test_clip_op.py 14.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

W
wanghaoshuang 已提交
15
import unittest
16

W
wanghaoshuang 已提交
17
import numpy as np
18
from eager_op_test import OpTest, convert_float_to_uint16
19

Y
Yang Zhang 已提交
20
import paddle
21
from paddle import fluid
22
from paddle.fluid import Program, core, program_guard
W
wanghaoshuang 已提交
23 24


25
class TestClipOp(OpTest):
W
wanghaoshuang 已提交
26
    def setUp(self):
27
        self.max_relative_error = 0.006
C
chentianyu03 已提交
28
        self.python_api = paddle.clip
29 30

        self.inputs = {}
31
        self.initTestCase()
32

33
        self.op_type = "clip"
W
wanghaoshuang 已提交
34
        self.attrs = {}
35 36
        self.attrs['min'] = self.min
        self.attrs['max'] = self.max
37 38 39 40 41 42 43 44 45 46
        if 'Min' in self.inputs:
            min_v = self.inputs['Min']
        else:
            min_v = self.attrs['min']

        if 'Max' in self.inputs:
            max_v = self.inputs['Max']
        else:
            max_v = self.attrs['max']

Z
zhangbo9674 已提交
47
        input = np.random.random(self.shape).astype(self.dtype)
48 49 50 51
        input[np.abs(input - min_v) < self.max_relative_error] = 0.5
        input[np.abs(input - max_v) < self.max_relative_error] = 0.5
        self.inputs['X'] = input
        self.outputs = {'Out': np.clip(self.inputs['X'], min_v, max_v)}
W
wanghaoshuang 已提交
52

53
    def test_check_output(self):
54
        paddle.enable_static()
W
wanghuancoder 已提交
55
        self.check_output()
56
        paddle.disable_static()
W
wanghaoshuang 已提交
57

58
    def test_check_grad_normal(self):
59
        paddle.enable_static()
W
wanghuancoder 已提交
60
        self.check_grad(['X'], 'Out')
61
        paddle.disable_static()
62 63

    def initTestCase(self):
Z
zhangbo9674 已提交
64
        self.dtype = np.float32
65 66 67
        self.shape = (4, 10, 10)
        self.max = 0.8
        self.min = 0.3
Z
zhangbo9674 已提交
68 69
        self.inputs['Max'] = np.array([0.8]).astype(self.dtype)
        self.inputs['Min'] = np.array([0.1]).astype(self.dtype)
70 71 72 73


class TestCase1(TestClipOp):
    def initTestCase(self):
Z
zhangbo9674 已提交
74
        self.dtype = np.float32
75 76
        self.shape = (8, 16, 8)
        self.max = 0.7
Y
Yang Yang(Tony) 已提交
77
        self.min = 0.0
78 79 80 81


class TestCase2(TestClipOp):
    def initTestCase(self):
Z
zhangbo9674 已提交
82
        self.dtype = np.float32
83
        self.shape = (8, 16)
Y
Yang Yang(Tony) 已提交
84 85
        self.max = 1.0
        self.min = 0.0
86

W
wanghaoshuang 已提交
87

88 89
class TestCase3(TestClipOp):
    def initTestCase(self):
Z
zhangbo9674 已提交
90
        self.dtype = np.float32
91 92 93
        self.shape = (4, 8, 16)
        self.max = 0.7
        self.min = 0.2
W
wanghaoshuang 已提交
94 95


96 97
class TestCase4(TestClipOp):
    def initTestCase(self):
Z
zhangbo9674 已提交
98
        self.dtype = np.float32
99 100 101
        self.shape = (4, 8, 8)
        self.max = 0.7
        self.min = 0.2
Z
zhangbo9674 已提交
102 103
        self.inputs['Max'] = np.array([0.8]).astype(self.dtype)
        self.inputs['Min'] = np.array([0.3]).astype(self.dtype)
104 105


Y
Yang Zhang 已提交
106 107
class TestCase5(TestClipOp):
    def initTestCase(self):
Z
zhangbo9674 已提交
108
        self.dtype = np.float32
Y
Yang Zhang 已提交
109 110 111 112 113
        self.shape = (4, 8, 16)
        self.max = 0.5
        self.min = 0.5


114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
class TestFP16Case1(TestClipOp):
    def initTestCase(self):
        self.dtype = np.float16
        self.shape = (8, 16, 8)
        self.max = 0.7
        self.min = 0.0


class TestFP16Case2(TestClipOp):
    def initTestCase(self):
        self.dtype = np.float16
        self.shape = (8, 16)
        self.max = 1.0
        self.min = 0.0


class TestFP16Case3(TestClipOp):
    def initTestCase(self):
        self.dtype = np.float16
        self.shape = (4, 8, 16)
        self.max = 0.7
        self.min = 0.2


class TestFP16Case4(TestClipOp):
Z
zhangbo9674 已提交
139
    def initTestCase(self):
140
        self.dtype = np.float16
Z
zhangbo9674 已提交
141 142 143 144 145 146 147
        self.shape = (4, 8, 8)
        self.max = 0.7
        self.min = 0.2
        self.inputs['Max'] = np.array([0.8]).astype(self.dtype)
        self.inputs['Min'] = np.array([0.3]).astype(self.dtype)


148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
class TestFP16Case5(TestClipOp):
    def initTestCase(self):
        self.dtype = np.float16
        self.shape = (4, 8, 16)
        self.max = 0.5
        self.min = 0.5


@unittest.skipIf(
    not core.is_compiled_with_cuda()
    or not core.is_bfloat16_supported(core.CUDAPlace(0)),
    "core is not compiled with CUDA and not support the bfloat16",
)
class TestClipBF16Op(OpTest):
    def setUp(self):
        self.max_relative_error = 0.006
        self.python_api = paddle.clip

        self.inputs = {}
        self.initTestCase()

        self.op_type = "clip"
        self.attrs = {}
        self.attrs['min'] = self.min
        self.attrs['max'] = self.max
        if 'Min' in self.inputs:
            min_v = self.inputs['Min']
        else:
            min_v = self.attrs['min']

        if 'Max' in self.inputs:
            max_v = self.inputs['Max']
        else:
            max_v = self.attrs['max']

        input = np.random.random(self.shape).astype(np.float32)
        input[np.abs(input - min_v) < self.max_relative_error] = 0.5
        input[np.abs(input - max_v) < self.max_relative_error] = 0.5
        self.inputs['X'] = convert_float_to_uint16(input)
        out = np.clip(input, min_v, max_v)
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def test_check_output(self):
        if paddle.is_compiled_with_cuda():
            place = paddle.CUDAPlace(0)
            paddle.enable_static()
            self.check_output_with_place(place)
            paddle.disable_static()

    def test_check_grad_normal(self):
        if paddle.is_compiled_with_cuda():
            place = paddle.CUDAPlace(0)
            paddle.enable_static()
            self.check_grad_with_place(place, ['X'], 'Out')
            paddle.disable_static()

    def initTestCase(self):
        self.shape = (4, 10, 10)
        self.max = 0.8
        self.min = 0.3
        self.inputs['Max'] = np.array([0.8]).astype(np.float32)
        self.inputs['Min'] = np.array([0.1]).astype(np.float32)


class TestBF16Case1(TestClipBF16Op):
    def initTestCase(self):
        self.shape = (8, 16, 8)
        self.max = 0.7
        self.min = 0.0


class TestBF16Case2(TestClipBF16Op):
    def initTestCase(self):
        self.shape = (8, 16)
        self.max = 1.0
        self.min = 0.0


class TestBF16Case3(TestClipBF16Op):
    def initTestCase(self):
        self.shape = (4, 8, 16)
        self.max = 0.7
        self.min = 0.2


class TestBF16Case4(TestClipBF16Op):
    def initTestCase(self):
        self.shape = (4, 8, 8)
        self.max = 0.7
        self.min = 0.2
        self.inputs['Max'] = np.array([0.8]).astype(np.float32)
        self.inputs['Min'] = np.array([0.3]).astype(np.float32)


class TestBF16Case5(TestClipBF16Op):
    def initTestCase(self):
        self.shape = (4, 8, 16)
        self.max = 0.5
        self.min = 0.5


249 250
class TestClipOpError(unittest.TestCase):
    def test_errors(self):
251
        paddle.enable_static()
252 253 254 255
        with program_guard(Program(), Program()):
            input_data = np.random.random((2, 4)).astype("float32")

            def test_Variable():
256
                paddle.clip(x=input_data, min=-1.0, max=1.0)
257 258

            self.assertRaises(TypeError, test_Variable)
259
        paddle.disable_static()
260 261


Y
Yang Zhang 已提交
262
class TestClipAPI(unittest.TestCase):
263 264 265
    def _executed_api(self, x, min=None, max=None):
        return paddle.clip(x, min, max)

Y
Yang Zhang 已提交
266
    def test_clip(self):
Y
Yang Zhang 已提交
267
        paddle.enable_static()
Y
Yang Zhang 已提交
268 269
        data_shape = [1, 9, 9, 4]
        data = np.random.random(data_shape).astype('float32')
270 271 272 273 274
        images = paddle.static.data(
            name='image', shape=data_shape, dtype='float32'
        )
        min = paddle.static.data(name='min', shape=[1], dtype='float32')
        max = paddle.static.data(name='max', shape=[1], dtype='float32')
Y
Yang Zhang 已提交
275

276 277 278 279 280
        place = (
            fluid.CUDAPlace(0)
            if fluid.core.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
Y
Yang Zhang 已提交
281 282
        exe = fluid.Executor(place)

283 284 285 286 287 288
        out_1 = self._executed_api(images, min=min, max=max)
        out_2 = self._executed_api(images, min=0.2, max=0.9)
        out_3 = self._executed_api(images, min=0.3)
        out_4 = self._executed_api(images, max=0.7)
        out_5 = self._executed_api(images, min=min)
        out_6 = self._executed_api(images, max=max)
289
        out_7 = self._executed_api(images, max=-1.0)
290
        out_8 = self._executed_api(images)
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
        out_9 = self._executed_api(
            paddle.cast(images, 'float64'), min=0.2, max=0.9
        )
        out_10 = self._executed_api(
            paddle.cast(images * 10, 'int32'), min=2, max=8
        )
        out_11 = self._executed_api(
            paddle.cast(images * 10, 'int64'), min=2, max=8
        )

        (
            res1,
            res2,
            res3,
            res4,
            res5,
            res6,
            res7,
            res8,
            res9,
            res10,
            res11,
        ) = exe.run(
Y
Yang Zhang 已提交
314 315 316 317
            fluid.default_main_program(),
            feed={
                "image": data,
                "min": np.array([0.2]).astype('float32'),
318
                "max": np.array([0.8]).astype('float32'),
Y
Yang Zhang 已提交
319
            },
Y
Yang Zhang 已提交
320
            fetch_list=[
321 322 323 324 325 326 327 328 329 330 331 332 333
                out_1,
                out_2,
                out_3,
                out_4,
                out_5,
                out_6,
                out_7,
                out_8,
                out_9,
                out_10,
                out_11,
            ],
        )
Y
Yang Zhang 已提交
334

335 336 337 338 339 340 341 342
        np.testing.assert_allclose(res1, data.clip(0.2, 0.8), rtol=1e-05)
        np.testing.assert_allclose(res2, data.clip(0.2, 0.9), rtol=1e-05)
        np.testing.assert_allclose(res3, data.clip(min=0.3), rtol=1e-05)
        np.testing.assert_allclose(res4, data.clip(max=0.7), rtol=1e-05)
        np.testing.assert_allclose(res5, data.clip(min=0.2), rtol=1e-05)
        np.testing.assert_allclose(res6, data.clip(max=0.8), rtol=1e-05)
        np.testing.assert_allclose(res7, data.clip(max=-1), rtol=1e-05)
        np.testing.assert_allclose(res8, data, rtol=1e-05)
343 344 345 346 347 348 349 350 351
        np.testing.assert_allclose(
            res9, data.astype(np.float64).clip(0.2, 0.9), rtol=1e-05
        )
        np.testing.assert_allclose(
            res10, (data * 10).astype(np.int32).clip(2, 8), rtol=1e-05
        )
        np.testing.assert_allclose(
            res11, (data * 10).astype(np.int64).clip(2, 8), rtol=1e-05
        )
352
        paddle.disable_static()
Y
Yang Zhang 已提交
353

354
    def test_clip_dygraph(self):
355
        paddle.disable_static()
356 357 358 359 360
        place = (
            fluid.CUDAPlace(0)
            if fluid.core.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
Y
Yang Zhang 已提交
361 362 363
        paddle.disable_static(place)
        data_shape = [1, 9, 9, 4]
        data = np.random.random(data_shape).astype('float32')
Z
Zhou Wei 已提交
364 365 366
        images = paddle.to_tensor(data, dtype='float32')
        v_min = paddle.to_tensor(np.array([0.2], dtype=np.float32))
        v_max = paddle.to_tensor(np.array([0.8], dtype=np.float32))
Y
Yang Zhang 已提交
367

368 369 370 371 372
        out_1 = self._executed_api(images, min=0.2, max=0.8)
        images = paddle.to_tensor(data, dtype='float32')
        out_2 = self._executed_api(images, min=0.2, max=0.9)
        images = paddle.to_tensor(data, dtype='float32')
        out_3 = self._executed_api(images, min=v_min, max=v_max)
Y
Yang Zhang 已提交
373

374 375 376 377 378 379
        out_4 = self._executed_api(
            paddle.cast(images * 10, 'int32'), min=2, max=8
        )
        out_5 = self._executed_api(
            paddle.cast(images * 10, 'int64'), min=2, max=8
        )
380 381
        # test with numpy.generic
        out_6 = self._executed_api(images, min=np.abs(0.2), max=np.abs(0.8))
382

383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
        np.testing.assert_allclose(
            out_1.numpy(), data.clip(0.2, 0.8), rtol=1e-05
        )
        np.testing.assert_allclose(
            out_2.numpy(), data.clip(0.2, 0.9), rtol=1e-05
        )
        np.testing.assert_allclose(
            out_3.numpy(), data.clip(0.2, 0.8), rtol=1e-05
        )
        np.testing.assert_allclose(
            out_4.numpy(), (data * 10).astype(np.int32).clip(2, 8), rtol=1e-05
        )
        np.testing.assert_allclose(
            out_5.numpy(), (data * 10).astype(np.int64).clip(2, 8), rtol=1e-05
        )
        np.testing.assert_allclose(
            out_6.numpy(), data.clip(0.2, 0.8), rtol=1e-05
        )
Y
Yang Zhang 已提交
401

402 403
    def test_clip_dygraph_default_max(self):
        paddle.disable_static()
404 405 406 407 408 409
        x_int32 = paddle.to_tensor([1, 2, 3], dtype="int32")
        x_int64 = paddle.to_tensor([1, 2, 3], dtype="int64")
        x_f32 = paddle.to_tensor([1, 2, 3], dtype="float32")
        egr_out1 = paddle.clip(x_int32, min=1)
        egr_out2 = paddle.clip(x_int64, min=1)
        egr_out3 = paddle.clip(x_f32, min=1)
410 411 412 413 414 415
        x_int32 = paddle.to_tensor([1, 2, 3], dtype="int32")
        x_int64 = paddle.to_tensor([1, 2, 3], dtype="int64")
        x_f32 = paddle.to_tensor([1, 2, 3], dtype="float32")
        out1 = paddle.clip(x_int32, min=1)
        out2 = paddle.clip(x_int64, min=1)
        out3 = paddle.clip(x_f32, min=1)
416 417 418
        np.testing.assert_allclose(out1.numpy(), egr_out1.numpy(), rtol=1e-05)
        np.testing.assert_allclose(out2.numpy(), egr_out2.numpy(), rtol=1e-05)
        np.testing.assert_allclose(out3.numpy(), egr_out3.numpy(), rtol=1e-05)
C
chentianyu03 已提交
419

Y
Yang Zhang 已提交
420 421
    def test_errors(self):
        paddle.enable_static()
422 423
        x1 = paddle.static.data(name='x1', shape=[1], dtype="int16")
        x2 = paddle.static.data(name='x2', shape=[1], dtype="int8")
Y
Yang Zhang 已提交
424 425
        self.assertRaises(TypeError, paddle.clip, x=x1, min=0.2, max=0.8)
        self.assertRaises(TypeError, paddle.clip, x=x2, min=0.2, max=0.8)
426
        paddle.disable_static()
Y
Yang Zhang 已提交
427 428


429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
class TestClipOpFp16(unittest.TestCase):
    def test_fp16(self):
        paddle.enable_static()
        data_shape = [1, 9, 9, 4]
        data = np.random.random(data_shape).astype('float16')

        with paddle.static.program_guard(paddle.static.Program()):
            images = paddle.static.data(
                name='image1', shape=data_shape, dtype='float16'
            )
            min = paddle.static.data(name='min1', shape=[1], dtype='float16')
            max = paddle.static.data(name='max1', shape=[1], dtype='float16')
            out = paddle.clip(images, min, max)
            if fluid.core.is_compiled_with_cuda():
                place = paddle.CUDAPlace(0)
                exe = paddle.static.Executor(place)
                res1 = exe.run(
                    feed={
                        "image1": data,
                        "min1": np.array([0.2]).astype('float16'),
                        "max1": np.array([0.8]).astype('float16'),
                    },
                    fetch_list=[out],
                )
        paddle.disable_static()


456 457 458 459 460
class TestInplaceClipAPI(TestClipAPI):
    def _executed_api(self, x, min=None, max=None):
        return x.clip_(min, max)


W
wanghaoshuang 已提交
461 462
if __name__ == '__main__':
    unittest.main()