test_clip_op.py 3.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

W
wanghaoshuang 已提交
17 18
import unittest
import numpy as np
19 20
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
21
from op_test import OpTest
W
wanghaoshuang 已提交
22 23


24
class TestClipOp(OpTest):
W
wanghaoshuang 已提交
25
    def setUp(self):
26
        self.max_relative_error = 0.006
27 28

        self.inputs = {}
29
        self.initTestCase()
30

31
        self.op_type = "clip"
W
wanghaoshuang 已提交
32
        self.attrs = {}
33 34
        self.attrs['min'] = self.min
        self.attrs['max'] = self.max
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
        if 'Min' in self.inputs:
            min_v = self.inputs['Min']
        else:
            min_v = self.attrs['min']

        if 'Max' in self.inputs:
            max_v = self.inputs['Max']
        else:
            max_v = self.attrs['max']

        input = np.random.random(self.shape).astype("float32")
        input[np.abs(input - min_v) < self.max_relative_error] = 0.5
        input[np.abs(input - max_v) < self.max_relative_error] = 0.5
        self.inputs['X'] = input
        self.outputs = {'Out': np.clip(self.inputs['X'], min_v, max_v)}
W
wanghaoshuang 已提交
50

51 52
    def test_check_output(self):
        self.check_output()
W
wanghaoshuang 已提交
53

54
    def test_check_grad_normal(self):
55
        self.check_grad(['X'], 'Out')
56 57

    def initTestCase(self):
58 59 60 61 62
        self.shape = (4, 10, 10)
        self.max = 0.8
        self.min = 0.3
        self.inputs['Max'] = np.array([0.8]).astype('float32')
        self.inputs['Min'] = np.array([0.1]).astype('float32')
63 64 65 66 67 68


class TestCase1(TestClipOp):
    def initTestCase(self):
        self.shape = (8, 16, 8)
        self.max = 0.7
Y
Yang Yang(Tony) 已提交
69
        self.min = 0.0
70 71 72 73 74


class TestCase2(TestClipOp):
    def initTestCase(self):
        self.shape = (8, 16)
Y
Yang Yang(Tony) 已提交
75 76
        self.max = 1.0
        self.min = 0.0
77

W
wanghaoshuang 已提交
78

79 80 81 82 83
class TestCase3(TestClipOp):
    def initTestCase(self):
        self.shape = (4, 8, 16)
        self.max = 0.7
        self.min = 0.2
W
wanghaoshuang 已提交
84 85


86 87 88 89 90 91 92 93 94
class TestCase4(TestClipOp):
    def initTestCase(self):
        self.shape = (4, 8, 8)
        self.max = 0.7
        self.min = 0.2
        self.inputs['Max'] = np.array([0.8]).astype('float32')
        self.inputs['Min'] = np.array([0.3]).astype('float32')


95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
class TestClipOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
            input_data = np.random.random((2, 4)).astype("float32")

            def test_Variable():
                fluid.layers.clip(x=input_data, min=-1.0, max=1.0)

            self.assertRaises(TypeError, test_Variable)

            def test_dtype():
                x2 = fluid.layers.data(name='x2', shape=[1], dtype='int32')
                fluid.layers.clip(x=x2, min=-1.0, max=1.0)

            self.assertRaises(TypeError, test_dtype)


W
wanghaoshuang 已提交
112 113
if __name__ == '__main__':
    unittest.main()