pybind.cc 18.3 KB
Newer Older
1 2 3 4 5 6
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Q
qijun 已提交
15 16
#include "paddle/pybind/protobuf.h"

Q
QI JUN 已提交
17
#include <mutex>  // for call_once
18
#include <unordered_map>
Q
QI JUN 已提交
19
#include "gflags/gflags.h"
Q
Qiao Longfei 已提交
20
#include "paddle/framework/backward.h"
F
fengjiayi 已提交
21
#include "paddle/framework/executor.h"
Q
qijun 已提交
22
#include "paddle/framework/feed_fetch_method.h"
23
#include "paddle/framework/framework.pb.h"
Y
Yu Yang 已提交
24
#include "paddle/framework/lod_rank_table.h"
D
dangqingqing 已提交
25
#include "paddle/framework/lod_tensor.h"
Y
Yu Yang 已提交
26
#include "paddle/framework/lod_tensor_array.h"
27
#include "paddle/framework/prune.h"
Q
qijun 已提交
28
#include "paddle/framework/selected_rows.h"
Z
zchen0211 已提交
29
#include "paddle/operators/cond_op.h"
Y
Yan Chunwei 已提交
30
#include "paddle/operators/net_op.h"
Q
qijun 已提交
31
#include "paddle/platform/enforce.h"
Q
qijun 已提交
32
#include "paddle/platform/place.h"
Y
Yu Yang 已提交
33
#include "paddle/pybind/exception.h"
Q
qijun 已提交
34
#include "paddle/pybind/pybind.h"
35
#include "paddle/pybind/tensor_py.h"
36
#include "paddle/string/to_string.h"
37

D
Dong Zhihong 已提交
38 39
#ifdef PADDLE_WITH_CUDA
#include "paddle/operators/nccl/nccl_gpu_common.h"
D
dangqingqing 已提交
40
#include "paddle/platform/cuda_profiler.h"
D
Dong Zhihong 已提交
41
#include "paddle/platform/gpu_info.h"
D
Dong Zhihong 已提交
42 43
#endif

Q
Qiao Longfei 已提交
44 45 46
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

47
namespace paddle {
48
namespace pybind {
49 50 51
static size_t UniqueIntegerGenerator(const std::string &prefix) {
  static std::unordered_map<std::string, std::atomic<size_t>> generators;
  return generators[prefix].fetch_add(1);
52 53
}

Q
QI JUN 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
std::once_flag gflags_init_flag;

// TODO(qijun) move init gflags to init.cc
void InitGflags(std::vector<std::string> &argv) {
  std::call_once(gflags_init_flag, [&]() {
    int argc = argv.size();
    char **arr = new char *[argv.size()];
    std::string line;
    for (size_t i = 0; i < argv.size(); i++) {
      arr[i] = &argv[i][0];
      line += argv[i];
      line += ' ';
    }
    google::ParseCommandLineFlags(&argc, &arr, true);
    VLOG(1) << "Init commandline: " << line;
  });
}

Q
qijun 已提交
72
bool IsCompileGPU() {
73
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
74 75 76 77 78 79
  return false;
#else
  return true;
#endif
}

80
PYBIND11_PLUGIN(core) {
Y
Yu Yang 已提交
81
  py::module m("core", "C++ core of PaddlePaddle");
82

83 84 85 86
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

Y
Yu Yang 已提交
87 88
  BindException(m);

89 90 91
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
Yu Yang 已提交
92
      .def("get_dims",
93
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
94
      .def("set_dims",
Q
qijun 已提交
95
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
96
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
97 98
           })
      .def("alloc_float",
Y
Yu Yang 已提交
99
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
100
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
101
           })
Q
qijun 已提交
102
      .def("alloc_float",
Y
Yu Yang 已提交
103
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
104
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
105 106
           })
      .def("alloc_int",
Y
Yu Yang 已提交
107
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
108
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
109
           })
Q
qijun 已提交
110
      .def("alloc_int",
Y
Yu Yang 已提交
111
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
112
             self.mutable_data<int>(place);
Q
qijun 已提交
113
           })
Y
Yu Yang 已提交
114 115
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
116
      .def("set", PyCPUTensorSetFromArray<double>)
117
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
118
      .def("set", PyCPUTensorSetFromArray<bool>)
119
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
120 121
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
122
      .def("set", PyCUDATensorSetFromArray<double>)
123
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
124
      .def("set", PyCUDATensorSetFromArray<bool>)
Q
qijun 已提交
125
#endif
126
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
127 128 129 130 131
      .def("set_float_element", TensorSetElement<float>)
      .def("get_float_element", TensorGetElement<float>)
      .def("set_double_element", TensorSetElement<double>)
      .def("get_double_element", TensorGetElement<double>)
      .def("dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
132

133
  py::class_<LoDTensor, Tensor>(m, "LoDTensor")
134 135
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
136 137 138
      .def(
          "__init__",
          [](LoDTensor &instance, const std::vector<std::vector<size_t>> &lod) {
139
#ifndef PADDLE_WITH_CUDA
140
            new (&instance) LoDTensor(lod);
141
#else
Y
Yu Yang 已提交
142
             LoD new_lod;
143 144
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
145
             new (&instance) LoDTensor(new_lod);
146
#endif
147
          })
Y
Yu Yang 已提交
148
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
D
dangqingqing 已提交
149
      .def("set_lod",
150
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
151
#ifndef PADDLE_WITH_CUDA
D
dangqingqing 已提交
152
             self.set_lod(lod);
153
#else
Y
Yu Yang 已提交
154
             LoD new_lod;
155 156 157 158
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             self.set_lod(new_lod);
#endif
D
dangqingqing 已提交
159
           })
160
      .def("lod", [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
161
#ifndef PADDLE_WITH_CUDA
D
dangqingqing 已提交
162
        return self.lod();
163 164 165 166 167
#else
           auto lod = self.lod();
           std::vector<std::vector<size_t>> new_lod;
           new_lod.reserve(lod.size());
           std::transform(lod.begin(), lod.end(), std::back_inserter(new_lod),
Y
Yu Yang 已提交
168
               [](Vector<size_t> item) ->
169 170 171 172 173 174 175 176
                   std::vector<size_t> {
                 std::vector<size_t> v;
                 v.reserve(item.size());
                 std::copy(item.begin(), item.end(), std::back_inserter(v));
                 return v;
               });
           return new_lod;
#endif
D
dangqingqing 已提交
177 178
      });

Q
qijun 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
192 193 194 195 196 197 198 199 200
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
201 202 203 204 205 206 207 208 209 210 211
      .def("rows", [](SelectedRows &self) {
#ifndef PADDLE_WITH_CUDA
        return self.rows();
#else
         auto rows = self.rows();
         std::vector<int64_t> new_rows;
         new_rows.reserve(rows.size());
         std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
         return new_rows;
#endif
      });
Q
qijun 已提交
212

213
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
214 215 216

All parameter, weight, gradient are variables in Paddle.
)DOC")
217
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
218
      .def("set_int",
219 220
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
221 222 223 224 225 226 227
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
228
      .def("get_tensor",
229 230
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
231 232
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
233 234 235
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
236 237 238 239 240
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
241 242 243
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
D
Dong Zhihong 已提交
244 245 246 247 248 249 250
#ifdef PADDLE_WITH_CUDA
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
#endif
Y
Yan Chunwei 已提交
251
      .def("get_net",
D
dongzhihong 已提交
252 253
           [](Variable &self) -> operators::NetOp * {
             return self.GetMutable<operators::NetOp>();
Y
Yan Chunwei 已提交
254
           },
Y
Yu Yang 已提交
255
           py::return_value_policy::reference);
256

257
  py::class_<Scope>(m, "Scope", "")
D
dongzhihong 已提交
258
      .def("var",
259
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
260
             return self.Var(name);
Y
Yu Yang 已提交
261
           },
262
           py::return_value_policy::reference)
263
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
264
      .def(py::init<>())
265
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
266
           py::return_value_policy::reference)
Y
Yu Yang 已提交
267
      .def("drop_kids", &Scope::DropKids);
268

Y
Yu Yang 已提交
269 270
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
271 272
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
273 274 275 276 277 278 279 280 281 282
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
283 284
    return ret_values;
  });
F
update  
fengjiayi 已提交
285
  m.def("get_grad_op_desc",
F
update  
fengjiayi 已提交
286 287 288 289
        [](const OpDescBind &op_desc,
           const std::unordered_set<std::string> &no_grad_set,
           std::unordered_map<std::string, std::string> &grad_to_var,
           const std::vector<BlockDescBind *> &grad_sub_block) {
F
fengjiayi 已提交
290 291 292 293 294 295 296 297 298 299 300
          std::vector<std::unique_ptr<OpDescBind>> grad_op_descs =
              framework::OpInfoMap::Instance()
                  .Get(op_desc.Type())
                  .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                                 grad_sub_block);
          std::vector<OpDescBind *> grad_op_desc_ptrs(grad_op_descs.size());
          std::transform(
              grad_op_descs.begin(), grad_op_descs.end(),
              grad_op_desc_ptrs.begin(),
              [](std::unique_ptr<OpDescBind> &p) { return p.release(); });
          return grad_op_desc_ptrs;
F
update  
fengjiayi 已提交
301
        });
302 303 304 305
  m.def("prune", [](const ProgramDescBind &origin,
                    const std::vector<std::array<size_t, 2>> &targets) {
    ProgramDescBind prog_with_targets(origin);
    for (const auto &t : targets) {
306
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->MarkAsTarget();
307 308 309 310 311
    }
    ProgramDesc pruned_desc;
    Prune(*prog_with_targets.Proto(), &pruned_desc);
    return new ProgramDescBind(pruned_desc);
  });
312 313 314 315 316
  m.def("inference_optimize", [](ProgramDescBind &origin) {
    ProgramDesc pruned_desc;
    InferenceOptimize(*(origin.Proto()), &pruned_desc);
    return new ProgramDescBind(pruned_desc);
  });
317 318 319
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
320 321
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
322
  // clang-format off
Y
Yu Yang 已提交
323
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
324 325
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
326
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
327 328 329 330 331
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
                  [](paddle::platform::GPUPlace& place)
                      -> paddle::platform::DeviceContext* {
332
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
333
                    PADDLE_THROW("GPUPlace is not supported in CPU device.");
Q
qijun 已提交
334
#else
Q
qijun 已提交
335
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
336
#endif
Q
qijun 已提交
337
                  });
D
Dong Zhihong 已提交
338
// clang-format on
Q
qijun 已提交
339

D
Dong Zhihong 已提交
340 341 342
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
343 344 345
  py::class_<platform::GPUPlace>(m, "GPUPlace")
      .def(py::init<int>())
      .def("__str__", string::to_string<const platform::GPUPlace &>);
Q
qijun 已提交
346

347 348 349
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
350

Y
Yu Yang 已提交
351 352 353 354 355 356 357 358 359 360 361
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
           [](platform::Place &self, const platform::GPUPlace &gpu_place) {
             self = gpu_place;
           });

Y
Yu Yang 已提交
362 363 364 365 366 367 368 369 370
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
371
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
372 373 374 375 376 377
                  })
      .def("backward",
           [](const OperatorBase &forwardOp,
              const std::unordered_set<std::string> &no_grad_vars) {
             return Backward(forwardOp, no_grad_vars).release();
           })
378
      .def("run",
379
           [](OperatorBase &self, const Scope &scope,
380 381 382 383
              const platform::DeviceContext &dev_ctx) {
             self.Run(scope, dev_ctx);
             dev_ctx.Wait();
           })
Y
Yu Yang 已提交
384 385 386 387 388 389 390
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
391 392
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
393
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
394
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
395 396 397 398
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
399

Y
Yu Yang 已提交
400 401 402 403 404 405 406
  py::class_<operators::NetOp, OperatorBase>(m, "Net")
      .def_static("create",
                  []() -> operators::NetOp * {
                    auto *retv = new operators::NetOp;
                    retv->SetType("plain_net");
                    return retv;
                  })
407 408
      .def("append_op", [](operators::NetOp &self,
                           const OperatorBase &op) { self.AppendOp(op); })
D
dongzhihong 已提交
409 410 411 412
      .def("complete_add_op", &operators::NetOp::CompleteAddOp)
      .def("complete_add_op", [](std::shared_ptr<operators::NetOp> &self) {
        self->CompleteAddOp();
      });
Y
Yan Chunwei 已提交
413

Z
cond op  
zchen0211 已提交
414 415 416 417 418 419 420 421 422 423
  // cond_op
  py::class_<operators::CondOp, OperatorBase>(m, "CondOp")
      .def_static("create",
                  [](py::bytes protobin) -> operators::CondOp * {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
424
                    auto cond_op = OpRegistry::CreateOp(desc);
Z
cond op  
zchen0211 已提交
425 426 427 428 429 430 431 432 433 434 435
                    return static_cast<operators::CondOp *>(cond_op.release());
                  })
      .def("set_truenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_truenet(net.Clone());
           })
      .def("set_falsenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_falsenet(net.Clone());
           });

F
fengjiayi 已提交
436 437
  py::class_<framework::Executor>(m, "Executor")
      .def(py::init<std::vector<platform::Place> &>())
438
      .def("run", &Executor::Run);
F
fengjiayi 已提交
439

440
  m.def("unique_integer", UniqueIntegerGenerator);
Q
QI JUN 已提交
441
  m.def("init_gflags", InitGflags);
442

Q
qijun 已提交
443
  m.def("is_compile_gpu", IsCompileGPU);
444
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
445
  m.def("get_fetch_variable", framework::GetFetchVariable);
Q
qijun 已提交
446

F
fengjiayi 已提交
447 448 449 450
  BindProgramDesc(m);
  BindBlockDesc(m);
  BindVarDsec(m);
  BindOpDesc(m);
Y
Yu Yang 已提交
451

Y
Yu Yang 已提交
452 453 454 455 456 457 458 459 460
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

Y
Yu Yang 已提交
478
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
479
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
480
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
481 482 483 484

  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
485
#endif
Y
Yu Yang 已提交
486

487
  return m.ptr();
L
Luo Tao 已提交
488
}
489
}  // namespace pybind
490
}  // namespace paddle