unshuffle_np(x, down_factor, self.format)

        self.inputs = {"X": x}
        self.outputs = {"Out": npresult}
        self.attrs = {
            "downscale_factor": down_factor,
94
            "data_format": self.format,
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
        }

    def init_data_format(self):
        '''init_data_format'''

        self.format = "NCHW"

    def test_check_output(self):
        '''test_check_output'''

        self.check_output()

    def test_check_grad(self):
        '''test_check_grad'''

        self.check_grad(["X"], "Out")


class TestChannelLast(TestPixelUnshuffleOp):
    '''TestChannelLast'''

    def init_data_format(self):
        '''init_data_format'''

        self.format = "NHWC"


class TestPixelUnshuffleAPI(unittest.TestCase):
    '''TestPixelUnshuffleAPI'''

    def setUp(self):
        '''setUp'''

        self.x_1_np = np.random.random([2, 1, 12, 12]).astype("float64")
        self.x_2_np = np.random.random([2, 12, 12, 1]).astype("float64")
        self.out_1_np = pixel_unshuffle_np(self.x_1_np, 3)
        self.out_2_np = pixel_unshuffle_np(self.x_2_np, 3, "NHWC")

    def test_static_graph_functional(self):
        '''test_static_graph_functional'''

136 137 138
        for use_cuda in (
            [False, True] if core.is_compiled_with_cuda() else [False]
        ):
139 140 141
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()

            paddle.enable_static()
142 143 144 145 146 147
            x_1 = paddle.fluid.data(
                name="x", shape=[2, 1, 12, 12], dtype="float64"
            )
            x_2 = paddle.fluid.data(
                name="x2", shape=[2, 12, 12, 1], dtype="float64"
            )
148 149 150 151
            out_1 = F.pixel_unshuffle(x_1, 3)
            out_2 = F.pixel_unshuffle(x_2, 3, "NHWC")

            exe = paddle.static.Executor(place=place)
152 153 154 155 156 157 158 159 160 161 162 163 164
            res_1 = exe.run(
                fluid.default_main_program(),
                feed={"x": self.x_1_np},
                fetch_list=out_1,
                use_prune=True,
            )

            res_2 = exe.run(
                fluid.default_main_program(),
                feed={"x2": self.x_2_np},
                fetch_list=out_2,
                use_prune=True,
            )
165 166 167 168 169 170 171 172

            assert np.allclose(res_1, self.out_1_np)
            assert np.allclose(res_2, self.out_2_np)

    # same test between layer and functional in this op.
    def test_static_graph_layer(self):
        '''test_static_graph_layer'''

173 174 175
        for use_cuda in (
            [False, True] if core.is_compiled_with_cuda() else [False]
        ):
176 177 178
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()

            paddle.enable_static()
179 180 181 182 183 184
            x_1 = paddle.fluid.data(
                name="x", shape=[2, 1, 12, 12], dtype="float64"
            )
            x_2 = paddle.fluid.data(
                name="x2", shape=[2, 12, 12, 1], dtype="float64"
            )
185 186 187 188 189 190 191 192 193
            # init instance
            ps_1 = paddle.nn.PixelUnshuffle(3)
            ps_2 = paddle.nn.PixelUnshuffle(3, "NHWC")
            out_1 = ps_1(x_1)
            out_2 = ps_2(x_2)
            out_1_np = pixel_unshuffle_np(self.x_1_np, 3)
            out_2_np = pixel_unshuffle_np(self.x_2_np, 3, "NHWC")

            exe = paddle.static.Executor(place=place)
194 195 196 197 198 199 200 201 202 203 204 205 206
            res_1 = exe.run(
                fluid.default_main_program(),
                feed={"x": self.x_1_np},
                fetch_list=out_1,
                use_prune=True,
            )

            res_2 = exe.run(
                fluid.default_main_program(),
                feed={"x2": self.x_2_np},
                fetch_list=out_2,
                use_prune=True,
            )
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

            assert np.allclose(res_1, out_1_np)
            assert np.allclose(res_2, out_2_np)

    def run_dygraph(self, down_factor, data_format):
        '''run_dygraph'''

        n, c, h, w = 2, 1, 12, 12

        if data_format == "NCHW":
            shape = [n, c, h, w]
        if data_format == "NHWC":
            shape = [n, h, w, c]

        x = np.random.random(shape).astype("float64")

        npresult = pixel_unshuffle_np(x, down_factor, data_format)

225 226 227
        for use_cuda in (
            [False, True] if core.is_compiled_with_cuda() else [False]
        ):
228 229 230 231
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()

            paddle.disable_static(place=place)

232 233 234
            pixel_unshuffle = paddle.nn.PixelUnshuffle(
                down_factor, data_format=data_format
            )
235 236
            result = pixel_unshuffle(paddle.to_tensor(x))

237
            np.testing.assert_allclose(result.numpy(), npresult, rtol=1e-05)
238

239 240 241 242 243 244
            result_functional = F.pixel_unshuffle(
                paddle.to_tensor(x), 3, data_format
            )
            np.testing.assert_allclose(
                result_functional.numpy(), npresult, rtol=1e-05
            )
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291

            pixel_unshuffle_str = 'downscale_factor={}'.format(down_factor)
            if data_format != 'NCHW':
                pixel_unshuffle_str += ', data_format={}'.format(data_format)
            self.assertEqual(pixel_unshuffle.extra_repr(), pixel_unshuffle_str)

    def test_dygraph1(self):
        '''test_dygraph1'''

        self.run_dygraph(3, "NCHW")

    def test_dygraph2(self):
        '''test_dygraph2'''

        self.run_dygraph(3, "NHWC")


class TestPixelUnshuffleError(unittest.TestCase):
    '''TestPixelUnshuffleError'''

    def test_error_functional(self):
        '''test_error_functional'''

        def error_input():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([4, 12, 12]).astype("float64")
                pixel_unshuffle = F.pixel_unshuffle(paddle.to_tensor(x), 2)

        self.assertRaises(ValueError, error_input)

        def error_downscale_factor_1():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 1, 12, 12]).astype("float64")
                pixel_unshuffle = F.pixel_unshuffle(paddle.to_tensor(x), 3.33)

        self.assertRaises(TypeError, error_downscale_factor_1)

        def error_downscale_factor_2():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 1, 12, 12]).astype("float64")
                pixel_unshuffle = F.pixel_unshuffle(paddle.to_tensor(x), -1)

        self.assertRaises(ValueError, error_downscale_factor_2)

        def error_data_format():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 1, 12, 12]).astype("float64")
292 293 294
                pixel_unshuffle = F.pixel_unshuffle(
                    paddle.to_tensor(x), 3, "WOW"
                )
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332

        self.assertRaises(ValueError, error_data_format)

    def test_error_layer(self):
        '''test_error_layer'''

        def error_input_layer():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([4, 12, 12]).astype("float64")
                ps = paddle.nn.PixelUnshuffle(2)
                ps(paddle.to_tensor(x))

        self.assertRaises(ValueError, error_input_layer)

        def error_downscale_factor_layer_1():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 1, 12, 12]).astype("float64")
                ps = paddle.nn.PixelUnshuffle(3.33)

        self.assertRaises(TypeError, error_downscale_factor_layer_1)

        def error_downscale_factor_layer_2():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 1, 12, 12]).astype("float64")
                ps = paddle.nn.PixelUnshuffle(-1)

        self.assertRaises(ValueError, error_downscale_factor_layer_2)

        def error_data_format_layer():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 1, 12, 12]).astype("float64")
                ps = paddle.nn.PixelUnshuffle(3, "MEOW")

        self.assertRaises(ValueError, error_data_format_layer)


if __name__ == "__main__":
    unittest.main()