calibration.py 14.1 KB
Newer Older
Z
Zhang, Guoming 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
from __future__ import absolute_import
from __future__ import division
# from __future__ import print_function
import os
import numpy as np
import time
import sys
import paddle
import paddle.fluid as fluid
import models
import reader
import argparse
import functools
from models.learning_rate import cosine_decay
from utility import add_arguments, print_arguments
import math
import paddle.fluid.core as core

parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('batch_size',       int,  32,                 "Minibatch size.")
add_arg('use_gpu',          bool, True,                "Whether to use GPU or not.")
add_arg('class_dim',        int,  1000,                "Class number.")
add_arg('image_shape',      str,  "3,224,224",         "Input image size")
add_arg('with_mem_opt',     bool, True,                "Whether to use memory optimization or not.")
add_arg('pretrained_model', str,  None,                "Whether to use pretrained model.")
add_arg('model',            str, "SE_ResNeXt50_32x4d", "Set the network to use.")
# yapf: enable

model_list = [m for m in dir(models) if "__" not in m]

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
DEBUG = 1

def dot(program):
    dot_graph = ""
    dot_nodes = []
    dot_edges = []
    dot_graph += "digraph pm {\n"
    for block in program.blocks:
        ops = list(block.ops)
        block_id = block.idx
        for op in ops:
            op_type = op.type
            op_name = op_type + "_" + op.input_arg_names[0].replace(".", "_")
            for name in op.input_arg_names:
                name = name.replace(".", "_")
                dot_edge = name + " -> " + op_name
                if dot_edge not in dot_edges:
                    dot_edges.append(dot_edge)
                dot_node = name + " [shape=oval]"
                if dot_node not in dot_nodes:
                    dot_nodes.append(dot_node)

            for name in op.output_arg_names:
                name = name.replace(".", "_")
                dot_edge = op_name + " -> " + name
                if dot_edge not in dot_edges:
                    dot_edges.append(dot_edge)

            dot_node = op_name + " [shape=box]"
            if dot_node not in dot_nodes:
                dot_nodes.append(dot_node)

    for dot_edge in dot_edges:
        dot_graph += dot_edge + "\n"
    for dot_node in dot_nodes:
        dot_graph += dot_node + "\n"
    dot_graph += "}"

    file = open("model.dot", 'w')
    file.write(dot_graph)
    file.close()

Z
Zhang, Guoming 已提交
75 76 77 78 79 80 81 82 83 84 85 86
def get_quantization_op_pos(program):
    conv_op_index = [index for index, value in enumerate(program.global_block().ops) if value.type == 'conv2d']
    if len(conv_op_index) < 2:
        return None
    return [conv_op_index[1]]

def get_dequantization_op_pos(program):
    conv_op_index = [index for index, value in enumerate(program.global_block().ops) if value.type == 'conv2d']
    if len(conv_op_index) < 2:
        return None
    res = []
    support_int8_op_type = ["pool2d"]
87
 
Z
Zhang, Guoming 已提交
88 89 90 91 92 93 94 95 96 97
    for index, value in enumerate(conv_op_index[:-1]):
        if index == 0: continue

        if value + 1 == conv_op_index[index + 1]:
            continue
        else:
            start_index = index + 1
            end_index = conv_op_index[index + 1]
            while start_index < end_index:
                if program.global_block().ops[start_index].type not in support_int8_op_type:
98
                    print program.global_block().ops[start_index].type, end_index
Z
Zhang, Guoming 已提交
99 100 101 102
                    res.append(start_index)
                    break
                else:
                    start_index += 1
103 104 105 106 107 108
    last_dequantize_op_index = conv_op_index[-1]
    # skip pooling op which is the Successor of the last conv op
    while program.global_block().ops[last_dequantize_op_index + 1].type in support_int8_op_type:
        last_dequantize_op_index += 1
    res.append(last_dequantize_op_index) # need to fix
    
Z
Zhang, Guoming 已提交
109 110 111 112 113 114 115
    return res


def get_requantization_op_pos(program):
    pass

# def create_op(program, op_name, data_type):
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
def update_program_for_saving_var(program, name, value, data_shape, dst, data_type="float32"):
    tmp_var = program.current_block().create_var(
        name=name,
        dtype=data_type,
        persistable=True,
    )

    program.current_block().append_op(
        type='assign_value',
        outputs={'Out': [tmp_var]},
        attrs={
            'dtype':core.VarDesc.VarType.FP32,
            'shape': data_shape,
            'fp32_values': value
        }
    )

    program.current_block().append_op(
        type = 'save',
        inputs={'X': '{}'.format(name)},
        outputs={},
        attrs={"file_path": "{}/{}".format(dst, name)}
    )

Z
Zhang, Guoming 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198

def eval(args):
    # parameters from arguments
    class_dim = args.class_dim
    model_name = args.model
    pretrained_model = args.pretrained_model
    with_memory_optimization = args.with_mem_opt
    image_shape = [int(m) for m in args.image_shape.split(",")]

    assert model_name in model_list, "{} is not in lists: {}".format(args.model,
                                                                     model_list)

    image = fluid.layers.data(name='image', shape=image_shape, dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

    # model definition
    model = models.__dict__[model_name]()
    
    if model_name is "GoogleNet":
        out0, out1, out2 = model.net(input=image, class_dim=class_dim)
        cost0 = fluid.layers.cross_entropy(input=out0, label=label)
        cost1 = fluid.layers.cross_entropy(input=out1, label=label)
        cost2 = fluid.layers.cross_entropy(input=out2, label=label)
        avg_cost0 = fluid.layers.mean(x=cost0)
        avg_cost1 = fluid.layers.mean(x=cost1)
        avg_cost2 = fluid.layers.mean(x=cost2)

        avg_cost = avg_cost0 + 0.3 * avg_cost1 + 0.3 * avg_cost2
        acc_top1 = fluid.layers.accuracy(input=out0, label=label, k=1)
        acc_top5 = fluid.layers.accuracy(input=out0, label=label, k=5)
    else:
        out = model.net(input=image, class_dim=class_dim)
        cost = fluid.layers.cross_entropy(input=out, label=label)

        avg_cost = fluid.layers.mean(x=cost)
        acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
        acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)

    test_program = fluid.default_main_program().clone(for_test=True)

    if with_memory_optimization:
        fluid.memory_optimize(fluid.default_main_program())

    place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())

    if pretrained_model:
        def if_exist(var):
            return os.path.exists(os.path.join(pretrained_model, var.name))

        fluid.io.load_vars(exe, pretrained_model, predicate=if_exist)
    
    t = fluid.transpiler.InferenceTranspiler()
    t.transpile(test_program, fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace())
    # for i in test_program.current_block().ops:
    #     print i
    # sys.exit(0)
    conv_op_index = [index for index, value in enumerate(test_program.global_block().ops) if value.type == 'conv2d']
199
    pooling_op_index =  [index for index, value in enumerate(test_program.global_block().ops) if value.type == 'pool2d']
Z
Zhang, Guoming 已提交
200 201 202 203
    print (conv_op_index)
    weights_var_name = []
    conv_input_var_name = []
    conv_output_var_name = []
204
    # weights_channel = {}
Z
Zhang, Guoming 已提交
205 206 207 208
    for i in conv_op_index[1:]:
        weights_var_name.append(test_program.current_block().ops[i].input('Filter')[0])
        conv_input_var_name.append(test_program.current_block().ops[i].input('Input')[0])
        conv_output_var_name.append(test_program.current_block().ops[i].output('Output')[0])
209 210 211 212 213
    
    for i in pooling_op_index:
        conv_input_var_name.append(test_program.current_block().ops[i].input('X')[0])
        conv_output_var_name.append(test_program.current_block().ops[i].output('Out')[0])
    
Z
Zhang, Guoming 已提交
214 215

    not_persistable_vars = (i for i in test_program.list_vars() if not i.persistable)
216
    
Z
Zhang, Guoming 已提交
217 218 219
    for i in not_persistable_vars:
        i.persistable= True
    
220 221
    var_name = [i.name for i in test_program.list_vars()]

Z
Zhang, Guoming 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
    val_reader = paddle.batch(reader.val(), batch_size=args.batch_size)
    feeder = fluid.DataFeeder(place=place, feed_list=[image, label])

    fetch_list = [avg_cost.name, acc_top1.name, acc_top5.name]

    test_info = [[], [], []]
    cnt = 0
    var_max = {}
    for batch_id, data in enumerate(val_reader()):
        t1 = time.time()
        loss, acc1, acc5 = exe.run(test_program,
                                   fetch_list=fetch_list,
                                   feed=feeder.feed(data))
        for i in var_name:
            # print (np.array(fluid.global_scope().find_var(i).get_tensor()).shape)
            np_data = np.array(fluid.global_scope().find_var(i).get_tensor())

            if i in weights_var_name:
                max_value = [float(np.amax(np_data[j])) for j in range(np_data.shape[0])]
            else:
                max_value = [float(np.amax(np_data))]
            var_max[i] = []
            var_max[i].append(max_value)
        
        t2 = time.time()
        period = t2 - t1
        loss = np.mean(loss)
        acc1 = np.mean(acc1)
        acc5 = np.mean(acc5)
        test_info[0].append(loss * len(data))
        test_info[1].append(acc1 * len(data))
        test_info[2].append(acc5 * len(data))
        cnt += len(data)
        if batch_id % 10 == 0:
            print("Testbatch {0},loss {1}, "
                  "acc1 {2},acc5 {3},time {4}".format(batch_id, \
                  loss, acc1, acc5, \
                  "%2.2f sec" % period))
            sys.stdout.flush()
        
        break
    
    test_loss = np.sum(test_info[0]) / cnt
    test_acc1 = np.sum(test_info[1]) / cnt
    test_acc5 = np.sum(test_info[2]) / cnt

    print("Test_loss {0}, test_acc1 {1}, test_acc5 {2}".format(
        test_loss, test_acc1, test_acc5))
    sys.stdout.flush()
271

Z
Zhang, Guoming 已提交
272
    infer_prog = test_program.clone()
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305

    for i in conv_input_var_name:
        update_program_for_saving_var(infer_prog, i+"_scale.input.test", var_max[i][0], np.array(var_max[i]).shape, pretrained_model)
    
    for i in conv_output_var_name:
        update_program_for_saving_var(infer_prog, i+"_scale.output.test", var_max[i][0], np.array(var_max[i]).shape, pretrained_model)
    
    for i in weights_var_name:
        update_program_for_saving_var(infer_prog, i+"_scale.weights.test", var_max[i][0], np.array(var_max[i]).shape, pretrained_model)
    # update_program_for_saving_var(infer_prog, 'conv2_int8_tmp',  var_max[var_name[1]][0], [1,], pretrained_model)

    #Step 2 save all variable
    for batch_id, data in enumerate(val_reader()):
        loss, acc1, acc5 = exe.run(infer_prog,
                                   fetch_list=fetch_list,
                                   feed=feeder.feed(data))
        break
    
    int8_prog = test_program.clone()
    for index, value in enumerate(conv_op_index[1:]):
        # print index,conv_input_var_name[index], ["{}_scale.input.test".format(conv_input_var_name[index])]
        int8_prog.current_block().ops[value].desc.set_input("Scale_in", ["{}_scale.input.test".format(conv_input_var_name[index])])
        int8_prog.current_block().ops[value].desc.set_input("Scale_out", ["{}_scale.output.test".format(conv_output_var_name[index])])
        int8_prog.current_block().ops[value].desc.set_input("Scale_weights", ["{}_scale.weights.test".format(weights_var_name[index])])
        if int8_prog.current_block().ops[value].desc.input("ResidualData"):
            name = int8_prog.current_block().ops[value].desc.input("ResidualData")[0]
            int8_prog.current_block().ops[value].desc.set_input("Scale_in_eltwise", ["{}_scale.output.test".format(name)])
    
    
    quantize_pos = get_quantization_op_pos(int8_prog)

    conv2_quantize_tmp = int8_prog.current_block().create_var(
        name="conv2_quantize_tmp",
Z
Zhang, Guoming 已提交
306 307
        dtype="float32",
        persistable=True,
308
        #shape= (np.array(fluid.global_scope().find_var('pool2d_0.tmp_0').get_tensor())).shape
Z
Zhang, Guoming 已提交
309
    )
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331

    op = int8_prog.current_block()._insert_op(
       index=quantize_pos[0],
        
       type= "quantize",
        
       inputs={"Input": int8_prog.current_block().ops[quantize_pos[0] - 1].output('Out')[0],
               "Scale": "{}_scale.input.test".format(conv_input_var_name[1])},
        
       outputs={"Output": conv2_quantize_tmp},

    )
    op._set_attr("data_format", "NCHW")
    op._set_attr("use_mkldnn", 1)
    int8_prog.current_block().ops[quantize_pos[0] + 1 ].desc.set_input("Input", ["conv2_quantize_tmp"])
    for i in int8_prog.current_block().ops[quantize_pos[0] + 2:]:
        if i.type == 'conv2d' and i.input('Input')[0] == int8_prog.current_block().ops[quantize_pos[0] - 1].output('Out')[0]:
            i.desc.set_input("Input",  ["conv2_quantize_tmp"])
    dequantize_pos = get_dequantization_op_pos(int8_prog)
    dequantize_tmp_var = int8_prog.current_block().create_var(
        name="dequantize_tmp_var",
        dtype="float32",
Z
Zhang, Guoming 已提交
332
        persistable=True,
333
        #shape= (np.array(fluid.global_scope().find_var('pool2d_0.tmp_0').get_tensor())).shape
Z
Zhang, Guoming 已提交
334 335
    )

336 337 338 339 340 341 342 343 344
    op = int8_prog.current_block()._insert_op(
       index=dequantize_pos[0] + 1,
        
       type= "dequantize",
        
       inputs={"Input": int8_prog.current_block().ops[dequantize_pos[0]].output('Out')[0],
               "Scale": "{}_scale.output.test".format( int8_prog.current_block().ops[dequantize_pos[0]].output('Out')[0])},
        
       outputs={"Output": dequantize_tmp_var},
Z
Zhang, Guoming 已提交
345 346
    )

347
    int8_prog.current_block().ops[dequantize_pos[0] + 2].desc.set_input("X", ["dequantize_tmp_var"])
Z
Zhang, Guoming 已提交
348

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
    #Step 3 Save the new model 

    # for i in int8_prog.current_block().ops:
    #     print '********'
    #     print i
        # if i.type == 'conv2d':
        #     print i
    #     # print i.input_names;
    #     print  '----'
    #     print i.type
    #     for j in i.input_names:
    #         print j, i.input(j)[0] if i.input(j) else ' '
    #     for k in i.output_names:
    #         print k, i.output(k)[0]
    # print conv_op_index
    # print dequantize_pos
    if DEBUG:
        dot(int8_prog)
   
    with open("__model_quantized__", "wb") as f:
        f.write(int8_prog.desc.serialize_to_string())
Z
Zhang, Guoming 已提交
370 371 372 373 374 375 376 377 378 379


def main():
    args = parser.parse_args()
    print_arguments(args)
    eval(args)


if __name__ == '__main__':
    main()