helper.cc 4.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. */

#include "paddle/fluid/operators/jit/helper.h"
T
tensor-tang 已提交
16
#include <algorithm>  // tolower
17 18
#include <numeric>
#include <string>
19
#include "paddle/fluid/platform/enforce.h"
20 21 22 23 24

namespace paddle {
namespace operators {
namespace jit {

Y
Yihua Xu 已提交
25 26 27 28 29 30
std::unordered_map<std::string, std::shared_ptr<void>>& GetFuncCacheMap() {
  static thread_local std::unordered_map<std::string, std::shared_ptr<void>>
      g_func_cache_map;
  return g_func_cache_map;
}

31 32 33 34
#define ONE_CASE(key) \
  case key:           \
    return #key

35 36
const char* to_string(KernelType kt) {
  switch (kt) {
37
    ONE_CASE(kNone);
T
tensor-tang 已提交
38 39 40 41 42
    ONE_CASE(kVMul);
    ONE_CASE(kVAdd);
    ONE_CASE(kVAddRelu);
    ONE_CASE(kVSub);
    ONE_CASE(kVScal);
43
    ONE_CASE(kStrideScal);
T
tensor-tang 已提交
44 45
    ONE_CASE(kVAddBias);
    ONE_CASE(kVRelu);
46
    ONE_CASE(kVBroadcast);
47
    ONE_CASE(kVCopy);
T
tensor-tang 已提交
48 49
    ONE_CASE(kVIdentity);
    ONE_CASE(kVExp);
T
tensor-tang 已提交
50
    ONE_CASE(kVSquare);
T
tensor-tang 已提交
51 52 53 54 55 56 57 58 59 60
    ONE_CASE(kVSigmoid);
    ONE_CASE(kVTanh);
    ONE_CASE(kLSTMCtHt);
    ONE_CASE(kLSTMC1H1);
    ONE_CASE(kGRUH1);
    ONE_CASE(kGRUHtPart1);
    ONE_CASE(kGRUHtPart2);
    ONE_CASE(kCRFDecoding);
    ONE_CASE(kLayerNorm);
    ONE_CASE(kNCHW16CMulNC);
61
    ONE_CASE(kSeqPool);
T
tensor-tang 已提交
62
    ONE_CASE(kMatMul);
63 64
    ONE_CASE(kHMax);
    ONE_CASE(kHSum);
D
dengkaipeng 已提交
65
    ONE_CASE(kStrideASum);
66
    ONE_CASE(kSoftmax);
67
    ONE_CASE(kEmbSeqPool);
68
    ONE_CASE(kSgd);
69
    default:
T
tensor-tang 已提交
70
      PADDLE_THROW("Not support type: %d, or forget to add it.", kt);
71 72 73 74
      return "NOT JITKernel";
  }
  return nullptr;
}
75 76 77 78 79 80 81 82 83 84 85 86 87

const char* to_string(SeqPoolType tp) {
  switch (tp) {
    ONE_CASE(kNonePoolType);
    ONE_CASE(kSum);
    ONE_CASE(kAvg);
    ONE_CASE(kSqrt);
    default:
      PADDLE_THROW("Not support type: %d, or forget to add it.", tp);
      return "NOT PoolType";
  }
  return nullptr;
}
88
#undef ONE_CASE
89

T
tensor-tang 已提交
90 91 92 93
KernelType to_kerneltype(const std::string& act) {
  std::string lower = act;
  std::transform(lower.begin(), lower.end(), lower.begin(), ::tolower);
  if (lower == "relu" || lower == "vrelu") {
T
tensor-tang 已提交
94
    return kVRelu;
T
tensor-tang 已提交
95
  } else if (lower == "identity" || lower == "videntity" || lower == "") {
T
tensor-tang 已提交
96
    return kVIdentity;
T
tensor-tang 已提交
97
  } else if (lower == "exp" || lower == "vexp") {
T
tensor-tang 已提交
98
    return kVExp;
T
tensor-tang 已提交
99
  } else if (lower == "sigmoid" || lower == "vsigmoid") {
T
tensor-tang 已提交
100
    return kVSigmoid;
T
tensor-tang 已提交
101
  } else if (lower == "tanh" || lower == "vtanh") {
T
tensor-tang 已提交
102
    return kVTanh;
T
tensor-tang 已提交
103
  }
104
  PADDLE_THROW("Not support type: %s, or forget to add this case", act);
T
tensor-tang 已提交
105
  return kNone;
T
tensor-tang 已提交
106 107
}

108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
template <>
void pack_weights<float>(const float* src, float* dst, int n, int k) {
  int block, rest;
  const auto groups = packed_groups(n, k, &block, &rest);
  std::for_each(groups.begin(), groups.end(), [&](int i) {
    PADDLE_ENFORCE_GT(i, 0, "each element of groups should be larger than 0.");
  });
  int sum = std::accumulate(groups.begin(), groups.end(), 0);
  std::memset(dst, 0, k * sum * block * sizeof(float));
  PADDLE_ENFORCE_GE(sum * block, n,
                    "The packed n should be equal to or larger than n");

  const int block_len = sizeof(float) * block;
  int n_offset = 0;

  for (size_t g = 0; g < groups.size(); ++g) {
    const float* from = src + n_offset;
    for (int j = 0; j < k; ++j) {
      size_t copy_sz = groups[g] * block_len;
      if (g == groups.size() - 1 && rest != 0) {
        copy_sz = (groups[g] - 1) * block_len + rest * sizeof(float);
      }
      std::memcpy(dst, from + j * n, copy_sz);
      dst += groups[g] * block;
    }
    n_offset += groups[g] * block;
  }
}

template <typename T>
typename std::enable_if<!std::is_same<T, float>::value>::type pack_weights(
    const T* src, T* dst, int n, int k) {
  PADDLE_THROW("Only support pack with float type.");
}

143 144 145
}  // namespace jit
}  // namespace operators
}  // namespace paddle