calibration.py 14.9 KB
Newer Older
Z
Zhang, Guoming 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
from __future__ import absolute_import
from __future__ import division
# from __future__ import print_function
import os
import numpy as np
import time
import sys
import paddle
import paddle.fluid as fluid
import models
import reader
import argparse
import functools
from models.learning_rate import cosine_decay
from utility import add_arguments, print_arguments
import math
import paddle.fluid.core as core

parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('batch_size',       int,  32,                 "Minibatch size.")
add_arg('use_gpu',          bool, True,                "Whether to use GPU or not.")
add_arg('class_dim',        int,  1000,                "Class number.")
add_arg('image_shape',      str,  "3,224,224",         "Input image size")
add_arg('with_mem_opt',     bool, True,                "Whether to use memory optimization or not.")
add_arg('pretrained_model', str,  None,                "Whether to use pretrained model.")
add_arg('model',            str, "SE_ResNeXt50_32x4d", "Set the network to use.")
# yapf: enable

model_list = [m for m in dir(models) if "__" not in m]

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
DEBUG = 1

def dot(program):
    dot_graph = ""
    dot_nodes = []
    dot_edges = []
    dot_graph += "digraph pm {\n"
    for block in program.blocks:
        ops = list(block.ops)
        block_id = block.idx
        for op in ops:
            op_type = op.type
            op_name = op_type + "_" + op.input_arg_names[0].replace(".", "_")
            for name in op.input_arg_names:
                name = name.replace(".", "_")
                dot_edge = name + " -> " + op_name
                if dot_edge not in dot_edges:
                    dot_edges.append(dot_edge)
                dot_node = name + " [shape=oval]"
                if dot_node not in dot_nodes:
                    dot_nodes.append(dot_node)

            for name in op.output_arg_names:
                name = name.replace(".", "_")
                dot_edge = op_name + " -> " + name
                if dot_edge not in dot_edges:
                    dot_edges.append(dot_edge)

            dot_node = op_name + " [shape=box]"
            if dot_node not in dot_nodes:
                dot_nodes.append(dot_node)

    for dot_edge in dot_edges:
        dot_graph += dot_edge + "\n"
    for dot_node in dot_nodes:
        dot_graph += dot_node + "\n"
    dot_graph += "}"

    file = open("model.dot", 'w')
    file.write(dot_graph)
    file.close()

Z
Zhang, Guoming 已提交
75 76 77 78 79 80 81 82 83 84 85 86
def get_quantization_op_pos(program):
    conv_op_index = [index for index, value in enumerate(program.global_block().ops) if value.type == 'conv2d']
    if len(conv_op_index) < 2:
        return None
    return [conv_op_index[1]]

def get_dequantization_op_pos(program):
    conv_op_index = [index for index, value in enumerate(program.global_block().ops) if value.type == 'conv2d']
    if len(conv_op_index) < 2:
        return None
    res = []
    support_int8_op_type = ["pool2d"]
87
 
Z
Zhang, Guoming 已提交
88 89 90 91 92 93 94 95 96 97
    for index, value in enumerate(conv_op_index[:-1]):
        if index == 0: continue

        if value + 1 == conv_op_index[index + 1]:
            continue
        else:
            start_index = index + 1
            end_index = conv_op_index[index + 1]
            while start_index < end_index:
                if program.global_block().ops[start_index].type not in support_int8_op_type:
98
                    print program.global_block().ops[start_index].type, end_index
Z
Zhang, Guoming 已提交
99 100 101 102
                    res.append(start_index)
                    break
                else:
                    start_index += 1
103 104 105 106 107 108
    last_dequantize_op_index = conv_op_index[-1]
    # skip pooling op which is the Successor of the last conv op
    while program.global_block().ops[last_dequantize_op_index + 1].type in support_int8_op_type:
        last_dequantize_op_index += 1
    res.append(last_dequantize_op_index) # need to fix
    
Z
Zhang, Guoming 已提交
109 110 111 112 113 114 115
    return res


def get_requantization_op_pos(program):
    pass

# def create_op(program, op_name, data_type):
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
def update_program_for_saving_var(program, name, value, data_shape, dst, data_type="float32"):
    tmp_var = program.current_block().create_var(
        name=name,
        dtype=data_type,
        persistable=True,
    )

    program.current_block().append_op(
        type='assign_value',
        outputs={'Out': [tmp_var]},
        attrs={
            'dtype':core.VarDesc.VarType.FP32,
            'shape': data_shape,
            'fp32_values': value
        }
    )

    program.current_block().append_op(
        type = 'save',
        inputs={'X': '{}'.format(name)},
        outputs={},
        attrs={"file_path": "{}/{}".format(dst, name)}
    )

Z
Zhang, Guoming 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178

def eval(args):
    # parameters from arguments
    class_dim = args.class_dim
    model_name = args.model
    pretrained_model = args.pretrained_model
    with_memory_optimization = args.with_mem_opt
    image_shape = [int(m) for m in args.image_shape.split(",")]

    assert model_name in model_list, "{} is not in lists: {}".format(args.model,
                                                                     model_list)

    image = fluid.layers.data(name='image', shape=image_shape, dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

    # model definition
    model = models.__dict__[model_name]()
    
    if model_name is "GoogleNet":
        out0, out1, out2 = model.net(input=image, class_dim=class_dim)
        cost0 = fluid.layers.cross_entropy(input=out0, label=label)
        cost1 = fluid.layers.cross_entropy(input=out1, label=label)
        cost2 = fluid.layers.cross_entropy(input=out2, label=label)
        avg_cost0 = fluid.layers.mean(x=cost0)
        avg_cost1 = fluid.layers.mean(x=cost1)
        avg_cost2 = fluid.layers.mean(x=cost2)

        avg_cost = avg_cost0 + 0.3 * avg_cost1 + 0.3 * avg_cost2
        acc_top1 = fluid.layers.accuracy(input=out0, label=label, k=1)
        acc_top5 = fluid.layers.accuracy(input=out0, label=label, k=5)
    else:
        out = model.net(input=image, class_dim=class_dim)
        cost = fluid.layers.cross_entropy(input=out, label=label)

        avg_cost = fluid.layers.mean(x=cost)
        acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
        acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)

    test_program = fluid.default_main_program().clone(for_test=True)
179
            
Z
Zhang, Guoming 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
    if with_memory_optimization:
        fluid.memory_optimize(fluid.default_main_program())

    place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())

    if pretrained_model:
        def if_exist(var):
            return os.path.exists(os.path.join(pretrained_model, var.name))

        fluid.io.load_vars(exe, pretrained_model, predicate=if_exist)
    
    t = fluid.transpiler.InferenceTranspiler()
    t.transpile(test_program, fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace())
    # for i in test_program.current_block().ops:
    #     print i
    # sys.exit(0)
    conv_op_index = [index for index, value in enumerate(test_program.global_block().ops) if value.type == 'conv2d']
199
    pooling_op_index =  [index for index, value in enumerate(test_program.global_block().ops) if value.type == 'pool2d']
Z
Zhang, Guoming 已提交
200 201 202
    weights_var_name = []
    conv_input_var_name = []
    conv_output_var_name = []
203
    # weights_channel = {}
Z
Zhang, Guoming 已提交
204 205 206 207
    for i in conv_op_index[1:]:
        weights_var_name.append(test_program.current_block().ops[i].input('Filter')[0])
        conv_input_var_name.append(test_program.current_block().ops[i].input('Input')[0])
        conv_output_var_name.append(test_program.current_block().ops[i].output('Output')[0])
208 209 210 211 212
    
    for i in pooling_op_index:
        conv_input_var_name.append(test_program.current_block().ops[i].input('X')[0])
        conv_output_var_name.append(test_program.current_block().ops[i].output('Out')[0])
    
Z
Zhang, Guoming 已提交
213
    not_persistable_vars = (i for i in test_program.list_vars() if not i.persistable)
214
    back_program = test_program.clone()
Z
Zhang, Guoming 已提交
215 216 217
    for i in not_persistable_vars:
        i.persistable= True
    
218 219
    var_name = [i.name for i in test_program.list_vars()]

Z
Zhang, Guoming 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
    val_reader = paddle.batch(reader.val(), batch_size=args.batch_size)
    feeder = fluid.DataFeeder(place=place, feed_list=[image, label])

    fetch_list = [avg_cost.name, acc_top1.name, acc_top5.name]

    test_info = [[], [], []]
    cnt = 0
    var_max = {}
    for batch_id, data in enumerate(val_reader()):
        t1 = time.time()
        loss, acc1, acc5 = exe.run(test_program,
                                   fetch_list=fetch_list,
                                   feed=feeder.feed(data))
        for i in var_name:
            # print (np.array(fluid.global_scope().find_var(i).get_tensor()).shape)
            np_data = np.array(fluid.global_scope().find_var(i).get_tensor())

            if i in weights_var_name:
                max_value = [float(np.amax(np_data[j])) for j in range(np_data.shape[0])]
            else:
                max_value = [float(np.amax(np_data))]
            var_max[i] = []
            var_max[i].append(max_value)
        
        t2 = time.time()
        period = t2 - t1
        loss = np.mean(loss)
        acc1 = np.mean(acc1)
        acc5 = np.mean(acc5)
        test_info[0].append(loss * len(data))
        test_info[1].append(acc1 * len(data))
        test_info[2].append(acc5 * len(data))
        cnt += len(data)
        if batch_id % 10 == 0:
            print("Testbatch {0},loss {1}, "
                  "acc1 {2},acc5 {3},time {4}".format(batch_id, \
                  loss, acc1, acc5, \
                  "%2.2f sec" % period))
            sys.stdout.flush()
        
        break
    
    test_loss = np.sum(test_info[0]) / cnt
    test_acc1 = np.sum(test_info[1]) / cnt
    test_acc5 = np.sum(test_info[2]) / cnt

    print("Test_loss {0}, test_acc1 {1}, test_acc5 {2}".format(
        test_loss, test_acc1, test_acc5))
    sys.stdout.flush()
269

Z
Zhang, Guoming 已提交
270
    infer_prog = test_program.clone()
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288

    for i in conv_input_var_name:
        update_program_for_saving_var(infer_prog, i+"_scale.input.test", var_max[i][0], np.array(var_max[i]).shape, pretrained_model)
    
    for i in conv_output_var_name:
        update_program_for_saving_var(infer_prog, i+"_scale.output.test", var_max[i][0], np.array(var_max[i]).shape, pretrained_model)
    
    for i in weights_var_name:
        update_program_for_saving_var(infer_prog, i+"_scale.weights.test", var_max[i][0], np.array(var_max[i]).shape, pretrained_model)
    # update_program_for_saving_var(infer_prog, 'conv2_int8_tmp',  var_max[var_name[1]][0], [1,], pretrained_model)

    #Step 2 save all variable
    for batch_id, data in enumerate(val_reader()):
        loss, acc1, acc5 = exe.run(infer_prog,
                                   fetch_list=fetch_list,
                                   feed=feeder.feed(data))
        break
    
289 290 291 292 293 294 295 296 297
    int8_prog = back_program.clone()
    # for index, value in enumerate(conv_op_index[1:]):
    #     # print index,conv_input_var_name[index], ["{}_scale.input.test".format(conv_input_var_name[index])]
    #     int8_prog.current_block().ops[value].desc.set_input("Scale_in", ["{}_scale.input.test".format(conv_input_var_name[index])])
    #     int8_prog.current_block().ops[value].desc.set_input("Scale_out", ["{}_scale.output.test".format(conv_output_var_name[index])])
    #     int8_prog.current_block().ops[value].desc.set_input("Scale_weights", ["{}_scale.weights.test".format(weights_var_name[index])])
    #     if int8_prog.current_block().ops[value].desc.input("ResidualData"):
    #         name = int8_prog.current_block().ops[value].desc.input("ResidualData")[0]
    #         int8_prog.current_block().ops[value].desc.set_input("Scale_in_eltwise", ["{}_scale.output.test".format(name)])
298 299 300 301 302 303
    
    
    quantize_pos = get_quantization_op_pos(int8_prog)

    conv2_quantize_tmp = int8_prog.current_block().create_var(
        name="conv2_quantize_tmp",
304 305 306 307
        dtype=core.VarDesc.VarType.UINT8,
        # persistable=True,
        # lod_level= 0,
        # shape= shape
Z
Zhang, Guoming 已提交
308
    )
309 310

    op = int8_prog.current_block()._insert_op(
311
       index=quantize_pos[0] ,
312
        
313
       type="quantize",
314 315 316 317 318 319 320 321 322
        
       inputs={"Input": int8_prog.current_block().ops[quantize_pos[0] - 1].output('Out')[0],
               "Scale": "{}_scale.input.test".format(conv_input_var_name[1])},
        
       outputs={"Output": conv2_quantize_tmp},

    )
    op._set_attr("data_format", "NCHW")
    op._set_attr("use_mkldnn", 1)
Z
Zhang, Guoming 已提交
323

324 325 326 327 328 329 330 331 332 333 334 335 336 337
    # int8_prog.current_block().ops[quantize_pos[0] + 1 ].desc.set_input("Input", ["conv2_quantize_tmp"])
    # for i in int8_prog.current_block().ops[quantize_pos[0] + 2:]:
    #     if i.type == 'conv2d' and i.input('Input')[0] == int8_prog.current_block().ops[quantize_pos[0] + 1].output('Out')[0]:
    #         i.desc.set_input("Input",  ["conv2_quantize_tmp"])
    # dequantize_pos = get_dequantization_op_pos(int8_prog)
    # dequantize_tmp_var = int8_prog.current_block().create_var(
    #     name="dequantize_tmp_var",
    #     dtype="float32",
    #     persistable=True,
    #     #shape= (np.array(fluid.global_scope().find_var('pool2d_0.tmp_0').get_tensor())).shape
    # )

    # op = int8_prog.current_block()._insert_op(
    #    index=dequantize_pos[0] + 1,
338
        
339
    #    type= "dequantize",
340
        
341 342
    #    inputs={"Input": int8_prog.current_block().ops[dequantize_pos[0]].output('Out')[0],
    #            "Scale": "{}_scale.output.test".format( int8_prog.current_block().ops[dequantize_pos[0]].output('Out')[0])},
343
        
344 345
    #    outputs={"Output": dequantize_tmp_var},
    # )
Z
Zhang, Guoming 已提交
346

347
    # int8_prog.current_block().ops[dequantize_pos[0] + 2].desc.set_input("X", ["dequantize_tmp_var"])
Z
Zhang, Guoming 已提交
348

349
    #Step 3 Save the new model 
350
    print int8_prog
351 352 353 354 355 356 357 358 359 360 361 362 363 364
    # for i in int8_prog.current_block().ops:
    #     print '********'
    #     print i
        # if i.type == 'conv2d':
        #     print i
    #     # print i.input_names;
    #     print  '----'
    #     print i.type
    #     for j in i.input_names:
    #         print j, i.input(j)[0] if i.input(j) else ' '
    #     for k in i.output_names:
    #         print k, i.output(k)[0]
    # print conv_op_index
    # print dequantize_pos
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
    # sys.exit(0)
    # if DEBUG:
    #     dot(int8_prog)
    # for i in int8_prog.current_block().ops:
    #     print i
    for batch_id, data in enumerate(val_reader()):
        loss, acc1, acc5 = exe.run(int8_prog,
                            fetch_list=fetch_list,
                            feed=feeder.feed(data))
        loss = np.mean(loss)
        acc1 = np.mean(acc1)
        acc5 = np.mean(acc5)
        test_info[0].append(loss * len(data))
        test_info[1].append(acc1 * len(data))
        test_info[2].append(acc5 * len(data))
        cnt += len(data)
        if batch_id % 10 == 0:
            print("Testbatch {0},loss {1}, "
                    "acc1 {2},acc5 {3}".format(batch_id, \
                    loss, acc1, acc5))
            sys.stdout.flush()
        break      
387 388
    with open("__model_quantized__", "wb") as f:
        f.write(int8_prog.desc.serialize_to_string())
Z
Zhang, Guoming 已提交
389 390 391 392 393 394 395 396 397 398


def main():
    args = parser.parse_args()
    print_arguments(args)
    eval(args)


if __name__ == '__main__':
    main()