Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
bb061c68
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2309
Star
20933
Fork
5423
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
bb061c68
编写于
10月 09, 2018
作者:
Z
Zhang, Guoming
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
initial version of calibration tool for resnet-50
上级
c4750264
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
173 addition
and
149 deletion
+173
-149
calibration.py
calibration.py
+173
-149
未找到文件。
calibration.py
浏览文件 @
bb061c68
...
...
@@ -30,6 +30,48 @@ add_arg('model', str, "SE_ResNeXt50_32x4d", "Set the network to use."
model_list
=
[
m
for
m
in
dir
(
models
)
if
"__"
not
in
m
]
DEBUG
=
1
def
dot
(
program
):
dot_graph
=
""
dot_nodes
=
[]
dot_edges
=
[]
dot_graph
+=
"digraph pm {
\n
"
for
block
in
program
.
blocks
:
ops
=
list
(
block
.
ops
)
block_id
=
block
.
idx
for
op
in
ops
:
op_type
=
op
.
type
op_name
=
op_type
+
"_"
+
op
.
input_arg_names
[
0
].
replace
(
"."
,
"_"
)
for
name
in
op
.
input_arg_names
:
name
=
name
.
replace
(
"."
,
"_"
)
dot_edge
=
name
+
" -> "
+
op_name
if
dot_edge
not
in
dot_edges
:
dot_edges
.
append
(
dot_edge
)
dot_node
=
name
+
" [shape=oval]"
if
dot_node
not
in
dot_nodes
:
dot_nodes
.
append
(
dot_node
)
for
name
in
op
.
output_arg_names
:
name
=
name
.
replace
(
"."
,
"_"
)
dot_edge
=
op_name
+
" -> "
+
name
if
dot_edge
not
in
dot_edges
:
dot_edges
.
append
(
dot_edge
)
dot_node
=
op_name
+
" [shape=box]"
if
dot_node
not
in
dot_nodes
:
dot_nodes
.
append
(
dot_node
)
for
dot_edge
in
dot_edges
:
dot_graph
+=
dot_edge
+
"
\n
"
for
dot_node
in
dot_nodes
:
dot_graph
+=
dot_node
+
"
\n
"
dot_graph
+=
"}"
file
=
open
(
"model.dot"
,
'w'
)
file
.
write
(
dot_graph
)
file
.
close
()
def
get_quantization_op_pos
(
program
):
conv_op_index
=
[
index
for
index
,
value
in
enumerate
(
program
.
global_block
().
ops
)
if
value
.
type
==
'conv2d'
]
if
len
(
conv_op_index
)
<
2
:
...
...
@@ -42,7 +84,7 @@ def get_dequantization_op_pos(program):
return
None
res
=
[]
support_int8_op_type
=
[
"pool2d"
]
for
index
,
value
in
enumerate
(
conv_op_index
[:
-
1
]):
if
index
==
0
:
continue
...
...
@@ -53,11 +95,17 @@ def get_dequantization_op_pos(program):
end_index
=
conv_op_index
[
index
+
1
]
while
start_index
<
end_index
:
if
program
.
global_block
().
ops
[
start_index
].
type
not
in
support_int8_op_type
:
print
program
.
global_block
().
ops
[
start_index
].
type
,
end_index
res
.
append
(
start_index
)
break
else
:
start_index
+=
1
res
.
append
(
conv_op_index
[
-
1
])
#need to fix
last_dequantize_op_index
=
conv_op_index
[
-
1
]
# skip pooling op which is the Successor of the last conv op
while
program
.
global_block
().
ops
[
last_dequantize_op_index
+
1
].
type
in
support_int8_op_type
:
last_dequantize_op_index
+=
1
res
.
append
(
last_dequantize_op_index
)
# need to fix
return
res
...
...
@@ -65,6 +113,30 @@ def get_requantization_op_pos(program):
pass
# def create_op(program, op_name, data_type):
def
update_program_for_saving_var
(
program
,
name
,
value
,
data_shape
,
dst
,
data_type
=
"float32"
):
tmp_var
=
program
.
current_block
().
create_var
(
name
=
name
,
dtype
=
data_type
,
persistable
=
True
,
)
program
.
current_block
().
append_op
(
type
=
'assign_value'
,
outputs
=
{
'Out'
:
[
tmp_var
]},
attrs
=
{
'dtype'
:
core
.
VarDesc
.
VarType
.
FP32
,
'shape'
:
data_shape
,
'fp32_values'
:
value
}
)
program
.
current_block
().
append_op
(
type
=
'save'
,
inputs
=
{
'X'
:
'{}'
.
format
(
name
)},
outputs
=
{},
attrs
=
{
"file_path"
:
"{}/{}"
.
format
(
dst
,
name
)}
)
def
eval
(
args
):
# parameters from arguments
...
...
@@ -118,69 +190,35 @@ def eval(args):
fluid
.
io
.
load_vars
(
exe
,
pretrained_model
,
predicate
=
if_exist
)
print
120
,
pretrained_model
t
=
fluid
.
transpiler
.
InferenceTranspiler
()
t
.
transpile
(
test_program
,
fluid
.
CUDAPlace
(
0
)
if
args
.
use_gpu
else
fluid
.
CPUPlace
())
# for i in test_program.current_block().ops:
# print i
# sys.exit(0)
conv_op_index
=
[
index
for
index
,
value
in
enumerate
(
test_program
.
global_block
().
ops
)
if
value
.
type
==
'conv2d'
]
pooling_op_index
=
[
index
for
index
,
value
in
enumerate
(
test_program
.
global_block
().
ops
)
if
value
.
type
==
'pool2d'
]
print
(
conv_op_index
)
weights_var_name
=
[]
conv_input_var_name
=
[]
conv_output_var_name
=
[]
weights_channel
=
{}
#
weights_channel = {}
for
i
in
conv_op_index
[
1
:]:
weights_var_name
.
append
(
test_program
.
current_block
().
ops
[
i
].
input
(
'Filter'
)[
0
])
conv_input_var_name
.
append
(
test_program
.
current_block
().
ops
[
i
].
input
(
'Input'
)[
0
])
conv_output_var_name
.
append
(
test_program
.
current_block
().
ops
[
i
].
output
(
'Output'
)[
0
])
for
i
in
pooling_op_index
:
conv_input_var_name
.
append
(
test_program
.
current_block
().
ops
[
i
].
input
(
'X'
)[
0
])
conv_output_var_name
.
append
(
test_program
.
current_block
().
ops
[
i
].
output
(
'Out'
)[
0
])
for
i
in
test_program
.
list_vars
():
if
i
.
name
in
weights_var_name
:
weights_channel
[
i
.
name
]
=
i
.
shape
[
0
]
# print weights_var_name
# print '-------'
# print conv_input_var_name
# print '-------'
# print conv_output_var_name
# for i in test_program.current_block().ops:
# print ('-----------')
# print (i.input_names, i.output_names)
# if i.type == 'conv2d':
# print i.input('Filter')
# print (i.input_arg_names)
# print (i.output_arg_names)
# # print (i.block_attr)
# print (dir(i))
# print (i.attr_names)
# print ((i.attr))
# for j in i.attr_names:
# print ((i.attr(j)))
# print (i.blocks_attr)
# sys.exit(0)
# for i in test_program.list_vars():
# print (i.name)
# # print dir(i)
# print i.shape, i.type, i.dtype
# if i.name == "batch_norm_52.b_0_fuse_bn":
# i.dtype = fluid.core.VarDesc.VarType.INT8;
# print (test_program.global_block().ops[23].type)
# for i in conv_op_index:
# op = test_program.current_block().ops[i]
# print (op)
# print (op.input_names, op.input_arg_names, op.output_arg_names)
not_persistable_vars
=
(
i
for
i
in
test_program
.
list_vars
()
if
not
i
.
persistable
)
for
i
in
not_persistable_vars
:
# # print (i.name, i.persistable)
i
.
persistable
=
True
# int8_prog = test_program.clone()
var_name
=
[
i
.
name
for
i
in
test_program
.
list_vars
()]
# get_dequantization_op_pos(int8_prog)
# print var_name
# sys.exit(0)
var_name
=
[
i
.
name
for
i
in
test_program
.
list_vars
()]
val_reader
=
paddle
.
batch
(
reader
.
val
(),
batch_size
=
args
.
batch_size
)
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
[
image
,
label
])
...
...
@@ -204,7 +242,6 @@ def eval(args):
max_value
=
[
float
(
np
.
amax
(
np_data
))]
var_max
[
i
]
=
[]
var_max
[
i
].
append
(
max_value
)
# print var_max
t2
=
time
.
time
()
period
=
t2
-
t1
...
...
@@ -231,119 +268,106 @@ def eval(args):
print
(
"Test_loss {0}, test_acc1 {1}, test_acc5 {2}"
.
format
(
test_loss
,
test_acc1
,
test_acc5
))
sys
.
stdout
.
flush
()
#insert quantization op
infer_prog
=
test_program
.
clone
()
pos
=
get_quantization_op_pos
(
infer_prog
)
print
pos
print
infer_prog
.
current_block
().
ops
[
1
].
output
(
'Out'
)[
0
]
conv2_scale_in
=
infer_prog
.
global_block
().
create_var
(
name
=
"conv2_scale_in"
,
for
i
in
conv_input_var_name
:
update_program_for_saving_var
(
infer_prog
,
i
+
"_scale.input.test"
,
var_max
[
i
][
0
],
np
.
array
(
var_max
[
i
]).
shape
,
pretrained_model
)
for
i
in
conv_output_var_name
:
update_program_for_saving_var
(
infer_prog
,
i
+
"_scale.output.test"
,
var_max
[
i
][
0
],
np
.
array
(
var_max
[
i
]).
shape
,
pretrained_model
)
for
i
in
weights_var_name
:
update_program_for_saving_var
(
infer_prog
,
i
+
"_scale.weights.test"
,
var_max
[
i
][
0
],
np
.
array
(
var_max
[
i
]).
shape
,
pretrained_model
)
# update_program_for_saving_var(infer_prog, 'conv2_int8_tmp', var_max[var_name[1]][0], [1,], pretrained_model)
#Step 2 save all variable
for
batch_id
,
data
in
enumerate
(
val_reader
()):
loss
,
acc1
,
acc5
=
exe
.
run
(
infer_prog
,
fetch_list
=
fetch_list
,
feed
=
feeder
.
feed
(
data
))
break
int8_prog
=
test_program
.
clone
()
for
index
,
value
in
enumerate
(
conv_op_index
[
1
:]):
# print index,conv_input_var_name[index], ["{}_scale.input.test".format(conv_input_var_name[index])]
int8_prog
.
current_block
().
ops
[
value
].
desc
.
set_input
(
"Scale_in"
,
[
"{}_scale.input.test"
.
format
(
conv_input_var_name
[
index
])])
int8_prog
.
current_block
().
ops
[
value
].
desc
.
set_input
(
"Scale_out"
,
[
"{}_scale.output.test"
.
format
(
conv_output_var_name
[
index
])])
int8_prog
.
current_block
().
ops
[
value
].
desc
.
set_input
(
"Scale_weights"
,
[
"{}_scale.weights.test"
.
format
(
weights_var_name
[
index
])])
if
int8_prog
.
current_block
().
ops
[
value
].
desc
.
input
(
"ResidualData"
):
name
=
int8_prog
.
current_block
().
ops
[
value
].
desc
.
input
(
"ResidualData"
)[
0
]
int8_prog
.
current_block
().
ops
[
value
].
desc
.
set_input
(
"Scale_in_eltwise"
,
[
"{}_scale.output.test"
.
format
(
name
)])
quantize_pos
=
get_quantization_op_pos
(
int8_prog
)
conv2_quantize_tmp
=
int8_prog
.
current_block
().
create_var
(
name
=
"conv2_quantize_tmp"
,
dtype
=
"float32"
,
persistable
=
True
,
#shape= (np.array(fluid.global_scope().find_var('pool2d_0.tmp_0').get_tensor())).shape
)
# conv2_weights_in = infer_prog.global_block().create_var(
# name="conv2_weights_in",
# dtype="float32",
# persistable=True,
# )
conv2_int8_tmp
=
infer_prog
.
global_block
().
create_var
(
name
=
"conv2_int8_tmp"
,
dtype
=
"int8"
,
op
=
int8_prog
.
current_block
().
_insert_op
(
index
=
quantize_pos
[
0
],
type
=
"quantize"
,
inputs
=
{
"Input"
:
int8_prog
.
current_block
().
ops
[
quantize_pos
[
0
]
-
1
].
output
(
'Out'
)[
0
],
"Scale"
:
"{}_scale.input.test"
.
format
(
conv_input_var_name
[
1
])},
outputs
=
{
"Output"
:
conv2_quantize_tmp
},
)
op
.
_set_attr
(
"data_format"
,
"NCHW"
)
op
.
_set_attr
(
"use_mkldnn"
,
1
)
int8_prog
.
current_block
().
ops
[
quantize_pos
[
0
]
+
1
].
desc
.
set_input
(
"Input"
,
[
"conv2_quantize_tmp"
])
for
i
in
int8_prog
.
current_block
().
ops
[
quantize_pos
[
0
]
+
2
:]:
if
i
.
type
==
'conv2d'
and
i
.
input
(
'Input'
)[
0
]
==
int8_prog
.
current_block
().
ops
[
quantize_pos
[
0
]
-
1
].
output
(
'Out'
)[
0
]:
i
.
desc
.
set_input
(
"Input"
,
[
"conv2_quantize_tmp"
])
dequantize_pos
=
get_dequantization_op_pos
(
int8_prog
)
dequantize_tmp_var
=
int8_prog
.
current_block
().
create_var
(
name
=
"dequantize_tmp_var"
,
dtype
=
"float32"
,
persistable
=
True
,
shape
=
(
np
.
array
(
fluid
.
global_scope
().
find_var
(
'pool2d_0.tmp_0'
).
get_tensor
())).
shape
#
shape= (np.array(fluid.global_scope().find_var('pool2d_0.tmp_0').get_tensor())).shape
)
# print ((np.array(fluid.global_scope().find_var('pool2d_0.tmp_0').get_tensor())).shape)
# sys.exit(0)
# fluid.initializer.Constant(value=1.0)(conv2_int8_tmp, infer_prog.global_block())
infer_prog
.
current_block
().
append_op
(
type
=
'assign_value'
,
outputs
=
{
'Out'
:
[
conv2_scale_in
]},
attrs
=
{
'dtype'
:
core
.
VarDesc
.
VarType
.
FP32
,
'shape'
:
[
1
,
1
],
'fp32_values'
:
var_max
[
var_name
[
1
]][
0
]
}
op
=
int8_prog
.
current_block
().
_insert_op
(
index
=
dequantize_pos
[
0
]
+
1
,
type
=
"dequantize"
,
inputs
=
{
"Input"
:
int8_prog
.
current_block
().
ops
[
dequantize_pos
[
0
]].
output
(
'Out'
)[
0
],
"Scale"
:
"{}_scale.output.test"
.
format
(
int8_prog
.
current_block
().
ops
[
dequantize_pos
[
0
]].
output
(
'Out'
)[
0
])},
outputs
=
{
"Output"
:
dequantize_tmp_var
},
)
# infer_prog.current_block().append_op(
# type='assign_value',
# outputs={'Out': [conv2_int8_tmp]},
# attrs={
# 'dtype':core.VarDesc.VarType.UINT8,
# 'shape': (np.array(fluid.global_scope().find_var('pool2d_0.tmp_0').get_tensor())).shape,
# # 'fp32_values': var_max[var_name[1]][0]
# }
# )
# op = infer_prog.current_block()._insert_op(
# index=pos[0],
# type= "quantize",
# inputs={"Input": infer_prog.current_block().ops[1].output('Out')[0],
# "Scale": conv2_scale_in},
# outputs={"Output":conv2_int8_tmp},
# # attrs= {
# # "data_format": "NCHW"
# # }
# )
# op.set_attr("data_format", "NCHW")
# op.set_attr("use_mkldnn", 1)
# infer_prog.current_block().ops[3].set_input("Input", ['conv2_int8_tmp'])
# infer_prog.current_block().append_op(
# type='assign_value',
# outputs={'Out': [conv2_weights_in]},
# attrs={
# 'dtype':core.VarDesc.VarType.FP32,
# 'shape': [1,1],
# 'fp32_values': [3.12]
# }
# )
# for i in infer_prog.current_block().ops[:4]:
# print (i)
# sys.exit(0)
# with open("/home/guomingz/__model_xiaoli_quantize__", "wb") as f:
# f.write(infer_prog.desc.serialize_to_string())
int8_prog
.
current_block
().
ops
[
dequantize_pos
[
0
]
+
2
].
desc
.
set_input
(
"X"
,
[
"dequantize_tmp_var"
])
infer_prog
.
current_block
().
append_op
(
type
=
'save'
,
inputs
=
{
'X'
:
'conv2_scale_in'
},
outputs
=
{},
attrs
=
{
"file_path"
:
"{}/conv2_scale_in"
.
format
(
pretrained_model
)}
)
# infer_prog.current_block().append_op(
# type = 'save',
# inputs={'X': 'conv2_int8_tmp'},
# outputs={},
# attrs={"file_path": "{}/conv2_int8_tmp".format(pretrained_model)}
# )
# val_reader = paddle.batch(reader.val(), batch_size=args.batch_size)
#Step 3 Save the new model
# for i in int8_prog.current_block().ops:
# print '********'
# print i
# if i.type == 'conv2d':
# print i
# # print i.input_names;
# print '----'
# print i.type
# for j in i.input_names:
# print j, i.input(j)[0] if i.input(j) else ' '
# for k in i.output_names:
# print k, i.output(k)[0]
# print conv_op_index
# print dequantize_pos
if
DEBUG
:
dot
(
int8_prog
)
with
open
(
"__model_quantized__"
,
"wb"
)
as
f
:
f
.
write
(
int8_prog
.
desc
.
serialize_to_string
())
for
batch_id
,
data
in
enumerate
(
val_reader
()):
# print (feeder.feed(data))
# print (fetch_list)
loss
,
acc1
,
acc5
=
exe
.
run
(
infer_prog
,
fetch_list
=
fetch_list
,
feed
=
feeder
.
feed
(
data
))
sys
.
exit
(
0
)
# infer_prog.current_block().append_op(
# type = 'save',
# inputs={'X': 'conv2_weights_in'},
# outputs={},
# attrs={"file_path": "{}/conv2_weights_in".format(pretrained_model)}
# )
#insert dequantization op
#rerun to save variable
# for batch_id, data in enumerate(val_reader()):
# t1 = time.time()
# loss, acc1, acc5 = exe.run(test_program,
# fetch_list=fetch_list,
# feed=feeder.feed(data))
# with open("/home/guomingz/__model__", "wb") as f:
# f.write(test_program.desc.serialize_to_string())
def
main
():
args
=
parser
.
parse_args
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录