helper.cc 4.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. */

#include "paddle/fluid/operators/jit/helper.h"
T
tensor-tang 已提交
16
#include <algorithm>  // tolower
17 18
#include <numeric>
#include <string>
19
#include "paddle/fluid/platform/enforce.h"
20 21 22 23 24

namespace paddle {
namespace operators {
namespace jit {

25 26
std::map<size_t, std::shared_ptr<void>>& GetFuncCacheMap() {
  static thread_local std::map<size_t, std::shared_ptr<void>> g_func_cache_map;
Y
Yihua Xu 已提交
27 28 29
  return g_func_cache_map;
}

30 31 32 33
#define ONE_CASE(key) \
  case key:           \
    return #key

34 35
const char* to_string(KernelType kt) {
  switch (kt) {
36
    ONE_CASE(kNone);
T
tensor-tang 已提交
37 38 39 40 41
    ONE_CASE(kVMul);
    ONE_CASE(kVAdd);
    ONE_CASE(kVAddRelu);
    ONE_CASE(kVSub);
    ONE_CASE(kVScal);
42
    ONE_CASE(kStrideScal);
T
tensor-tang 已提交
43 44
    ONE_CASE(kVAddBias);
    ONE_CASE(kVRelu);
45
    ONE_CASE(kVBroadcast);
46
    ONE_CASE(kVCopy);
T
tensor-tang 已提交
47 48
    ONE_CASE(kVIdentity);
    ONE_CASE(kVExp);
T
tensor-tang 已提交
49
    ONE_CASE(kVSquare);
T
tensor-tang 已提交
50 51 52 53 54 55 56 57 58 59
    ONE_CASE(kVSigmoid);
    ONE_CASE(kVTanh);
    ONE_CASE(kLSTMCtHt);
    ONE_CASE(kLSTMC1H1);
    ONE_CASE(kGRUH1);
    ONE_CASE(kGRUHtPart1);
    ONE_CASE(kGRUHtPart2);
    ONE_CASE(kCRFDecoding);
    ONE_CASE(kLayerNorm);
    ONE_CASE(kNCHW16CMulNC);
60
    ONE_CASE(kSeqPool);
T
tensor-tang 已提交
61
    ONE_CASE(kMatMul);
62 63
    ONE_CASE(kHMax);
    ONE_CASE(kHSum);
D
dengkaipeng 已提交
64
    ONE_CASE(kStrideASum);
65
    ONE_CASE(kSoftmax);
66
    ONE_CASE(kEmbSeqPool);
67
    ONE_CASE(kSgd);
68
    default:
T
tensor-tang 已提交
69
      PADDLE_THROW("Not support type: %d, or forget to add it.", kt);
70 71 72 73
      return "NOT JITKernel";
  }
  return nullptr;
}
74 75 76 77 78 79 80 81 82 83 84 85 86

const char* to_string(SeqPoolType tp) {
  switch (tp) {
    ONE_CASE(kNonePoolType);
    ONE_CASE(kSum);
    ONE_CASE(kAvg);
    ONE_CASE(kSqrt);
    default:
      PADDLE_THROW("Not support type: %d, or forget to add it.", tp);
      return "NOT PoolType";
  }
  return nullptr;
}
87
#undef ONE_CASE
88

T
tensor-tang 已提交
89 90 91 92
KernelType to_kerneltype(const std::string& act) {
  std::string lower = act;
  std::transform(lower.begin(), lower.end(), lower.begin(), ::tolower);
  if (lower == "relu" || lower == "vrelu") {
T
tensor-tang 已提交
93
    return kVRelu;
T
tensor-tang 已提交
94
  } else if (lower == "identity" || lower == "videntity" || lower == "") {
T
tensor-tang 已提交
95
    return kVIdentity;
T
tensor-tang 已提交
96
  } else if (lower == "exp" || lower == "vexp") {
T
tensor-tang 已提交
97
    return kVExp;
T
tensor-tang 已提交
98
  } else if (lower == "sigmoid" || lower == "vsigmoid") {
T
tensor-tang 已提交
99
    return kVSigmoid;
T
tensor-tang 已提交
100
  } else if (lower == "tanh" || lower == "vtanh") {
T
tensor-tang 已提交
101
    return kVTanh;
T
tensor-tang 已提交
102
  }
103
  PADDLE_THROW("Not support type: %s, or forget to add this case", act);
T
tensor-tang 已提交
104
  return kNone;
T
tensor-tang 已提交
105 106
}

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
template <>
void pack_weights<float>(const float* src, float* dst, int n, int k) {
  int block, rest;
  const auto groups = packed_groups(n, k, &block, &rest);
  std::for_each(groups.begin(), groups.end(), [&](int i) {
    PADDLE_ENFORCE_GT(i, 0, "each element of groups should be larger than 0.");
  });
  int sum = std::accumulate(groups.begin(), groups.end(), 0);
  std::memset(dst, 0, k * sum * block * sizeof(float));
  PADDLE_ENFORCE_GE(sum * block, n,
                    "The packed n should be equal to or larger than n");

  const int block_len = sizeof(float) * block;
  int n_offset = 0;

  for (size_t g = 0; g < groups.size(); ++g) {
    const float* from = src + n_offset;
    for (int j = 0; j < k; ++j) {
      size_t copy_sz = groups[g] * block_len;
      if (g == groups.size() - 1 && rest != 0) {
        copy_sz = (groups[g] - 1) * block_len + rest * sizeof(float);
      }
      std::memcpy(dst, from + j * n, copy_sz);
      dst += groups[g] * block;
    }
    n_offset += groups[g] * block;
  }
}

template <typename T>
typename std::enable_if<!std::is_same<T, float>::value>::type pack_weights(
    const T* src, T* dst, int n, int k) {
  PADDLE_THROW("Only support pack with float type.");
}

142 143 144
}  // namespace jit
}  // namespace operators
}  // namespace paddle