test_model.py 37.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# copyright (c) 2020 paddlepaddle authors. all rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import shutil
import tempfile
18 19 20
import unittest

import numpy as np
21

L
Leo Chen 已提交
22
import paddle
23
from paddle import Model, fluid, jit, to_tensor
24 25 26
from paddle.hapi.model import prepare_distributed_context
from paddle.io import Dataset, DistributedBatchSampler
from paddle.metric import Accuracy
27
from paddle.nn import Conv2D, Linear, ReLU, Sequential
28
from paddle.nn.layer.loss import CrossEntropyLoss
29
from paddle.static import InputSpec
30
from paddle.vision import models
31 32
from paddle.vision.datasets import MNIST
from paddle.vision.models import LeNet
33 34


35
class LeNetDygraph(paddle.nn.Layer):
L
LielinJiang 已提交
36
    def __init__(self, num_classes=10):
37
        super().__init__()
38
        self.num_classes = num_classes
39 40 41
        self.features = Sequential(
            Conv2D(1, 6, 3, stride=1, padding=1),
            ReLU(),
W
wangzhen38 已提交
42
            paddle.nn.MaxPool2D(2, 2),
43 44
            Conv2D(6, 16, 5, stride=1, padding=0),
            ReLU(),
W
wangzhen38 已提交
45
            paddle.nn.MaxPool2D(2, 2),
46
        )
47 48

        if num_classes > 0:
49 50 51
            self.fc = Sequential(
                Linear(400, 120), Linear(120, 84), Linear(84, 10)
            )
52 53 54 55 56

    def forward(self, inputs):
        x = self.features(inputs)

        if self.num_classes > 0:
57
            x = paddle.flatten(x, 1, -1)
58 59 60 61
            x = self.fc(x)
        return x


62 63
class ModelInner(paddle.nn.Layer):
    def __init__(self):
64
        super().__init__()
65 66 67 68 69 70 71 72 73
        self.fc = paddle.nn.Linear(3, 4)

    def forward(self, x):
        y = self.fc(x)
        return y, 0


class ModelOutter(paddle.nn.Layer):
    def __init__(self):
74
        super().__init__()
75 76 77 78 79 80 81 82 83
        self.module1 = ModelInner()
        self.module2 = paddle.nn.Linear(4, 5)

    def forward(self, x):
        y, dummpy = self.module1(x)
        y = self.module2(y)
        return y, 3


84 85
class LeNetListInput(paddle.nn.Layer):
    def __init__(self, num_classes=10):
86
        super().__init__()
87 88 89 90
        self.num_classes = num_classes
        self.cov = Conv2D(1, 6, 3, stride=1, padding=1)
        for param in self.cov.parameters():
            param.trainable = False
91 92 93
        self.features = Sequential(
            self.cov,
            ReLU(),
W
wangzhen38 已提交
94
            paddle.nn.MaxPool2D(2, 2),
95 96
            Conv2D(6, 16, 5, stride=1, padding=0),
            ReLU(),
W
wangzhen38 已提交
97
            paddle.nn.MaxPool2D(2, 2),
98
        )
99 100

        if num_classes > 0:
101 102 103
            self.fc = Sequential(
                Linear(400, 120), Linear(120, 84), Linear(84, 10)
            )
104

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    def forward(self, inputs):
        x = inputs[0]
        x = self.features(x)

        if self.num_classes > 0:
            x = paddle.flatten(x, 1)
            x = self.fc(x + inputs[1])
        return x


class LeNetDictInput(LeNetDygraph):
    def forward(self, inputs):
        x = self.features(inputs['x1'])

        if self.num_classes > 0:
            x = paddle.flatten(x, 1)
            x = self.fc(x + inputs['x2'])
        return x


125 126
class MnistDataset(MNIST):
    def __init__(self, mode, return_label=True, sample_num=None):
127
        super().__init__(mode=mode)
128 129 130 131 132 133 134 135 136 137
        self.return_label = return_label
        if sample_num:
            self.images = self.images[:sample_num]
            self.labels = self.labels[:sample_num]

    def __getitem__(self, idx):
        img, label = self.images[idx], self.labels[idx]
        img = np.reshape(img, [1, 28, 28])
        if self.return_label:
            return img, np.array(self.labels[idx]).astype('int64')
138
        return (img,)
139 140 141 142 143 144 145 146 147 148 149 150 151

    def __len__(self):
        return len(self.images)


def compute_acc(pred, label):
    pred = np.argmax(pred, -1)
    label = np.array(label)
    correct = pred[:, np.newaxis] == label
    return np.sum(correct) / correct.shape[0]


def dynamic_train(model, dataloader):
152 153 154
    optim = fluid.optimizer.Adam(
        learning_rate=0.001, parameter_list=model.parameters()
    )
155 156 157
    model.train()
    for inputs, labels in dataloader:
        outputs = model(inputs)
158
        loss = CrossEntropyLoss(reduction="sum")(outputs, labels)
159
        avg_loss = paddle.sum(loss)
160 161 162 163 164 165 166 167 168 169 170 171
        avg_loss.backward()
        optim.minimize(avg_loss)
        model.clear_gradients()


def dynamic_evaluate(model, dataloader):
    with fluid.dygraph.no_grad():
        model.eval()
        cnt = 0
        for inputs, labels in dataloader:
            outputs = model(inputs)

172 173 174 175 176 177 178 179
            cnt += (
                (
                    np.argmax(outputs.numpy(), -1)[:, np.newaxis]
                    == labels.numpy()
                )
                .astype('int')
                .sum()
            )
180 181 182 183

    return cnt / len(dataloader.dataset)


184 185 186
@unittest.skipIf(
    not fluid.is_compiled_with_cuda(), 'CPU testing is not supported'
)
187 188 189 190
class TestModel(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        if not fluid.is_compiled_with_cuda():
J
Jiangxinz 已提交
191
            cls().skipTest('module not tested when ONLY_CPU compling')
192
        cls.device = paddle.set_device('gpu')
193 194 195 196 197
        fluid.enable_dygraph(cls.device)

        sp_num = 1280
        cls.train_dataset = MnistDataset(mode='train', sample_num=sp_num)
        cls.val_dataset = MnistDataset(mode='test', sample_num=sp_num)
198 199 200 201
        cls.test_dataset = MnistDataset(
            mode='test', return_label=False, sample_num=sp_num
        )

202
        cls.train_loader = paddle.io.DataLoader(
203 204
            cls.train_dataset, places=cls.device, batch_size=64
        )
205
        cls.val_loader = paddle.io.DataLoader(
206 207
            cls.val_dataset, places=cls.device, batch_size=64
        )
208
        cls.test_loader = paddle.io.DataLoader(
209 210
            cls.test_dataset, places=cls.device, batch_size=64
        )
211 212

        seed = 333
C
cnn 已提交
213
        paddle.seed(seed)
L
Leo Chen 已提交
214
        paddle.framework.random._manual_program_seed(seed)
215 216 217 218 219 220 221

        dy_lenet = LeNetDygraph()
        cls.init_param = dy_lenet.state_dict()
        dynamic_train(dy_lenet, cls.train_loader)

        cls.acc1 = dynamic_evaluate(dy_lenet, cls.val_loader)

222 223
        cls.inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')]
        cls.labels = [InputSpec([None, 1], 'int64', 'label')]
224

225 226 227
        cls.save_dir = os.path.join(tempfile.mkdtemp(), '.cache_test_model')
        if not os.path.exists(cls.save_dir):
            os.makedirs(cls.save_dir)
228
        cls.weight_path = os.path.join(cls.save_dir, 'lenet')
229
        paddle.save(dy_lenet.state_dict(), cls.weight_path + '.pdparams')
230 231 232 233 234 235 236 237 238 239 240 241 242

        fluid.disable_dygraph()

    @classmethod
    def tearDownClass(cls):
        shutil.rmtree(cls.save_dir)

    def test_fit_dygraph(self):
        self.fit(True)

    def test_fit_static(self):
        self.fit(False)

243 244 245 246 247 248
    def test_fit_dynamic_with_tuple_input(self):
        self.fit_with_tuple_input(True)

    def test_fit_static_with_tuple_input(self):
        self.fit_with_tuple_input(False)

249 250 251 252 253 254
    def test_fit_dynamic_with_rank(self):
        self.fit(True, 2, 0)

    def test_fit_static_with_rank(self):
        self.fit(False, 2, 0)

255 256 257 258 259 260
    def test_fit_dynamic_with_num_iters(self):
        self.fit(True, num_iters=1)

    def test_fit_static_with_num_iters(self):
        self.fit(False, num_iters=1)

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
    def test_evaluate_dygraph(self):
        self.evaluate(True)

    def test_evaluate_static(self):
        self.evaluate(False)

    def test_predict_dygraph(self):
        self.predict(True)

    def test_predict_static(self):
        self.predict(False)

    def test_prepare_context(self):
        prepare_distributed_context()

276
    def fit(self, dynamic, num_replicas=None, rank=None, num_iters=None):
277 278
        fluid.enable_dygraph(self.device) if dynamic else None
        seed = 333
C
cnn 已提交
279
        paddle.seed(seed)
L
Leo Chen 已提交
280
        paddle.framework.random._manual_program_seed(seed)
281

L
LielinJiang 已提交
282
        net = LeNet()
283 284 285
        optim_new = fluid.optimizer.Adam(
            learning_rate=0.001, parameter_list=net.parameters()
        )
286
        model = Model(net, inputs=self.inputs, labels=self.labels)
287 288 289 290 291
        model.prepare(
            optim_new,
            loss=CrossEntropyLoss(reduction="sum"),
            metrics=Accuracy(),
        )
292 293 294 295 296
        model.fit(self.train_dataset, batch_size=64, shuffle=False)

        result = model.evaluate(self.val_dataset, batch_size=64)
        np.testing.assert_allclose(result['acc'], self.acc1)

297 298 299 300 301 302 303 304 305 306 307
        model.fit(
            self.train_dataset,
            batch_size=64,
            shuffle=False,
            num_iters=num_iters,
        )

        result = model.evaluate(
            self.val_dataset, batch_size=64, num_iters=num_iters
        )

308 309
        model.fit(self.train_dataset, batch_size=(64, 64), shuffle=False)

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
        train_sampler = DistributedBatchSampler(
            self.train_dataset,
            batch_size=64,
            shuffle=False,
            num_replicas=num_replicas,
            rank=rank,
        )
        val_sampler = DistributedBatchSampler(
            self.val_dataset,
            batch_size=64,
            shuffle=False,
            num_replicas=num_replicas,
            rank=rank,
        )

325
        train_loader = paddle.io.DataLoader(
326 327 328 329 330 331
            self.train_dataset,
            batch_sampler=train_sampler,
            places=self.device,
            return_list=True,
        )

332
        val_loader = paddle.io.DataLoader(
333 334 335 336 337
            self.val_dataset,
            batch_sampler=val_sampler,
            places=self.device,
            return_list=True,
        )
338 339 340 341 342 343 344 345 346 347 348

        model.fit(train_loader, val_loader)
        fluid.disable_dygraph() if dynamic else None

    def fit_with_tuple_input(self, dynamic, num_replicas=None, rank=None):
        fluid.enable_dygraph(self.device) if dynamic else None
        seed = 333
        paddle.seed(seed)
        paddle.framework.random._manual_program_seed(seed)

        net = LeNet()
349 350 351
        optim_new = fluid.optimizer.Adam(
            learning_rate=0.001, parameter_list=net.parameters()
        )
352
        model = Model(net, inputs=tuple(self.inputs), labels=tuple(self.labels))
353 354 355 356 357
        model.prepare(
            optim_new,
            loss=CrossEntropyLoss(reduction="sum"),
            metrics=Accuracy(),
        )
358 359 360 361 362
        model.fit(self.train_dataset, batch_size=64, shuffle=False)

        result = model.evaluate(self.val_dataset, batch_size=64)
        np.testing.assert_allclose(result['acc'], self.acc1)

363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
        train_sampler = DistributedBatchSampler(
            self.train_dataset,
            batch_size=64,
            shuffle=False,
            num_replicas=num_replicas,
            rank=rank,
        )
        val_sampler = DistributedBatchSampler(
            self.val_dataset,
            batch_size=64,
            shuffle=False,
            num_replicas=num_replicas,
            rank=rank,
        )

378
        train_loader = paddle.io.DataLoader(
379 380 381 382 383 384
            self.train_dataset,
            batch_sampler=train_sampler,
            places=self.device,
            return_list=True,
        )

385
        val_loader = paddle.io.DataLoader(
386 387 388 389 390
            self.val_dataset,
            batch_sampler=val_sampler,
            places=self.device,
            return_list=True,
        )
391 392 393 394 395 396

        model.fit(train_loader, val_loader)
        fluid.disable_dygraph() if dynamic else None

    def evaluate(self, dynamic):
        fluid.enable_dygraph(self.device) if dynamic else None
397 398
        model = Model(LeNet(), self.inputs, self.labels)
        model.prepare(metrics=Accuracy())
399 400 401 402
        model.load(self.weight_path)
        result = model.evaluate(self.val_dataset, batch_size=64)
        np.testing.assert_allclose(result['acc'], self.acc1)

403 404 405
        sampler = DistributedBatchSampler(
            self.val_dataset, batch_size=64, shuffle=False
        )
406

407
        val_loader = paddle.io.DataLoader(
408 409 410 411 412
            self.val_dataset,
            batch_sampler=sampler,
            places=self.device,
            return_list=True,
        )
413 414 415 416 417 418 419

        model.evaluate(val_loader)

        fluid.disable_dygraph() if dynamic else None

    def predict(self, dynamic):
        fluid.enable_dygraph(self.device) if dynamic else None
420 421
        model = Model(LeNet(), self.inputs)
        model.prepare()
422
        model.load(self.weight_path)
423 424 425
        output = model.predict(
            self.test_dataset, batch_size=64, stack_outputs=True
        )
426 427 428 429 430
        np.testing.assert_equal(output[0].shape[0], len(self.test_dataset))

        acc = compute_acc(output[0], self.val_dataset.labels)
        np.testing.assert_allclose(acc, self.acc1)

431 432 433
        sampler = DistributedBatchSampler(
            self.test_dataset, batch_size=64, shuffle=False
        )
434

435
        test_loader = paddle.io.DataLoader(
436 437 438 439 440
            self.test_dataset,
            batch_sampler=sampler,
            places=self.device,
            return_list=True,
        )
441 442 443 444 445

        model.evaluate(test_loader)

        fluid.disable_dygraph() if dynamic else None

446 447 448 449 450 451
    def test_predict_without_inputs(self):
        fluid.enable_dygraph(self.device)
        model = Model(LeNet())
        model.prepare()
        model.load(self.weight_path)
        model._inputs = None
452 453 454
        output = model.predict(
            self.test_dataset, batch_size=64, stack_outputs=True
        )
455 456 457
        np.testing.assert_equal(output[0].shape[0], len(self.test_dataset))
        fluid.disable_dygraph()

458 459 460
    def test_summary_gpu(self):
        paddle.disable_static(self.device)
        rnn = paddle.nn.LSTM(16, 32, 2)
461 462 463
        params_info = paddle.summary(
            rnn, [(-1, 23, 16), ((2, None, 32), (2, -1, 32))]
        )
464

465

466
class MyModel(paddle.nn.Layer):
L
LielinJiang 已提交
467
    def __init__(self):
468
        super().__init__()
469
        self._fc = Linear(20, 10)
470 471 472 473 474 475

    def forward(self, x):
        y = self._fc(x)
        return y


476 477
class MyDataset(Dataset):
    def __getitem__(self, idx):
478 479 480
        return np.random.random(size=(20,)).astype(
            np.float32
        ), np.random.randint(0, 10, size=(1,)).astype(np.int64)
481 482 483 484 485

    def __len__(self):
        return 40


486 487
class TestModelFunction(unittest.TestCase):
    def set_seed(self, seed=1024):
C
cnn 已提交
488
        paddle.seed(seed)
L
Leo Chen 已提交
489
        paddle.framework.random._manual_program_seed(seed)
490 491 492 493 494 495 496 497 498

    def test_train_batch(self, dynamic=True):
        dim = 20
        data = np.random.random(size=(4, dim)).astype(np.float32)
        label = np.random.randint(0, 10, size=(4, 1)).astype(np.int64)

        def get_expect():
            fluid.enable_dygraph(fluid.CPUPlace())
            self.set_seed()
L
LielinJiang 已提交
499
            m = MyModel()
500 501 502
            optim = fluid.optimizer.SGD(
                learning_rate=0.001, parameter_list=m.parameters()
            )
503
            m.train()
504 505
            output = m(to_tensor(data))
            loss = CrossEntropyLoss(reduction='sum')(output, to_tensor(label))
506
            avg_loss = paddle.sum(loss)
507 508 509 510 511 512 513 514
            avg_loss.backward()
            optim.minimize(avg_loss)
            m.clear_gradients()
            fluid.disable_dygraph()
            return avg_loss.numpy()

        ref = get_expect()
        for dynamic in [True, False]:
515
            device = paddle.set_device('cpu')
516 517 518
            fluid.enable_dygraph(device) if dynamic else None
            self.set_seed()

L
LielinJiang 已提交
519
            net = MyModel()
520 521 522
            optim2 = fluid.optimizer.SGD(
                learning_rate=0.001, parameter_list=net.parameters()
            )
523

524 525
            inputs = [InputSpec([None, dim], 'float32', 'x')]
            labels = [InputSpec([None, 1], 'int64', 'label')]
526
            model = Model(net, inputs, labels)
527
            model.prepare(optim2, loss=CrossEntropyLoss(reduction="sum"))
528
            (loss,) = model.train_batch([data], [label])
529 530 531
            np.testing.assert_allclose(loss.flatten(), ref.flatten())
            fluid.disable_dygraph() if dynamic else None

532
    def test_test_batch(self):
533 534 535 536 537 538 539 540
        dim = 20
        data = np.random.random(size=(4, dim)).astype(np.float32)

        def get_expect():
            fluid.enable_dygraph(fluid.CPUPlace())
            self.set_seed()
            m = MyModel()
            m.eval()
541
            output = m(to_tensor(data))
542 543 544 545 546
            fluid.disable_dygraph()
            return output.numpy()

        ref = get_expect()
        for dynamic in [True, False]:
547
            device = paddle.set_device('cpu')
548 549
            fluid.enable_dygraph(device) if dynamic else None
            self.set_seed()
550
            net = MyModel()
551
            inputs = [InputSpec([None, dim], 'float32', 'x')]
552 553
            model = Model(net, inputs)
            model.prepare()
554
            (out,) = model.predict_batch([data])
555

556
            np.testing.assert_allclose(out, ref, rtol=1e-6)
557 558 559
            fluid.disable_dygraph() if dynamic else None

    def test_save_load(self):
560 561 562
        path = os.path.join(tempfile.mkdtemp(), '.cache_test_save_load')
        if not os.path.exists(path):
            os.makedirs(path)
563
        for dynamic in [True, False]:
564
            device = paddle.set_device('cpu')
565
            fluid.enable_dygraph(device) if dynamic else None
L
LielinJiang 已提交
566
            net = MyModel()
567 568
            inputs = [InputSpec([None, 20], 'float32', 'x')]
            labels = [InputSpec([None, 1], 'int64', 'label')]
569 570 571
            optim = fluid.optimizer.SGD(
                learning_rate=0.001, parameter_list=net.parameters()
            )
572
            model = Model(net, inputs, labels)
573 574 575
            model.prepare(
                optimizer=optim, loss=CrossEntropyLoss(reduction="sum")
            )
576 577
            model.save(path)
            model.load(path)
578
            fluid.disable_dygraph() if dynamic else None
579
        shutil.rmtree(path)
580

581 582
    def test_dynamic_load(self):
        mnist_data = MnistDataset(mode='train')
583 584 585 586 587

        path = os.path.join(tempfile.mkdtemp(), '.cache_dynamic_load')
        if not os.path.exists(path):
            os.makedirs(path)

588 589 590 591 592 593
        for new_optimizer in [True, False]:
            paddle.disable_static()
            net = LeNet()
            inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')]
            labels = [InputSpec([None, 1], 'int64', 'label')]
            if new_optimizer:
594 595 596
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=net.parameters()
                )
597
            else:
598 599 600
                optim = fluid.optimizer.Adam(
                    learning_rate=0.001, parameter_list=net.parameters()
                )
601
            model = Model(net, inputs, labels)
602 603 604
            model.prepare(
                optimizer=optim, loss=CrossEntropyLoss(reduction="sum")
            )
605
            model.fit(mnist_data, batch_size=64, verbose=0)
606 607
            model.save(path)
            model.load(path)
608
            paddle.enable_static()
609
        shutil.rmtree(path)
610

611
    def test_dynamic_save_static_load(self):
612 613 614
        path = os.path.join(
            tempfile.mkdtemp(), '.cache_dynamic_save_static_load'
        )
615 616
        if not os.path.exists(path):
            os.makedirs(path)
617
        # dynamic saving
618
        device = paddle.set_device('cpu')
619
        fluid.enable_dygraph(device)
620
        model = Model(MyModel())
621 622 623
        optim = fluid.optimizer.SGD(
            learning_rate=0.001, parameter_list=model.parameters()
        )
624
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
625
        model.save(path)
626
        fluid.disable_dygraph()
627

628 629
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
L
LielinJiang 已提交
630
        model = Model(MyModel(), inputs, labels)
631 632 633
        optim = fluid.optimizer.SGD(
            learning_rate=0.001, parameter_list=model.parameters()
        )
634
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
635
        model.load(path)
636 637 638
        shutil.rmtree(path)

    def test_static_save_dynamic_load(self):
639 640 641
        path = os.path.join(
            tempfile.mkdtemp(), '.cache_test_static_save_dynamic_load'
        )
642 643
        if not os.path.exists(path):
            os.makedirs(path)
L
LielinJiang 已提交
644
        net = MyModel()
645 646
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
647 648 649
        optim = fluid.optimizer.SGD(
            learning_rate=0.001, parameter_list=net.parameters()
        )
650
        model = Model(net, inputs, labels)
651
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
652
        model.save(path)
653

654
        device = paddle.set_device('cpu')
655
        fluid.enable_dygraph(device)  # if dynamic else None
656

L
LielinJiang 已提交
657
        net = MyModel()
658 659
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
660 661 662
        optim = fluid.optimizer.SGD(
            learning_rate=0.001, parameter_list=net.parameters()
        )
663
        model = Model(net, inputs, labels)
664
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
665
        model.load(path)
666 667 668 669 670
        shutil.rmtree(path)
        fluid.disable_dygraph()

    def test_parameters(self):
        for dynamic in [True, False]:
671
            device = paddle.set_device('cpu')
672
            fluid.enable_dygraph(device) if dynamic else None
673
            net = MyModel()
674
            inputs = [InputSpec([None, 20], 'float32', 'x')]
675 676
            model = Model(net, inputs)
            model.prepare()
677 678 679 680 681
            params = model.parameters()
            self.assertTrue(params[0].shape[0] == 20)
            self.assertTrue(params[0].shape[1] == 10)
            fluid.disable_dygraph() if dynamic else None

L
LielinJiang 已提交
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
    def test_summary(self):
        def _get_param_from_state_dict(state_dict):
            params = 0
            for k, v in state_dict.items():
                params += np.prod(v.numpy().shape)
            return params

        for dynamic in [True, False]:
            device = paddle.set_device('cpu')
            fluid.enable_dygraph(device) if dynamic else None
            net = MyModel()
            inputs = [InputSpec([None, 20], 'float32', 'x')]
            model = Model(net, inputs)
            model.prepare()
            params_info = model.summary()
            gt_params = _get_param_from_state_dict(net.state_dict())

            np.testing.assert_allclose(params_info['total_params'], gt_params)
            print(params_info)

702 703
            model.summary(input_size=(20))
            model.summary(input_size=[(20)])
L
LielinJiang 已提交
704
            model.summary(input_size=(20), dtype='float32')
705

706 707 708
    def test_summary_non_tensor(self):
        paddle.summary(ModelOutter(), input_size=(-1, 3))

L
LielinJiang 已提交
709
    def test_summary_nlp(self):
710 711 712 713 714 715
        def _get_param_from_state_dict(state_dict):
            params = 0
            for k, v in state_dict.items():
                params += np.prod(v.numpy().shape)
            return params

716 717 718
        nlp_net = paddle.nn.GRU(
            input_size=2, hidden_size=3, num_layers=3, direction="bidirectional"
        )
L
LielinJiang 已提交
719
        paddle.summary(nlp_net, (1, 1, 2))
720

L
LielinJiang 已提交
721
        rnn = paddle.nn.LSTM(16, 32, 2)
722 723 724
        params_info = paddle.summary(
            rnn, [(-1, 23, 16), ((2, None, 32), (2, -1, 32))]
        )
725 726 727 728 729 730 731 732 733 734 735 736
        gt_params = _get_param_from_state_dict(rnn.state_dict())
        np.testing.assert_allclose(params_info['total_params'], gt_params / 2.0)

        rnn = paddle.nn.GRU(16, 32, 2, direction='bidirectional')
        params_info = paddle.summary(rnn, (4, 23, 16))
        gt_params = _get_param_from_state_dict(rnn.state_dict())
        np.testing.assert_allclose(params_info['total_params'], gt_params / 2.0)

        rnn = paddle.nn.SimpleRNN(16, 32, 2, direction='bidirectional')
        params_info = paddle.summary(rnn, (4, 23, 16))
        gt_params = _get_param_from_state_dict(rnn.state_dict())
        np.testing.assert_allclose(params_info['total_params'], gt_params / 2.0)
L
LielinJiang 已提交
737

738
    def test_summary_input(self):
739 740 741 742 743 744
        paddle.enable_static()
        mymodel = MyModel()
        input_data = paddle.rand([1, 20])
        paddle.summary(mymodel, input=input_data)
        paddle.disable_static()

745 746 747 748 749 750 751 752 753 754 755
        rnn = paddle.nn.SimpleRNN(16, 32, 2, direction='bidirectional')
        input_data = paddle.rand([4, 23, 16])
        paddle.summary(rnn, input=input_data)

        lenet_List_input = LeNetListInput()
        input_data = [paddle.rand([1, 1, 28, 28]), paddle.rand([1, 400])]
        paddle.summary(lenet_List_input, input=input_data)

        lenet_dict_input = LeNetDictInput()
        input_data = {
            'x1': paddle.rand([1, 1, 28, 28]),
756
            'x2': paddle.rand([1, 400]),
757 758 759
        }
        paddle.summary(lenet_dict_input, input=input_data)

L
LielinJiang 已提交
760 761 762 763 764
    def test_summary_dtype(self):
        input_shape = (3, 1)
        net = paddle.nn.Embedding(10, 3, sparse=True)
        paddle.summary(net, input_shape, dtypes='int64')

L
LielinJiang 已提交
765 766 767
    def test_summary_error(self):
        with self.assertRaises(TypeError):
            nlp_net = paddle.nn.GRU(input_size=2, hidden_size=3, num_layers=3)
L
LielinJiang 已提交
768
            paddle.summary(nlp_net, (1, 1, '2'))
L
LielinJiang 已提交
769 770 771 772 773 774 775

        with self.assertRaises(ValueError):
            nlp_net = paddle.nn.GRU(input_size=2, hidden_size=3, num_layers=3)
            paddle.summary(nlp_net, (-1, -1))

        paddle.disable_static()
        nlp_net = paddle.nn.GRU(input_size=2, hidden_size=3, num_layers=3)
L
LielinJiang 已提交
776
        paddle.summary(nlp_net, (1, 1, 2))
L
LielinJiang 已提交
777

Y
yukavio 已提交
778
    def test_static_flops(self):
779
        if True:
J
Jiabin Yang 已提交
780
            return
Y
yukavio 已提交
781 782 783 784 785 786 787 788 789 790 791 792
        paddle.disable_static()
        net = models.__dict__['mobilenet_v2'](pretrained=False)
        inputs = paddle.randn([1, 3, 224, 224])
        static_program = jit._trace(net, inputs=[inputs])[1]
        paddle.flops(static_program, [1, 3, 224, 224], print_detail=True)

    def test_dynamic_flops(self):
        net = models.__dict__['mobilenet_v2'](pretrained=False)

        def customize_dropout(m, x, y):
            m.total_ops += 0

793 794 795 796 797 798
        paddle.flops(
            net,
            [1, 3, 224, 224],
            custom_ops={paddle.nn.Dropout: customize_dropout},
            print_detail=True,
        )
Y
yukavio 已提交
799

800
    def test_dynamic_flops_with_multiple_outputs(self):
801 802 803
        net = paddle.nn.MaxPool2D(
            kernel_size=2, stride=2, padding=0, return_mask=True
        )
804 805 806 807

        def customize_dropout(m, x, y):
            m.total_ops += 0

808 809 810 811 812 813
        paddle.flops(
            net,
            [1, 2, 32, 32],
            custom_ops={paddle.nn.Dropout: customize_dropout},
            print_detail=True,
        )
814

815
    def test_export_deploy_model(self):
816
        self.set_seed()
817
        np.random.seed(201)
818

819 820 821
        save_dir = os.path.join(
            tempfile.mkdtemp(), '.cache_test_export_deploy_model'
        )
822 823 824
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

825
        for dynamic in [True, False]:
826
            paddle.disable_static() if dynamic else None
R
Ryan 已提交
827 828
            paddle.jit.enable_to_static(False) if not dynamic else None

829
            net = LeNet()
830
            inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')]
831 832
            model = Model(net, inputs)
            model.prepare()
833

834 835 836
            tensor_img = np.array(
                np.random.random((1, 1, 28, 28)), dtype=np.float32
            )
837

838
            model.save(save_dir, training=False)
839
            ori_results = model.predict_batch(tensor_img)
840
            fluid.disable_dygraph() if dynamic else None
841

842 843 844 845 846
            place = (
                fluid.CPUPlace()
                if not fluid.is_compiled_with_cuda()
                else fluid.CUDAPlace(0)
            )
847 848 849
            new_scope = fluid.Scope()
            with fluid.scope_guard(new_scope):
                exe = fluid.Executor(place)
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
                [
                    inference_program,
                    feed_target_names,
                    fetch_targets,
                ] = paddle.static.io.load_inference_model(
                    path_prefix=save_dir, executor=exe
                )
                results = exe.run(
                    inference_program,
                    feed={feed_target_names[0]: tensor_img},
                    fetch_list=fetch_targets,
                )
                np.testing.assert_allclose(
                    results, ori_results, rtol=1e-5, atol=1e-6
                )
865

866
            paddle.enable_static()
867

868 869
        shutil.rmtree(save_dir)

L
LiuChiachi 已提交
870
    def test_dygraph_export_deploy_model_about_inputs(self):
J
Jiaqi Liu 已提交
871 872
        self.set_seed()
        np.random.seed(201)
873 874
        mnist_data = MnistDataset(mode='train')
        paddle.disable_static()
L
LiuChiachi 已提交
875
        # without inputs
876 877 878
        save_dir = os.path.join(
            tempfile.mkdtemp(), '.cache_test_dygraph_export_deploy'
        )
879 880
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
881
        for initial in ["fit", "train_batch", "eval_batch", "predict_batch"]:
882 883
            net = LeNet()
            model = Model(net)
884 885 886 887 888 889
            optim = fluid.optimizer.Adam(
                learning_rate=0.001, parameter_list=model.parameters()
            )
            model.prepare(
                optimizer=optim, loss=CrossEntropyLoss(reduction="sum")
            )
890 891 892
            if initial == "fit":
                model.fit(mnist_data, batch_size=64, verbose=0)
            else:
893 894 895
                img = np.array(
                    np.random.random((1, 1, 28, 28)), dtype=np.float32
                )
896 897 898 899 900 901
                label = np.array(np.random.rand(1, 1), dtype=np.int64)
                if initial == "train_batch":
                    model.train_batch([img], [label])
                elif initial == "eval_batch":
                    model.eval_batch([img], [label])
                else:
902
                    model.predict_batch([img])
903 904

            model.save(save_dir, training=False)
905
        shutil.rmtree(save_dir)
L
LiuChiachi 已提交
906
        # with inputs, and the type of inputs is InputSpec
907 908 909
        save_dir = os.path.join(
            tempfile.mkdtemp(), '.cache_test_dygraph_export_deploy_2'
        )
L
LiuChiachi 已提交
910 911 912 913 914
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        net = LeNet()
        inputs = InputSpec([None, 1, 28, 28], 'float32', 'x')
        model = Model(net, inputs)
915 916 917
        optim = fluid.optimizer.Adam(
            learning_rate=0.001, parameter_list=model.parameters()
        )
L
LiuChiachi 已提交
918 919 920
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
        model.save(save_dir, training=False)
        shutil.rmtree(save_dir)
921

922 923 924
    def test_accumulate(
        self,
    ):
L
lyuwenyu 已提交
925 926 927 928
        dim = 20
        data = np.random.random(size=(4, dim)).astype(np.float32)
        label = np.random.randint(0, 10, size=(4, 1)).astype(np.int64)
        net = MyModel()
929 930 931
        optim = fluid.optimizer.SGD(
            learning_rate=0.001, parameter_list=net.parameters()
        )
L
lyuwenyu 已提交
932 933
        inputs = [InputSpec([None, dim], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
L
lyuwenyu 已提交
934

L
lyuwenyu 已提交
935 936
        for amp_cfg in [None, 'O1']:
            model = Model(net, inputs, labels)
937 938 939 940 941
            model.prepare(
                optim,
                loss=CrossEntropyLoss(reduction="sum"),
                amp_configs=amp_cfg,
            )
L
lyuwenyu 已提交
942 943
            losses, grads = [], []
            for stat in [False, False, True]:
944
                (loss,) = model.train_batch([data], [label], update=stat)
L
lyuwenyu 已提交
945 946 947 948 949
                losses.append(loss)
                grads.append([p.grad.numpy() for p in net.parameters()])

            for grad1, grad2, grad3 in zip(*grads):
                np.testing.assert_almost_equal(grad1 * 2, grad2, decimal=4)
950 951 952
                np.testing.assert_almost_equal(
                    grad3, np.zeros_like(grad3), decimal=4
                )
L
lyuwenyu 已提交
953 954 955

            np.testing.assert_almost_equal(losses[0], losses[1], decimal=4)
            np.testing.assert_almost_equal(losses[0], losses[2], decimal=4)
L
lyuwenyu 已提交
956

957

958
class TestModelWithLRScheduler(unittest.TestCase):
959 960 961 962
    def test_fit_by_step(self):
        base_lr = 1e-3
        boundaries = [5, 8]

963 964 965 966 967
        def make_optimizer(parameters=None):
            momentum = 0.9
            weight_decay = 5e-4
            values = [base_lr * (0.1**i) for i in range(len(boundaries) + 1)]
            learning_rate = paddle.optimizer.lr.PiecewiseDecay(
968 969
                boundaries=boundaries, values=values
            )
970 971 972
            learning_rate = paddle.optimizer.lr.LinearWarmup(
                learning_rate=learning_rate,
                warmup_steps=4,
973
                start_lr=base_lr / 5.0,
974
                end_lr=base_lr,
975 976 977 978 979 980 981 982
                verbose=True,
            )
            optimizer = paddle.optimizer.Momentum(
                learning_rate=learning_rate,
                weight_decay=weight_decay,
                momentum=momentum,
                parameters=parameters,
            )
983 984
            return optimizer

985
        # dynamic test
986 987 988 989 990 991 992 993 994 995 996 997
        device = paddle.set_device('cpu')
        fluid.enable_dygraph(device)
        net = MyModel()
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
        optim = make_optimizer(net.parameters())
        model = Model(net, inputs, labels)
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))

        dataset = MyDataset()
        model.fit(dataset, dataset, batch_size=4, epochs=10, num_workers=0)

998 999 1000 1001
        np.testing.assert_allclose(
            model._optimizer._learning_rate.last_lr,
            base_lr * (0.1 ** len(boundaries)),
        )
1002
        # static test
1003 1004
        paddle.enable_static()

1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
        net = MyModel()
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
        optim = make_optimizer(net.parameters())
        model = Model(net, inputs, labels)
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))

        dataset = MyDataset()
        model.fit(dataset, dataset, batch_size=4, epochs=10, num_workers=0)

1015 1016 1017 1018
        np.testing.assert_allclose(
            model._optimizer._learning_rate.last_lr,
            base_lr * (0.1 ** len(boundaries)),
        )
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030

    def test_fit_by_epoch(self):
        base_lr = 1e-3
        boundaries = [5, 8]
        epochs = 10
        wamup_epochs = 4

        def make_optimizer(parameters=None):
            momentum = 0.9
            weight_decay = 5e-4
            values = [base_lr * (0.1**i) for i in range(len(boundaries) + 1)]
            learning_rate = paddle.optimizer.lr.PiecewiseDecay(
1031 1032
                boundaries=boundaries, values=values
            )
1033 1034 1035
            learning_rate = paddle.optimizer.lr.LinearWarmup(
                learning_rate=learning_rate,
                warmup_steps=wamup_epochs,
1036
                start_lr=base_lr / 5.0,
1037
                end_lr=base_lr,
1038 1039 1040 1041 1042 1043 1044 1045
                verbose=True,
            )
            optimizer = paddle.optimizer.Momentum(
                learning_rate=learning_rate,
                weight_decay=weight_decay,
                momentum=momentum,
                parameters=parameters,
            )
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
            return optimizer

        # dynamic test
        device = paddle.set_device('cpu')
        fluid.enable_dygraph(device)
        net = MyModel()
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
        optim = make_optimizer(net.parameters())
        model = Model(net, inputs, labels)
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))

        dataset = MyDataset()

1060 1061 1062
        lr_scheduler_callback = paddle.callbacks.LRScheduler(
            by_step=False, by_epoch=True
        )
1063

1064 1065 1066 1067 1068 1069 1070 1071
        model.fit(
            dataset,
            dataset,
            batch_size=4,
            epochs=epochs,
            num_workers=0,
            callbacks=lr_scheduler_callback,
        )
1072 1073 1074 1075 1076 1077

        cnt = 0
        for b in boundaries:
            if b + wamup_epochs <= epochs:
                cnt += 1

1078 1079 1080
        np.testing.assert_allclose(
            model._optimizer._learning_rate.last_lr, base_lr * (0.1**cnt)
        )
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
        # static test
        paddle.enable_static()

        net = MyModel()
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
        optim = make_optimizer(net.parameters())
        model = Model(net, inputs, labels)
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))

        dataset = MyDataset()

1093 1094 1095
        lr_scheduler_callback = paddle.callbacks.LRScheduler(
            by_step=False, by_epoch=True
        )
1096

1097 1098 1099 1100 1101 1102 1103 1104
        model.fit(
            dataset,
            dataset,
            batch_size=4,
            epochs=epochs,
            num_workers=0,
            callbacks=lr_scheduler_callback,
        )
1105 1106 1107 1108 1109 1110

        cnt = 0
        for b in boundaries:
            if b + wamup_epochs <= epochs:
                cnt += 1

1111 1112 1113
        np.testing.assert_allclose(
            model._optimizer._learning_rate.last_lr, base_lr * (0.1**cnt)
        )
1114

1115

1116 1117
class TestRaiseError(unittest.TestCase):
    def test_input_without_name(self):
L
LielinJiang 已提交
1118
        net = MyModel()
1119 1120
        inputs = [InputSpec([None, 10], 'float32')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
1121 1122 1123
        with self.assertRaises(ValueError):
            model = Model(net, inputs, labels)

1124 1125 1126 1127 1128 1129 1130 1131 1132
    def test_static_without_inputs(self):
        paddle.enable_static()
        net = MyModel()
        with self.assertRaises(TypeError):
            model = Model(net)

    def test_save_infer_model_without_inputs_and_run_in_dygraph(self):
        paddle.disable_static()
        net = MyModel()
1133
        save_dir = os.path.join(tempfile.mkdtemp(), '.cache_test_save_infer')
1134 1135 1136 1137 1138 1139
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        with self.assertRaises(RuntimeError):
            model = Model(net)
            model.save(save_dir, training=False)
        paddle.enable_static()
1140
        shutil.rmtree(save_dir)
1141

1142 1143 1144 1145 1146 1147 1148
    def test_save_infer_model_without_file_prefix(self):
        paddle.enable_static()
        net = LeNet()
        inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')]
        model = Model(net, inputs)
        model.prepare()
        path = ""
1149 1150 1151
        tensor_img = np.array(
            np.random.random((1, 1, 28, 28)), dtype=np.float32
        )
1152 1153 1154
        with self.assertRaises(ValueError):
            model.save(path, training=False)

1155

1156 1157
if __name__ == '__main__':
    unittest.main()