test_lstm_op.py 13.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import unittest
import numpy as np
19
from op_test import OpTest
X
Xing Wu 已提交
20 21 22
from paddle import fluid
from paddle.fluid.layers import lstm, fill_constant
from paddle.fluid.framework import program_guard, Program
23

24 25 26 27
SIGMOID_THRESHOLD_MIN = -40.0
SIGMOID_THRESHOLD_MAX = 13.0
EXP_MAX_INPUT = 40.0

28 29 30 31 32 33

def identity(x):
    return x


def sigmoid(x):
34 35 36 37
    y = np.copy(x)
    y[x < SIGMOID_THRESHOLD_MIN] = SIGMOID_THRESHOLD_MIN
    y[x > SIGMOID_THRESHOLD_MAX] = SIGMOID_THRESHOLD_MAX
    return 1. / (1. + np.exp(-y))
38 39 40


def tanh(x):
41 42 43
    y = -2. * x
    y[y > EXP_MAX_INPUT] = EXP_MAX_INPUT
    return (2. / (1. + np.exp(y))) - 1.
44 45 46 47 48 49


def relu(x):
    return np.maximum(x, 0)


50
ACTIVATION = {
D
dangqingqing 已提交
51 52 53 54 55 56 57
    'identity': identity,
    'sigmoid': sigmoid,
    'tanh': tanh,
    'relu': relu
}


58 59 60 61 62 63 64 65 66
def lstm(
        input,  # T x 4D
        lod,  # 1 x N
        h0=None,  # N x D
        c0=None,  # N x D
        w_h=None,  # D x 4D
        w_b=None,  # 1 x 4D
        w_c=None,  # 1 x 3D
        is_reverse=False,
D
dangqingqing 已提交
67 68 69 70
        act_gate=None,
        act_cell=None,
        act_cand=None):
    def _step(x, w_h, w_c, h_pre, c_pre, act_gate, act_cell, act_cand):
71 72 73
        g = np.dot(h_pre, w_h)  # 1 x 4D
        g = g + x
        g = np.reshape(g, (1, g.size))
D
dangqingqing 已提交
74
        c, g_i, g_f, g_o = np.split(g, 4, axis=1)
75
        if w_c is None:
D
dangqingqing 已提交
76 77
            g_i = act_gate(g_i)  # 1 x D
            g_f = act_gate(g_f)  # 1 x D
78 79
        else:
            w_ic, w_fc, w_oc = np.split(w_c, 3, axis=1)
D
dangqingqing 已提交
80 81
            g_i = act_gate(g_i + w_ic * c_pre)  # 1 x D
            g_f = act_gate(g_f + w_fc * c_pre)  # 1 x D
D
dangqingqing 已提交
82
        c = g_f * c_pre + g_i * act_cand(c)  # 1 x D
83 84

        if w_c is None:
D
dangqingqing 已提交
85
            g_o = act_gate(g_o)  # 1 x D
86 87
        else:
            _, _, w_oc = np.split(w_c, 3, axis=1)
D
dangqingqing 已提交
88 89
            g_o = act_gate(g_o + w_oc * c)  # 1 x D
        h = g_o * act_cell(c)
D
dangqingqing 已提交
90
        return h, c
91

92
    def _reverse(x, offset):
D
dangqingqing 已提交
93
        y = np.zeros_like(x)
94 95
        for i in range(len(offset) - 1):
            b, e = offset[i], offset[i + 1]
D
dangqingqing 已提交
96 97 98
            y[b:e, :] = np.flip(x[b:e, :], 0)
        return y

99 100 101 102
    offset = [0]
    for l in lod[0]:
        offset.append(offset[-1] + l)
    batch_size = len(lod[0])
103 104
    hidden = []
    cell = []
D
dangqingqing 已提交
105
    input = _reverse(input, offset) if is_reverse else input
106 107 108 109
    if w_b is not None:
        input = input + np.tile(w_b, (offset[-1], 1))
    for i in range(batch_size):
        # compute one sequence
110
        seq_len = lod[0][i]
111 112
        x = input[offset[i]:offset[i + 1], :]
        h_pre = h0[i]  # 1 x D
113
        c_pre = c0[i]  # 1 x D
114 115
        for j in range(seq_len):
            # compute one step
D
dangqingqing 已提交
116 117
            h_pre, c_pre = _step(x[j], w_h, w_c, h_pre, c_pre, act_gate,
                                 act_cell, act_cand)
118 119 120
            hidden.append(h_pre.flatten())
            cell.append(c_pre.flatten())

121 122
    hidden = np.array(hidden).astype('float64')
    cell = np.array(cell).astype('float64')
D
dangqingqing 已提交
123 124 125 126

    hidden = _reverse(hidden, offset) if is_reverse else hidden
    cell = _reverse(cell, offset) if is_reverse else cell

127 128
    assert hidden.shape == (input.shape[0], input.shape[1] / 4)
    assert cell.shape == (input.shape[0], input.shape[1] / 4)
D
dangqingqing 已提交
129
    return hidden, cell
130 131


X
Xing Wu 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
class LstmUnitTestError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
            batch_size = 20
            seq_len = 100
            dropout_prob = 0.2
            hidden_size = 150
            num_layers = 1
            input = fluid.data(
                name='input',
                shape=[batch_size, seq_len, hidden_size],
                dtype='float32')
            pre_hidden = fill_constant([num_layers, batch_size, hidden_size],
                                       'float32', 0.0)
            pre_cell = fill_constant([num_layers, batch_size, hidden_size],
                                     'float32', 0.0)

            np_input = np.random.uniform(
                -0.1, 0.1, (batch_size, seq_len, hidden_size)).astype('float64')
            np_pre_hidden = np.random.uniform(
                -0.1, 0.1,
                (num_layers, batch_size, hidden_size)).astype('float64')
            np_pre_cell = np.random.uniform(
                -0.1, 0.1,
                (num_layers, batch_size, hidden_size)).astype('float64')

            def test_input_Variable():
                lstm(np_input, pre_hidden, pre_cell, \
                    seq_len, hidden_size, num_layers, \
                    dropout_prob=dropout_prob)

            self.assertRaises(TypeError, test_input_Variable)

            def test_pre_hidden_Variable():
                lstm(np_input, np_pre_hidden, pre_cell, \
                    seq_len, hidden_size, num_layers, \
                    dropout_prob=dropout_prob)

            self.assertRaises(TypeError, test_pre_hidden_Variable)

            def test_pre_cell_Variable():
                lstm(np_input, pre_hidden, np_pre_cell, \
                    seq_len, hidden_size, num_layers, \
                    dropout_prob=dropout_prob)

            self.assertRaises(TypeError, test_pre_cell_Variable)

            def test_input_type():
                error_input = fluid.data(
                    name='error_input',
                    shape=[None, hidden_size * 3],
                    dtype='int32')
                lstm(error_input, pre_hidden, pre_cell, \
                    seq_len, hidden_size, num_layers, \
                    dropout_prob=dropout_prob)

            self.assertRaises(TypeError, test_input_type)

            def test_pre_hidden_type():
                error_pre_hidden = fluid.data(
                    name='error_pre_hidden',
                    shape=[None, hidden_size],
                    dtype='int32')
                lstm(input, error_pre_hidden, pre_cell, \
                    seq_len, hidden_size, num_layers, \
                    dropout_prob=dropout_prob)

            self.assertRaises(TypeError, test_pre_hidden_type)

            def test_pre_cell_type():
                error_pre_cell = fluid.data(
                    name='error_pre_cell',
                    shape=[None, hidden_size],
                    dtype='int32')
                lstm(input, pre_hidden, error_pre_cell, \
                    seq_len, hidden_size, num_layers, \
                    dropout_prob=dropout_prob)

            self.assertRaises(TypeError, test_pre_cell_type)


D
dangqingqing 已提交
213
class TestLstmOp(OpTest):
214
    def set_lod(self):
215
        self.lod = [[2, 3, 2]]
216 217 218

    def set_argument(self):
        self.set_lod()
219 220
        self.D = 16

221 222 223
        self.act_gate = 'sigmoid'
        self.act_cell = 'tanh'
        self.act_cand = 'tanh'
D
dangqingqing 已提交
224

D
dangqingqing 已提交
225
        self.has_initial_state = False
D
dangqingqing 已提交
226
        self.is_reverse = False
D
dangqingqing 已提交
227
        self.use_peepholes = True
D
dangqingqing 已提交
228 229

    def setUp(self):
230
        self.set_argument()
231
        self.op_type = 'lstm'
232 233
        T = sum(self.lod[0])
        N = len(self.lod[0])
D
dangqingqing 已提交
234

235
        x = np.random.normal(size=(T, 4 * self.D)).astype('float64')
D
dangqingqing 已提交
236 237 238 239 240 241
        if self.has_initial_state:
            h0 = np.random.normal(size=(N, self.D)).astype('float64')
            c0 = np.random.normal(size=(N, self.D)).astype('float64')
        else:
            h0 = np.zeros((N, self.D)).astype('float64')
            c0 = np.zeros((N, self.D)).astype('float64')
242
        w = np.random.normal(size=(self.D, 4 * self.D)).astype('float64')
D
dangqingqing 已提交
243 244 245 246
        if self.use_peepholes:
            b = np.random.normal(size=(1, 7 * self.D)).astype('float64')
        else:
            b = np.random.normal(size=(1, 4 * self.D)).astype('float64')
D
dangqingqing 已提交
247

D
dangqingqing 已提交
248 249
        w_b = b[:, 0:4 * self.D]
        w_c = b[:, 4 * self.D:] if self.use_peepholes else None
D
dangqingqing 已提交
250
        h, c = lstm(x, self.lod, h0, c0, w, w_b, w_c, self.is_reverse,
251 252
                    ACTIVATION[self.act_gate], ACTIVATION[self.act_cell],
                    ACTIVATION[self.act_cand])
253

254 255
        self.inputs = {'Input': (x, self.lod), 'Weight': w}

D
dangqingqing 已提交
256
        self.inputs['Bias'] = b
257

D
dangqingqing 已提交
258 259 260
        if self.has_initial_state:
            self.inputs['H0'] = h0
            self.inputs['C0'] = c0
261

262 263 264 265
        self.outputs = {
            'Hidden': (h, self.lod),
            'Cell': (c, self.lod),
        }
266
        self.attrs = {
D
dangqingqing 已提交
267
            'use_peepholes': self.use_peepholes,
268 269 270 271
            'is_reverse': self.is_reverse,
            'gate_activation': self.act_gate,
            'cell_activation': self.act_cell,
            'candidate_activation': self.act_cand
272 273
        }

D
dangqingqing 已提交
274
    def test_check_output(self):
H
hong 已提交
275
        self.check_output(atol=1e-8, check_dygraph=False)
276

D
dangqingqing 已提交
277
    def test_check_grad(self):
D
dangqingqing 已提交
278
        # TODO(qingqing) remove folowing lines after the check_grad is refined.
279
        N = len(self.lod[0])
D
dangqingqing 已提交
280 281 282
        self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
        self.outputs['BatchCellPreAct'] = np.zeros(
            (N, self.D)).astype('float64')
283
        self.check_grad(
H
hong 已提交
284 285 286
            ['Input', 'Weight', 'Bias'], ['Hidden'],
            max_relative_error=5e-4,
            check_dygraph=False)
287 288


289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
class TestLstmOpCase1(TestLstmOp):
    def set_lod(self):
        self.lod = [[0, 3, 2]]


class TestLstmOpCase2(TestLstmOp):
    def set_lod(self):
        self.lod = [[0, 3, 0]]


class TestLstmOpCase3(TestLstmOp):
    def set_lod(self):
        self.lod = [[2, 0, 4]]


304 305
# class TestLstmOpHasInitial(TestLstmOp):
#     def set_argument(self):
306
#         self.lod = [[2, 3, 2]]
307 308 309 310 311 312 313 314 315 316 317 318
#         self.D = 16

#         self.act_gate = 'sigmoid'
#         self.act_cell = 'tanh'
#         self.act_cand = 'tanh'

#         self.has_initial_state = True
#         self.is_reverse = True
#         self.use_peepholes = True

#     def test_check_grad(self):
#         # TODO(qingqing) remove folowing lines after the check_grad is refined.
319
#         N = len(self.lod[0])
320 321 322 323 324 325 326 327
#         self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
#         self.outputs['BatchCellPreAct'] = np.zeros(
#             (N, self.D)).astype('float64')
#         self.check_grad(
#             ['Input', 'Weight', 'Bias', 'H0', 'C0'], ['Hidden'],
#             max_relative_error=5e-4)

#     def test_check_grad_ingore_bias(self):
328
#         N = len(self.lod[0])
329 330 331 332 333 334 335 336 337
#         self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
#         self.outputs['BatchCellPreAct'] = np.zeros(
#             (N, self.D)).astype('float64')
#         self.check_grad(
#             ['Input', 'Weight'], ['Hidden'],
#             max_relative_error=5e-4,
#             no_grad_set=set('Bias'))

#     def test_check_grad_ingore_weight(self):
338
#         N = len(self.lod[0])
339 340 341 342 343 344 345 346 347
#         self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
#         self.outputs['BatchCellPreAct'] = np.zeros(
#             (N, self.D)).astype('float64')
#         self.check_grad(
#             ['Input', 'Bias'], ['Hidden'],
#             max_relative_error=5e-4,
#             no_grad_set=set('Weight'))

#     def test_check_grad_ingore_input(self):
348
#         N = len(self.lod[0])
349 350 351 352 353 354 355 356 357
#         self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
#         self.outputs['BatchCellPreAct'] = np.zeros(
#             (N, self.D)).astype('float64')
#         self.check_grad(
#             ['Weight', 'Bias'], ['Hidden'],
#             max_relative_error=5e-4,
#             no_grad_set=set('Input'))

#     def test_check_grad_ingore_h0(self):
358
#         N = len(self.lod[0])
359 360 361 362 363 364 365 366 367
#         self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
#         self.outputs['BatchCellPreAct'] = np.zeros(
#             (N, self.D)).astype('float64')
#         self.check_grad(
#             ['Input', 'Weight', 'Bias', 'C0'], ['Hidden'],
#             max_relative_error=5e-4,
#             no_grad_set=set('H0'))

#     def test_check_grad_ingore_c0(self):
368
#         N = len(self.lod[0])
369 370 371 372 373 374 375 376 377 378
#         self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
#         self.outputs['BatchCellPreAct'] = np.zeros(
#             (N, self.D)).astype('float64')
#         self.check_grad(
#             ['Input', 'Weight', 'Bias', 'H0'], ['Hidden'],
#             max_relative_error=5e-4,
#             no_grad_set=set('C0'))

# class TestLstmOpRerverse(TestLstmOp):
#     def set_argument(self):
379
#         self.lod = [[2, 3, 2]]
380 381 382 383 384 385 386 387 388 389 390 391
#         self.D = 16

#         self.act_gate = 'sigmoid'
#         self.act_cell = 'tanh'
#         self.act_cand = 'tanh'

#         self.has_initial_state = False
#         self.is_reverse = True
#         self.use_peepholes = True

# class TestLstmOpNotUsePeepholes(TestLstmOp):
#     def set_argument(self):
392
#         self.lod = [[2, 3, 2]]
393 394 395 396 397 398 399 400 401
#         self.D = 16

#         self.act_gate = 'sigmoid'
#         self.act_cell = 'tanh'
#         self.act_cand = 'tanh'

#         self.has_initial_state = False
#         self.is_reverse = True
#         self.use_peepholes = False
402 403

if __name__ == '__main__':
404
    unittest.main()