# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest from paddle import fluid from paddle.fluid.layers import lstm as LSTM from paddle.fluid.layers import fill_constant from paddle.fluid.framework import program_guard, Program SIGMOID_THRESHOLD_MIN = -40.0 SIGMOID_THRESHOLD_MAX = 13.0 EXP_MAX_INPUT = 40.0 def identity(x): return x def sigmoid(x): y = np.copy(x) y[x < SIGMOID_THRESHOLD_MIN] = SIGMOID_THRESHOLD_MIN y[x > SIGMOID_THRESHOLD_MAX] = SIGMOID_THRESHOLD_MAX return 1. / (1. + np.exp(-y)) def tanh(x): y = -2. * x y[y > EXP_MAX_INPUT] = EXP_MAX_INPUT return (2. / (1. + np.exp(y))) - 1. def relu(x): return np.maximum(x, 0) ACTIVATION = { 'identity': identity, 'sigmoid': sigmoid, 'tanh': tanh, 'relu': relu } def lstm( input, # T x 4D lod, # 1 x N h0=None, # N x D c0=None, # N x D w_h=None, # D x 4D w_b=None, # 1 x 4D w_c=None, # 1 x 3D is_reverse=False, act_gate=None, act_cell=None, act_cand=None): def _step(x, w_h, w_c, h_pre, c_pre, act_gate, act_cell, act_cand): g = np.dot(h_pre, w_h) # 1 x 4D g = g + x g = np.reshape(g, (1, g.size)) c, g_i, g_f, g_o = np.split(g, 4, axis=1) if w_c is None: g_i = act_gate(g_i) # 1 x D g_f = act_gate(g_f) # 1 x D else: w_ic, w_fc, w_oc = np.split(w_c, 3, axis=1) g_i = act_gate(g_i + w_ic * c_pre) # 1 x D g_f = act_gate(g_f + w_fc * c_pre) # 1 x D c = g_f * c_pre + g_i * act_cand(c) # 1 x D if w_c is None: g_o = act_gate(g_o) # 1 x D else: _, _, w_oc = np.split(w_c, 3, axis=1) g_o = act_gate(g_o + w_oc * c) # 1 x D h = g_o * act_cell(c) return h, c def _reverse(x, offset): y = np.zeros_like(x) for i in range(len(offset) - 1): b, e = offset[i], offset[i + 1] y[b:e, :] = np.flip(x[b:e, :], 0) return y offset = [0] for l in lod[0]: offset.append(offset[-1] + l) batch_size = len(lod[0]) hidden = [] cell = [] input = _reverse(input, offset) if is_reverse else input if w_b is not None: input = input + np.tile(w_b, (offset[-1], 1)) for i in range(batch_size): # compute one sequence seq_len = lod[0][i] x = input[offset[i]:offset[i + 1], :] h_pre = h0[i] # 1 x D c_pre = c0[i] # 1 x D for j in range(seq_len): # compute one step h_pre, c_pre = _step(x[j], w_h, w_c, h_pre, c_pre, act_gate, act_cell, act_cand) hidden.append(h_pre.flatten()) cell.append(c_pre.flatten()) hidden = np.array(hidden).astype('float64') cell = np.array(cell).astype('float64') hidden = _reverse(hidden, offset) if is_reverse else hidden cell = _reverse(cell, offset) if is_reverse else cell assert hidden.shape == (input.shape[0], input.shape[1] / 4) assert cell.shape == (input.shape[0], input.shape[1] / 4) return hidden, cell class LstmUnitTestError(unittest.TestCase): def test_errors(self): with program_guard(Program(), Program()): batch_size = 20 seq_len = 100 dropout_prob = 0.2 hidden_size = 150 num_layers = 1 input = fluid.data( name='input', shape=[batch_size, seq_len, hidden_size], dtype='float32') pre_hidden = fill_constant([num_layers, batch_size, hidden_size], 'float32', 0.0) pre_cell = fill_constant([num_layers, batch_size, hidden_size], 'float32', 0.0) np_input = np.random.uniform( -0.1, 0.1, (batch_size, seq_len, hidden_size)).astype('float64') np_pre_hidden = np.random.uniform( -0.1, 0.1, (num_layers, batch_size, hidden_size)).astype('float64') np_pre_cell = np.random.uniform( -0.1, 0.1, (num_layers, batch_size, hidden_size)).astype('float64') def test_input_Variable(): LSTM(np_input, pre_hidden, pre_cell, \ seq_len, hidden_size, num_layers, \ dropout_prob=dropout_prob) self.assertRaises(TypeError, test_input_Variable) def test_pre_hidden_Variable(): LSTM(np_input, np_pre_hidden, pre_cell, \ seq_len, hidden_size, num_layers, \ dropout_prob=dropout_prob) self.assertRaises(TypeError, test_pre_hidden_Variable) def test_pre_cell_Variable(): LSTM(np_input, pre_hidden, np_pre_cell, \ seq_len, hidden_size, num_layers, \ dropout_prob=dropout_prob) self.assertRaises(TypeError, test_pre_cell_Variable) def test_input_type(): error_input = fluid.data( name='error_input', shape=[None, hidden_size * 3], dtype='int32') LSTM(error_input, pre_hidden, pre_cell, \ seq_len, hidden_size, num_layers, \ dropout_prob=dropout_prob) self.assertRaises(TypeError, test_input_type) def test_pre_hidden_type(): error_pre_hidden = fluid.data( name='error_pre_hidden', shape=[None, hidden_size], dtype='int32') LSTM(input, error_pre_hidden, pre_cell, \ seq_len, hidden_size, num_layers, \ dropout_prob=dropout_prob) self.assertRaises(TypeError, test_pre_hidden_type) def test_pre_cell_type(): error_pre_cell = fluid.data( name='error_pre_cell', shape=[None, hidden_size], dtype='int32') LSTM(input, pre_hidden, error_pre_cell, \ seq_len, hidden_size, num_layers, \ dropout_prob=dropout_prob) self.assertRaises(TypeError, test_pre_cell_type) class TestLstmOp(OpTest): def set_lod(self): self.lod = [[2, 3, 2]] def set_argument(self): self.set_lod() self.D = 16 self.act_gate = 'sigmoid' self.act_cell = 'tanh' self.act_cand = 'tanh' self.has_initial_state = False self.is_reverse = False self.use_peepholes = True def setUp(self): self.set_argument() self.op_type = 'lstm' T = sum(self.lod[0]) N = len(self.lod[0]) x = np.random.normal(size=(T, 4 * self.D)).astype('float64') if self.has_initial_state: h0 = np.random.normal(size=(N, self.D)).astype('float64') c0 = np.random.normal(size=(N, self.D)).astype('float64') else: h0 = np.zeros((N, self.D)).astype('float64') c0 = np.zeros((N, self.D)).astype('float64') w = np.random.normal(size=(self.D, 4 * self.D)).astype('float64') if self.use_peepholes: b = np.random.normal(size=(1, 7 * self.D)).astype('float64') else: b = np.random.normal(size=(1, 4 * self.D)).astype('float64') w_b = b[:, 0:4 * self.D] w_c = b[:, 4 * self.D:] if self.use_peepholes else None h, c = lstm(x, self.lod, h0, c0, w, w_b, w_c, self.is_reverse, ACTIVATION[self.act_gate], ACTIVATION[self.act_cell], ACTIVATION[self.act_cand]) self.inputs = {'Input': (x, self.lod), 'Weight': w} self.inputs['Bias'] = b if self.has_initial_state: self.inputs['H0'] = h0 self.inputs['C0'] = c0 self.outputs = { 'Hidden': (h, self.lod), 'Cell': (c, self.lod), } self.attrs = { 'use_peepholes': self.use_peepholes, 'is_reverse': self.is_reverse, 'gate_activation': self.act_gate, 'cell_activation': self.act_cell, 'candidate_activation': self.act_cand } def test_check_output(self): self.check_output(atol=1e-8, check_dygraph=False) def test_check_grad(self): # TODO(qingqing) remove folowing lines after the check_grad is refined. N = len(self.lod[0]) self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64') self.outputs['BatchCellPreAct'] = np.zeros( (N, self.D)).astype('float64') self.check_grad( ['Input', 'Weight', 'Bias'], ['Hidden'], max_relative_error=5e-4, check_dygraph=False) class TestLstmOpCase1(TestLstmOp): def set_lod(self): self.lod = [[0, 3, 2]] class TestLstmOpCase2(TestLstmOp): def set_lod(self): self.lod = [[0, 3, 0]] class TestLstmOpCase3(TestLstmOp): def set_lod(self): self.lod = [[2, 0, 4]] class TestLstmOpError(unittest.TestCase): def test_errors(self): with program_guard(Program(), Program()): def test_Variable(): input_data = np.random.random((1, 2048)).astype("float32") fluid.layers.dynamic_lstm( input=input_data, size=2048, use_peepholes=False) self.assertRaises(TypeError, test_Variable) def test_h_0(): in_data = fluid.data( name="input", shape=[None, 2048], dtype="float32") h = fluid.data(name="h", shape=[None, 512], dtype="int32") c = fluid.data(name="c", shape=[None, 512], dtype="float32") fluid.layers.dynamic_lstm( input=in_data, size=2048, use_peepholes=False, h_0=h, c_0=c) self.assertRaises(TypeError, test_h_0) def test_c_0(): in_data_ = fluid.data( name="input_", shape=[None, 2048], dtype="float32") h_ = fluid.data(name="h_", shape=[None, 512], dtype="float32") c_ = fluid.data(name="c_", shape=[None, 512], dtype="int32") fluid.layers.dynamic_lstm( input=in_data_, size=2048, use_peepholes=False, h_0=h_, c_0=c_) self.assertRaises(TypeError, test_c_0) # class TestLstmOpHasInitial(TestLstmOp): # def set_argument(self): # self.lod = [[2, 3, 2]] # self.D = 16 # self.act_gate = 'sigmoid' # self.act_cell = 'tanh' # self.act_cand = 'tanh' # self.has_initial_state = True # self.is_reverse = True # self.use_peepholes = True # def test_check_grad(self): # # TODO(qingqing) remove folowing lines after the check_grad is refined. # N = len(self.lod[0]) # self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64') # self.outputs['BatchCellPreAct'] = np.zeros( # (N, self.D)).astype('float64') # self.check_grad( # ['Input', 'Weight', 'Bias', 'H0', 'C0'], ['Hidden'], # max_relative_error=5e-4) # def test_check_grad_ingore_bias(self): # N = len(self.lod[0]) # self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64') # self.outputs['BatchCellPreAct'] = np.zeros( # (N, self.D)).astype('float64') # self.check_grad( # ['Input', 'Weight'], ['Hidden'], # max_relative_error=5e-4, # no_grad_set=set('Bias')) # def test_check_grad_ingore_weight(self): # N = len(self.lod[0]) # self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64') # self.outputs['BatchCellPreAct'] = np.zeros( # (N, self.D)).astype('float64') # self.check_grad( # ['Input', 'Bias'], ['Hidden'], # max_relative_error=5e-4, # no_grad_set=set('Weight')) # def test_check_grad_ingore_input(self): # N = len(self.lod[0]) # self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64') # self.outputs['BatchCellPreAct'] = np.zeros( # (N, self.D)).astype('float64') # self.check_grad( # ['Weight', 'Bias'], ['Hidden'], # max_relative_error=5e-4, # no_grad_set=set('Input')) # def test_check_grad_ingore_h0(self): # N = len(self.lod[0]) # self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64') # self.outputs['BatchCellPreAct'] = np.zeros( # (N, self.D)).astype('float64') # self.check_grad( # ['Input', 'Weight', 'Bias', 'C0'], ['Hidden'], # max_relative_error=5e-4, # no_grad_set=set('H0')) # def test_check_grad_ingore_c0(self): # N = len(self.lod[0]) # self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64') # self.outputs['BatchCellPreAct'] = np.zeros( # (N, self.D)).astype('float64') # self.check_grad( # ['Input', 'Weight', 'Bias', 'H0'], ['Hidden'], # max_relative_error=5e-4, # no_grad_set=set('C0')) # class TestLstmOpRerverse(TestLstmOp): # def set_argument(self): # self.lod = [[2, 3, 2]] # self.D = 16 # self.act_gate = 'sigmoid' # self.act_cell = 'tanh' # self.act_cand = 'tanh' # self.has_initial_state = False # self.is_reverse = True # self.use_peepholes = True # class TestLstmOpNotUsePeepholes(TestLstmOp): # def set_argument(self): # self.lod = [[2, 3, 2]] # self.D = 16 # self.act_gate = 'sigmoid' # self.act_cell = 'tanh' # self.act_cand = 'tanh' # self.has_initial_state = False # self.is_reverse = True # self.use_peepholes = False if __name__ == '__main__': unittest.main()