test_lstm_op.py 14.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import unittest
import numpy as np
19
from op_test import OpTest
X
Xing Wu 已提交
20
from paddle import fluid
J
Jiangxinz 已提交
21 22
from paddle.fluid.layers import lstm as LSTM
from paddle.fluid.layers import fill_constant
X
Xing Wu 已提交
23
from paddle.fluid.framework import program_guard, Program
24

25 26 27 28
SIGMOID_THRESHOLD_MIN = -40.0
SIGMOID_THRESHOLD_MAX = 13.0
EXP_MAX_INPUT = 40.0

29 30 31 32 33 34

def identity(x):
    return x


def sigmoid(x):
35 36 37 38
    y = np.copy(x)
    y[x < SIGMOID_THRESHOLD_MIN] = SIGMOID_THRESHOLD_MIN
    y[x > SIGMOID_THRESHOLD_MAX] = SIGMOID_THRESHOLD_MAX
    return 1. / (1. + np.exp(-y))
39 40 41


def tanh(x):
42 43 44
    y = -2. * x
    y[y > EXP_MAX_INPUT] = EXP_MAX_INPUT
    return (2. / (1. + np.exp(y))) - 1.
45 46 47 48 49 50


def relu(x):
    return np.maximum(x, 0)


51
ACTIVATION = {
D
dangqingqing 已提交
52 53 54 55 56 57 58
    'identity': identity,
    'sigmoid': sigmoid,
    'tanh': tanh,
    'relu': relu
}


59 60 61 62 63 64 65 66 67
def lstm(
        input,  # T x 4D
        lod,  # 1 x N
        h0=None,  # N x D
        c0=None,  # N x D
        w_h=None,  # D x 4D
        w_b=None,  # 1 x 4D
        w_c=None,  # 1 x 3D
        is_reverse=False,
D
dangqingqing 已提交
68 69 70 71
        act_gate=None,
        act_cell=None,
        act_cand=None):
    def _step(x, w_h, w_c, h_pre, c_pre, act_gate, act_cell, act_cand):
72 73 74
        g = np.dot(h_pre, w_h)  # 1 x 4D
        g = g + x
        g = np.reshape(g, (1, g.size))
D
dangqingqing 已提交
75
        c, g_i, g_f, g_o = np.split(g, 4, axis=1)
76
        if w_c is None:
D
dangqingqing 已提交
77 78
            g_i = act_gate(g_i)  # 1 x D
            g_f = act_gate(g_f)  # 1 x D
79 80
        else:
            w_ic, w_fc, w_oc = np.split(w_c, 3, axis=1)
D
dangqingqing 已提交
81 82
            g_i = act_gate(g_i + w_ic * c_pre)  # 1 x D
            g_f = act_gate(g_f + w_fc * c_pre)  # 1 x D
D
dangqingqing 已提交
83
        c = g_f * c_pre + g_i * act_cand(c)  # 1 x D
84 85

        if w_c is None:
D
dangqingqing 已提交
86
            g_o = act_gate(g_o)  # 1 x D
87 88
        else:
            _, _, w_oc = np.split(w_c, 3, axis=1)
D
dangqingqing 已提交
89 90
            g_o = act_gate(g_o + w_oc * c)  # 1 x D
        h = g_o * act_cell(c)
D
dangqingqing 已提交
91
        return h, c
92

93
    def _reverse(x, offset):
D
dangqingqing 已提交
94
        y = np.zeros_like(x)
95 96
        for i in range(len(offset) - 1):
            b, e = offset[i], offset[i + 1]
D
dangqingqing 已提交
97 98 99
            y[b:e, :] = np.flip(x[b:e, :], 0)
        return y

100 101 102 103
    offset = [0]
    for l in lod[0]:
        offset.append(offset[-1] + l)
    batch_size = len(lod[0])
104 105
    hidden = []
    cell = []
D
dangqingqing 已提交
106
    input = _reverse(input, offset) if is_reverse else input
107 108 109 110
    if w_b is not None:
        input = input + np.tile(w_b, (offset[-1], 1))
    for i in range(batch_size):
        # compute one sequence
111
        seq_len = lod[0][i]
112 113
        x = input[offset[i]:offset[i + 1], :]
        h_pre = h0[i]  # 1 x D
114
        c_pre = c0[i]  # 1 x D
115 116
        for j in range(seq_len):
            # compute one step
D
dangqingqing 已提交
117 118
            h_pre, c_pre = _step(x[j], w_h, w_c, h_pre, c_pre, act_gate,
                                 act_cell, act_cand)
119 120 121
            hidden.append(h_pre.flatten())
            cell.append(c_pre.flatten())

122 123
    hidden = np.array(hidden).astype('float64')
    cell = np.array(cell).astype('float64')
D
dangqingqing 已提交
124 125 126 127

    hidden = _reverse(hidden, offset) if is_reverse else hidden
    cell = _reverse(cell, offset) if is_reverse else cell

128 129
    assert hidden.shape == (input.shape[0], input.shape[1] / 4)
    assert cell.shape == (input.shape[0], input.shape[1] / 4)
D
dangqingqing 已提交
130
    return hidden, cell
131 132


X
Xing Wu 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
class LstmUnitTestError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
            batch_size = 20
            seq_len = 100
            dropout_prob = 0.2
            hidden_size = 150
            num_layers = 1
            input = fluid.data(
                name='input',
                shape=[batch_size, seq_len, hidden_size],
                dtype='float32')
            pre_hidden = fill_constant([num_layers, batch_size, hidden_size],
                                       'float32', 0.0)
            pre_cell = fill_constant([num_layers, batch_size, hidden_size],
                                     'float32', 0.0)

            np_input = np.random.uniform(
                -0.1, 0.1, (batch_size, seq_len, hidden_size)).astype('float64')
            np_pre_hidden = np.random.uniform(
                -0.1, 0.1,
                (num_layers, batch_size, hidden_size)).astype('float64')
            np_pre_cell = np.random.uniform(
                -0.1, 0.1,
                (num_layers, batch_size, hidden_size)).astype('float64')

            def test_input_Variable():
J
Jiangxinz 已提交
160
                LSTM(np_input, pre_hidden, pre_cell, \
X
Xing Wu 已提交
161 162 163 164 165 166
                    seq_len, hidden_size, num_layers, \
                    dropout_prob=dropout_prob)

            self.assertRaises(TypeError, test_input_Variable)

            def test_pre_hidden_Variable():
J
Jiangxinz 已提交
167
                LSTM(np_input, np_pre_hidden, pre_cell, \
X
Xing Wu 已提交
168 169 170 171 172 173
                    seq_len, hidden_size, num_layers, \
                    dropout_prob=dropout_prob)

            self.assertRaises(TypeError, test_pre_hidden_Variable)

            def test_pre_cell_Variable():
J
Jiangxinz 已提交
174
                LSTM(np_input, pre_hidden, np_pre_cell, \
X
Xing Wu 已提交
175 176 177 178 179 180 181 182 183 184
                    seq_len, hidden_size, num_layers, \
                    dropout_prob=dropout_prob)

            self.assertRaises(TypeError, test_pre_cell_Variable)

            def test_input_type():
                error_input = fluid.data(
                    name='error_input',
                    shape=[None, hidden_size * 3],
                    dtype='int32')
J
Jiangxinz 已提交
185
                LSTM(error_input, pre_hidden, pre_cell, \
X
Xing Wu 已提交
186 187 188 189 190 191 192 193 194 195
                    seq_len, hidden_size, num_layers, \
                    dropout_prob=dropout_prob)

            self.assertRaises(TypeError, test_input_type)

            def test_pre_hidden_type():
                error_pre_hidden = fluid.data(
                    name='error_pre_hidden',
                    shape=[None, hidden_size],
                    dtype='int32')
J
Jiangxinz 已提交
196
                LSTM(input, error_pre_hidden, pre_cell, \
X
Xing Wu 已提交
197 198 199 200 201 202 203 204 205 206
                    seq_len, hidden_size, num_layers, \
                    dropout_prob=dropout_prob)

            self.assertRaises(TypeError, test_pre_hidden_type)

            def test_pre_cell_type():
                error_pre_cell = fluid.data(
                    name='error_pre_cell',
                    shape=[None, hidden_size],
                    dtype='int32')
J
Jiangxinz 已提交
207
                LSTM(input, pre_hidden, error_pre_cell, \
X
Xing Wu 已提交
208 209 210 211 212 213
                    seq_len, hidden_size, num_layers, \
                    dropout_prob=dropout_prob)

            self.assertRaises(TypeError, test_pre_cell_type)


D
dangqingqing 已提交
214
class TestLstmOp(OpTest):
215
    def set_lod(self):
216
        self.lod = [[2, 3, 2]]
217 218 219

    def set_argument(self):
        self.set_lod()
220 221
        self.D = 16

222 223 224
        self.act_gate = 'sigmoid'
        self.act_cell = 'tanh'
        self.act_cand = 'tanh'
D
dangqingqing 已提交
225

D
dangqingqing 已提交
226
        self.has_initial_state = False
D
dangqingqing 已提交
227
        self.is_reverse = False
D
dangqingqing 已提交
228
        self.use_peepholes = True
D
dangqingqing 已提交
229 230

    def setUp(self):
231
        self.set_argument()
232
        self.op_type = 'lstm'
233 234
        T = sum(self.lod[0])
        N = len(self.lod[0])
D
dangqingqing 已提交
235

236
        x = np.random.normal(size=(T, 4 * self.D)).astype('float64')
D
dangqingqing 已提交
237 238 239 240 241 242
        if self.has_initial_state:
            h0 = np.random.normal(size=(N, self.D)).astype('float64')
            c0 = np.random.normal(size=(N, self.D)).astype('float64')
        else:
            h0 = np.zeros((N, self.D)).astype('float64')
            c0 = np.zeros((N, self.D)).astype('float64')
243
        w = np.random.normal(size=(self.D, 4 * self.D)).astype('float64')
D
dangqingqing 已提交
244 245 246 247
        if self.use_peepholes:
            b = np.random.normal(size=(1, 7 * self.D)).astype('float64')
        else:
            b = np.random.normal(size=(1, 4 * self.D)).astype('float64')
D
dangqingqing 已提交
248

D
dangqingqing 已提交
249 250
        w_b = b[:, 0:4 * self.D]
        w_c = b[:, 4 * self.D:] if self.use_peepholes else None
D
dangqingqing 已提交
251
        h, c = lstm(x, self.lod, h0, c0, w, w_b, w_c, self.is_reverse,
252 253
                    ACTIVATION[self.act_gate], ACTIVATION[self.act_cell],
                    ACTIVATION[self.act_cand])
254

255 256
        self.inputs = {'Input': (x, self.lod), 'Weight': w}

D
dangqingqing 已提交
257
        self.inputs['Bias'] = b
258

D
dangqingqing 已提交
259 260 261
        if self.has_initial_state:
            self.inputs['H0'] = h0
            self.inputs['C0'] = c0
262

263 264 265 266
        self.outputs = {
            'Hidden': (h, self.lod),
            'Cell': (c, self.lod),
        }
267
        self.attrs = {
D
dangqingqing 已提交
268
            'use_peepholes': self.use_peepholes,
269 270 271 272
            'is_reverse': self.is_reverse,
            'gate_activation': self.act_gate,
            'cell_activation': self.act_cell,
            'candidate_activation': self.act_cand
273 274
        }

D
dangqingqing 已提交
275
    def test_check_output(self):
H
hong 已提交
276
        self.check_output(atol=1e-8, check_dygraph=False)
277

D
dangqingqing 已提交
278
    def test_check_grad(self):
D
dangqingqing 已提交
279
        # TODO(qingqing) remove folowing lines after the check_grad is refined.
280
        N = len(self.lod[0])
D
dangqingqing 已提交
281 282 283
        self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
        self.outputs['BatchCellPreAct'] = np.zeros(
            (N, self.D)).astype('float64')
284
        self.check_grad(
H
hong 已提交
285 286 287
            ['Input', 'Weight', 'Bias'], ['Hidden'],
            max_relative_error=5e-4,
            check_dygraph=False)
288 289


290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
class TestLstmOpCase1(TestLstmOp):
    def set_lod(self):
        self.lod = [[0, 3, 2]]


class TestLstmOpCase2(TestLstmOp):
    def set_lod(self):
        self.lod = [[0, 3, 0]]


class TestLstmOpCase3(TestLstmOp):
    def set_lod(self):
        self.lod = [[2, 0, 4]]


305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
class TestLstmOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):

            def test_Variable():
                input_data = np.random.random((1, 2048)).astype("float32")
                fluid.layers.dynamic_lstm(
                    input=input_data, size=2048, use_peepholes=False)

            self.assertRaises(TypeError, test_Variable)

            def test_h_0():
                in_data = fluid.data(
                    name="input", shape=[None, 2048], dtype="float32")
                h = fluid.data(name="h", shape=[None, 512], dtype="int32")
                c = fluid.data(name="c", shape=[None, 512], dtype="float32")
                fluid.layers.dynamic_lstm(
                    input=in_data, size=2048, use_peepholes=False, h_0=h, c_0=c)

            self.assertRaises(TypeError, test_h_0)

            def test_c_0():
                in_data_ = fluid.data(
                    name="input_", shape=[None, 2048], dtype="float32")
                h_ = fluid.data(name="h_", shape=[None, 512], dtype="float32")
                c_ = fluid.data(name="c_", shape=[None, 512], dtype="int32")
                fluid.layers.dynamic_lstm(
                    input=in_data_,
                    size=2048,
                    use_peepholes=False,
                    h_0=h_,
                    c_0=c_)

            self.assertRaises(TypeError, test_c_0)


341 342
# class TestLstmOpHasInitial(TestLstmOp):
#     def set_argument(self):
343
#         self.lod = [[2, 3, 2]]
344 345 346 347 348 349 350 351 352 353 354 355
#         self.D = 16

#         self.act_gate = 'sigmoid'
#         self.act_cell = 'tanh'
#         self.act_cand = 'tanh'

#         self.has_initial_state = True
#         self.is_reverse = True
#         self.use_peepholes = True

#     def test_check_grad(self):
#         # TODO(qingqing) remove folowing lines after the check_grad is refined.
356
#         N = len(self.lod[0])
357 358 359 360 361 362 363 364
#         self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
#         self.outputs['BatchCellPreAct'] = np.zeros(
#             (N, self.D)).astype('float64')
#         self.check_grad(
#             ['Input', 'Weight', 'Bias', 'H0', 'C0'], ['Hidden'],
#             max_relative_error=5e-4)

#     def test_check_grad_ingore_bias(self):
365
#         N = len(self.lod[0])
366 367 368 369 370 371 372 373 374
#         self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
#         self.outputs['BatchCellPreAct'] = np.zeros(
#             (N, self.D)).astype('float64')
#         self.check_grad(
#             ['Input', 'Weight'], ['Hidden'],
#             max_relative_error=5e-4,
#             no_grad_set=set('Bias'))

#     def test_check_grad_ingore_weight(self):
375
#         N = len(self.lod[0])
376 377 378 379 380 381 382 383 384
#         self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
#         self.outputs['BatchCellPreAct'] = np.zeros(
#             (N, self.D)).astype('float64')
#         self.check_grad(
#             ['Input', 'Bias'], ['Hidden'],
#             max_relative_error=5e-4,
#             no_grad_set=set('Weight'))

#     def test_check_grad_ingore_input(self):
385
#         N = len(self.lod[0])
386 387 388 389 390 391 392 393 394
#         self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
#         self.outputs['BatchCellPreAct'] = np.zeros(
#             (N, self.D)).astype('float64')
#         self.check_grad(
#             ['Weight', 'Bias'], ['Hidden'],
#             max_relative_error=5e-4,
#             no_grad_set=set('Input'))

#     def test_check_grad_ingore_h0(self):
395
#         N = len(self.lod[0])
396 397 398 399 400 401 402 403 404
#         self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
#         self.outputs['BatchCellPreAct'] = np.zeros(
#             (N, self.D)).astype('float64')
#         self.check_grad(
#             ['Input', 'Weight', 'Bias', 'C0'], ['Hidden'],
#             max_relative_error=5e-4,
#             no_grad_set=set('H0'))

#     def test_check_grad_ingore_c0(self):
405
#         N = len(self.lod[0])
406 407 408 409 410 411 412 413 414 415
#         self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
#         self.outputs['BatchCellPreAct'] = np.zeros(
#             (N, self.D)).astype('float64')
#         self.check_grad(
#             ['Input', 'Weight', 'Bias', 'H0'], ['Hidden'],
#             max_relative_error=5e-4,
#             no_grad_set=set('C0'))

# class TestLstmOpRerverse(TestLstmOp):
#     def set_argument(self):
416
#         self.lod = [[2, 3, 2]]
417 418 419 420 421 422 423 424 425 426 427 428
#         self.D = 16

#         self.act_gate = 'sigmoid'
#         self.act_cell = 'tanh'
#         self.act_cand = 'tanh'

#         self.has_initial_state = False
#         self.is_reverse = True
#         self.use_peepholes = True

# class TestLstmOpNotUsePeepholes(TestLstmOp):
#     def set_argument(self):
429
#         self.lod = [[2, 3, 2]]
430 431 432 433 434 435 436 437 438
#         self.D = 16

#         self.act_gate = 'sigmoid'
#         self.act_cell = 'tanh'
#         self.act_cand = 'tanh'

#         self.has_initial_state = False
#         self.is_reverse = True
#         self.use_peepholes = False
439 440

if __name__ == '__main__':
441
    unittest.main()