Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
00e55ded
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
00e55ded
编写于
11月 23, 2020
作者:
L
LielinJiang
提交者:
GitHub
11月 23, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add lr scheduler callback for high level api (#28737)
* add lr scheduler
上级
6369463a
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
191 addition
and
18 deletion
+191
-18
python/paddle/hapi/callbacks.py
python/paddle/hapi/callbacks.py
+98
-2
python/paddle/hapi/model.py
python/paddle/hapi/model.py
+0
-13
python/paddle/tests/test_model.py
python/paddle/tests/test_model.py
+93
-3
未找到文件。
python/paddle/hapi/callbacks.py
浏览文件 @
00e55ded
...
...
@@ -15,12 +15,15 @@
import
os
import
numbers
from
paddle.fluid.dygraph.parallel
import
ParallelEnv
import
paddle
from
paddle.distributed
import
ParallelEnv
from
paddle.utils
import
try_import
from
.progressbar
import
ProgressBar
__all__
=
[
'Callback'
,
'ProgBarLogger'
,
'ModelCheckpoint'
,
'VisualDL'
]
__all__
=
[
'Callback'
,
'ProgBarLogger'
,
'ModelCheckpoint'
,
'VisualDL'
,
'LRScheduler'
]
def
config_callbacks
(
callbacks
=
None
,
...
...
@@ -42,6 +45,9 @@ def config_callbacks(callbacks=None,
if
not
any
(
isinstance
(
k
,
ModelCheckpoint
)
for
k
in
cbks
):
cbks
=
cbks
+
[
ModelCheckpoint
(
save_freq
,
save_dir
)]
if
not
any
(
isinstance
(
k
,
LRScheduler
)
for
k
in
cbks
):
cbks
=
cbks
+
[
LRScheduler
()]
cbk_list
=
CallbackList
(
cbks
)
cbk_list
.
set_model
(
model
)
metrics
=
metrics
or
[]
if
mode
!=
'test'
else
[]
...
...
@@ -485,6 +491,96 @@ class ModelCheckpoint(Callback):
self
.
model
.
save
(
path
)
class
LRScheduler
(
Callback
):
"""Lr scheduler callback function
Args:
by_step(bool, optional): whether to update learning rate scheduler
by step. Default: True.
by_epoch(bool, optional): whether to update learning rate scheduler
by epoch. Default: False.
Examples:
.. code-block:: python
import paddle
import paddle.vision.transforms as T
from paddle.static import InputSpec
inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')]
labels = [InputSpec([None, 1], 'int64', 'label')]
transform = T.Compose([
T.Transpose(),
T.Normalize([127.5], [127.5])
])
train_dataset = paddle.vision.datasets.MNIST(mode='train', transform=transform)
lenet = paddle.vision.LeNet()
model = paddle.Model(lenet,
inputs, labels)
base_lr = 1e-3
boundaries = [5, 8]
wamup_steps = 4
def make_optimizer(parameters=None):
momentum = 0.9
weight_decay = 5e-4
values = [base_lr * (0.1**i) for i in range(len(boundaries) + 1)]
learning_rate = paddle.optimizer.lr.PiecewiseDecay(
boundaries=boundaries, values=values)
learning_rate = paddle.optimizer.lr.LinearWarmup(
learning_rate=learning_rate,
warmup_steps=wamup_epochs,
start_lr=base_lr / 5.,
end_lr=base_lr,
verbose=True)
optimizer = paddle.optimizer.Momentum(
learning_rate=learning_rate,
weight_decay=weight_decay,
momentum=momentum,
parameters=parameters)
return optimizer
optim = make_optimizer(parameters=lenet.parameters())
model.prepare(optimizer=optim,
loss=paddle.nn.CrossEntropyLoss(),
metrics=paddle.metric.Accuracy())
# if LRScheduler callback not set, an instance LRScheduler update by step
# will be created auto.
model.fit(train_dataset, batch_size=64)
# create a learning rate scheduler update by epoch
callback = paddle.callbacks.LRScheduler(by_step=False, by_epoch=True)
model.fit(train_dataset, batch_size=64, callbacks=callback)
"""
def
__init__
(
self
,
by_step
=
True
,
by_epoch
=
False
):
if
by_step
and
by_epoch
:
raise
ValueError
(
"by_step option is mutually exclusive with by_epoch"
)
self
.
by_step
=
by_step
self
.
by_epoch
=
by_epoch
def
on_epoch_end
(
self
,
epoch
,
logs
=
None
):
if
self
.
by_epoch
:
if
self
.
model
.
_optimizer
and
\
hasattr
(
self
.
model
.
_optimizer
,
'_learning_rate'
)
and
\
isinstance
(
self
.
model
.
_optimizer
.
_learning_rate
,
paddle
.
optimizer
.
lr
.
LRScheduler
):
self
.
model
.
_optimizer
.
_learning_rate
.
step
()
def
on_train_batch_end
(
self
,
step
,
logs
=
None
):
if
self
.
by_step
:
if
self
.
model
.
_optimizer
and
\
hasattr
(
self
.
model
.
_optimizer
,
'_learning_rate'
)
and
\
isinstance
(
self
.
model
.
_optimizer
.
_learning_rate
,
paddle
.
optimizer
.
lr
.
LRScheduler
):
self
.
model
.
_optimizer
.
_learning_rate
.
step
()
class
VisualDL
(
Callback
):
"""VisualDL callback function
Args:
...
...
python/paddle/hapi/model.py
浏览文件 @
00e55ded
...
...
@@ -459,13 +459,6 @@ class StaticGraphAdapter(object):
if
len
(
name
)
>
0
:
rets
.
insert
(
i
,
feed
[
name
])
# step learning rate scheduler on each batch end
if
self
.
model
.
_optimizer
and
self
.
mode
==
'train'
and
\
hasattr
(
self
.
model
.
_optimizer
,
'_learning_rate'
)
and
\
isinstance
(
self
.
model
.
_optimizer
.
_learning_rate
,
paddle
.
optimizer
.
lr
.
LRScheduler
):
self
.
model
.
_optimizer
.
_learning_rate
.
step
()
# LoDTensor cannot be fetch as numpy directly
rets
=
[
np
.
array
(
v
)
for
v
in
rets
]
if
self
.
mode
==
'test'
:
...
...
@@ -666,12 +659,6 @@ class DynamicGraphAdapter(object):
self
.
model
.
_optimizer
.
minimize
(
final_loss
)
self
.
model
.
network
.
clear_gradients
()
# step learning rate scheduler on each batch end
if
self
.
model
.
_optimizer
and
\
isinstance
(
self
.
model
.
_optimizer
.
_learning_rate
,
paddle
.
optimizer
.
lr
.
LRScheduler
):
self
.
model
.
_optimizer
.
_learning_rate
.
step
()
metrics
=
[]
for
metric
in
self
.
model
.
_metrics
:
metric_outs
=
metric
.
compute
(
*
(
to_list
(
outputs
)
+
labels
))
...
...
python/paddle/tests/test_model.py
浏览文件 @
00e55ded
...
...
@@ -645,12 +645,13 @@ class TestModelFunction(unittest.TestCase):
class
TestModelWithLRScheduler
(
unittest
.
TestCase
):
def
test_fit
(
self
):
def
test_fit_by_step
(
self
):
base_lr
=
1e-3
boundaries
=
[
5
,
8
]
def
make_optimizer
(
parameters
=
None
):
base_lr
=
1e-3
momentum
=
0.9
weight_decay
=
5e-4
boundaries
=
[
5
,
8
]
values
=
[
base_lr
*
(
0.1
**
i
)
for
i
in
range
(
len
(
boundaries
)
+
1
)]
learning_rate
=
paddle
.
optimizer
.
lr
.
PiecewiseDecay
(
boundaries
=
boundaries
,
values
=
values
)
...
...
@@ -680,6 +681,8 @@ class TestModelWithLRScheduler(unittest.TestCase):
dataset
=
MyDataset
()
model
.
fit
(
dataset
,
dataset
,
batch_size
=
4
,
epochs
=
10
,
num_workers
=
0
)
np
.
testing
.
assert_allclose
(
model
.
_optimizer
.
_learning_rate
.
last_lr
,
base_lr
*
(
0.1
**
len
(
boundaries
)))
# static test
paddle
.
enable_static
()
...
...
@@ -693,6 +696,93 @@ class TestModelWithLRScheduler(unittest.TestCase):
dataset
=
MyDataset
()
model
.
fit
(
dataset
,
dataset
,
batch_size
=
4
,
epochs
=
10
,
num_workers
=
0
)
np
.
testing
.
assert_allclose
(
model
.
_optimizer
.
_learning_rate
.
last_lr
,
base_lr
*
(
0.1
**
len
(
boundaries
)))
def
test_fit_by_epoch
(
self
):
base_lr
=
1e-3
boundaries
=
[
5
,
8
]
epochs
=
10
wamup_epochs
=
4
def
make_optimizer
(
parameters
=
None
):
momentum
=
0.9
weight_decay
=
5e-4
values
=
[
base_lr
*
(
0.1
**
i
)
for
i
in
range
(
len
(
boundaries
)
+
1
)]
learning_rate
=
paddle
.
optimizer
.
lr
.
PiecewiseDecay
(
boundaries
=
boundaries
,
values
=
values
)
learning_rate
=
paddle
.
optimizer
.
lr
.
LinearWarmup
(
learning_rate
=
learning_rate
,
warmup_steps
=
wamup_epochs
,
start_lr
=
base_lr
/
5.
,
end_lr
=
base_lr
,
verbose
=
True
)
optimizer
=
paddle
.
optimizer
.
Momentum
(
learning_rate
=
learning_rate
,
weight_decay
=
weight_decay
,
momentum
=
momentum
,
parameters
=
parameters
)
return
optimizer
# dynamic test
device
=
paddle
.
set_device
(
'cpu'
)
fluid
.
enable_dygraph
(
device
)
net
=
MyModel
()
inputs
=
[
InputSpec
([
None
,
20
],
'float32'
,
'x'
)]
labels
=
[
InputSpec
([
None
,
1
],
'int64'
,
'label'
)]
optim
=
make_optimizer
(
net
.
parameters
())
model
=
Model
(
net
,
inputs
,
labels
)
model
.
prepare
(
optimizer
=
optim
,
loss
=
CrossEntropyLoss
(
reduction
=
"sum"
))
dataset
=
MyDataset
()
lr_scheduler_callback
=
paddle
.
callbacks
.
LRScheduler
(
by_step
=
False
,
by_epoch
=
True
)
model
.
fit
(
dataset
,
dataset
,
batch_size
=
4
,
epochs
=
epochs
,
num_workers
=
0
,
callbacks
=
lr_scheduler_callback
)
cnt
=
0
for
b
in
boundaries
:
if
b
+
wamup_epochs
<=
epochs
:
cnt
+=
1
np
.
testing
.
assert_allclose
(
model
.
_optimizer
.
_learning_rate
.
last_lr
,
base_lr
*
(
0.1
**
cnt
))
# static test
paddle
.
enable_static
()
net
=
MyModel
()
inputs
=
[
InputSpec
([
None
,
20
],
'float32'
,
'x'
)]
labels
=
[
InputSpec
([
None
,
1
],
'int64'
,
'label'
)]
optim
=
make_optimizer
(
net
.
parameters
())
model
=
Model
(
net
,
inputs
,
labels
)
model
.
prepare
(
optimizer
=
optim
,
loss
=
CrossEntropyLoss
(
reduction
=
"sum"
))
dataset
=
MyDataset
()
lr_scheduler_callback
=
paddle
.
callbacks
.
LRScheduler
(
by_step
=
False
,
by_epoch
=
True
)
model
.
fit
(
dataset
,
dataset
,
batch_size
=
4
,
epochs
=
epochs
,
num_workers
=
0
,
callbacks
=
lr_scheduler_callback
)
cnt
=
0
for
b
in
boundaries
:
if
b
+
wamup_epochs
<=
epochs
:
cnt
+=
1
np
.
testing
.
assert_allclose
(
model
.
_optimizer
.
_learning_rate
.
last_lr
,
base_lr
*
(
0.1
**
cnt
))
class
TestRaiseError
(
unittest
.
TestCase
):
def
test_input_without_name
(
self
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录