engine.cc 13.6 KB
Newer Older
Y
Yan Chunwei 已提交
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

N
nhzlx 已提交
3 4
Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License.
Y
Yan Chunwei 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/engine.h"

#include <NvInfer.h>
#include <cuda.h>
#include <glog/logging.h>
A
Abhinav Arora 已提交
20
#include <string>
Y
Yan Chunwei 已提交
21
#include "paddle/fluid/inference/analysis/helper.h"
Y
Yan Chunwei 已提交
22 23 24 25 26 27 28
#include "paddle/fluid/inference/tensorrt/helper.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace inference {
namespace tensorrt {

29 30
int TensorRTEngine::runtime_batch_ = 1;

31 32 33 34 35 36 37 38 39 40 41
void TensorRTEngine::InitNetwork() {
  freshDeviceId();
  infer_builder_.reset(createInferBuilder(&logger_));

  if (with_dynamic_shape_) {
#if IS_TRT_VERSION_GE(6000)
    infer_networkv2_.reset(infer_builder_->createNetworkV2(
        1U << static_cast<int>(
            nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH)));
    infer_builder_config_.reset(infer_builder_->createBuilderConfig());
    infer_ptr<nvinfer1::IBuilderConfig> infer_builder_config_;
42
    optim_profile_ = infer_builder_->createOptimizationProfile();
43 44 45 46
#endif
  } else {
    infer_network_.reset(infer_builder_->createNetwork());
  }
Y
Yan Chunwei 已提交
47 48
}

49 50
void TensorRTEngine::Execute(int batch_size, std::vector<void *> *buffers,
                             cudaStream_t stream) {
N
nhzlx 已提交
51
  freshDeviceId();
52 53 54 55 56 57 58
  auto infer_context = context();
  if (!with_dynamic_shape()) {
    infer_context->enqueue(batch_size, buffers->data(), stream, nullptr);
  } else {
#if IS_TRT_VERSION_GE(6000)
    infer_context->enqueueV2(buffers->data(), stream, nullptr);
#endif
59
  }
N
nhzlx 已提交
60 61 62
  SetRuntimeBatch(batch_size);
}

Y
Yan Chunwei 已提交
63
void TensorRTEngine::FreezeNetwork() {
N
nhzlx 已提交
64
  freshDeviceId();
65
  VLOG(3) << "TRT to freeze network";
66 67 68 69 70 71 72
  PADDLE_ENFORCE_NOT_NULL(infer_builder_,
                          platform::errors::InvalidArgument(
                              "Inference builder of TRT is null. Please make "
                              "sure you call InitNetwork first."));
  PADDLE_ENFORCE_NOT_NULL(network(),
                          platform::errors::InvalidArgument(
                              "Call InitNetwork first to initialize network."));
Y
Yan Chunwei 已提交
73 74 75
  // build engine.
  infer_builder_->setMaxBatchSize(max_batch_);
  infer_builder_->setMaxWorkspaceSize(max_workspace_);
Z
Zhaolong Xing 已提交
76
  bool enable_fp16 = (precision_ == AnalysisConfig::Precision::kHalf);
77
#if IS_TRT_VERSION_GE(5000)
Z
Zhaolong Xing 已提交
78 79 80 81 82 83
  if (enable_fp16) {
    bool support_fp16 = infer_builder_->platformHasFastFp16();
    infer_builder_->setFp16Mode(support_fp16);
    if (!support_fp16) {
      LOG(INFO) << "You specify FP16 mode, but the hardware do not support "
                   "FP16 speed up, use FP32 instead.";
84 85
    } else {
      LOG(INFO) << "Run Paddle-TRT FP16 mode";
Z
Zhaolong Xing 已提交
86 87
    }
  }
88
#else
89
  if (enable_fp16)
90
    LOG(INFO) << "Using FP16 in Paddle-TRT must ensure that the version of TRT "
91 92
                 "is at least 5."
                 "So, use FP32 to run.";
93
#endif
Z
Zhaolong Xing 已提交
94 95 96
  bool enable_int8 = (precision_ == AnalysisConfig::Precision::kInt8);

  if (enable_int8) {
N
nhzlx 已提交
97
    infer_builder_->setInt8Mode(true);
98 99 100 101 102 103 104 105 106 107 108 109 110 111
    if (calibrator_) {
      infer_builder_->setInt8Calibrator(calibrator_);
    } else {
      infer_builder_->setInt8Calibrator(nullptr);

#if IS_TRT_VERSION_GE(5000)
      infer_builder_->setStrictTypeConstraints(true);
      for (auto &quant_range : quant_dynamic_range_) {
        auto tensor = quant_range.first;
        float range = quant_range.second;
        tensor->setDynamicRange(-range, range);
      }

      std::unordered_set<nvinfer1::ITensor *> all_t;
112 113
      for (int i = 0; i < network()->getNbLayers(); i++) {
        auto layer = network()->getLayer(i);
114 115 116 117
        for (int j = 0; j < layer->getNbOutputs(); j++) {
          all_t.insert(layer->getOutput(j));
        }
      }
118 119
      for (int i = 0; i < network()->getNbInputs(); i++) {
        all_t.insert(network()->getInput(i));
120 121 122 123
      }

      for (auto &t : all_t) {
        if (!quant_dynamic_range_.count(t)) {
T
tianshuo78520a 已提交
124 125 126
          VLOG(3) << "We are in trt int8 mode(not calibration), scale not set"
                  << " for tensor " << t->getName()
                  << ", this might be ok when trt does not need this range";
127 128
        }
      }
129
#if IS_TRT_VERSION_GE(5122)
130 131 132 133 134 135 136 137 138 139
      auto is_layer_int8 = [&](nvinfer1::ILayer *layer) -> bool {
        for (int j = 0; j < layer->getNbInputs(); j++) {
          auto *temp_in = layer->getInput(j);
          if (!temp_in->dynamicRangeIsSet()) {
            VLOG(1) << "Layer(Name: " << layer->getName()
                    << ") is set to float32 because its input("
                    << temp_in->getName() << ") doesn't have dynamic range.";
            return false;
          }
        }
140 141
        for (int j = 0; j < layer->getNbOutputs(); j++) {
          auto *temp_out = layer->getOutput(j);
142 143 144 145 146 147 148 149 150 151 152
          if (temp_out->isNetworkOutput()) {
            VLOG(1) << "Layer(Name: " << layer->getName()
                    << ") is set to float32 because its output("
                    << temp_out->getName() << ") is the output of the network.";
            return false;
          }
          if (!temp_out->dynamicRangeIsSet()) {
            VLOG(1) << "Layer(Name: " << layer->getName()
                    << ") is set to float32 because its output("
                    << temp_out->getName() << ") doesn't have dynamic range.";
            return false;
153 154
          }
        }
155 156 157 158 159 160 161 162 163 164 165
        return true;
      };
      // If a layer's output is the network's output, or not all of its inputs
      // and outputs have scales,
      // this layer's precision and output type are set to float32.
      // This step has no effect if this layer is fused during TRT optimization.
      for (int i = 0; i < network()->getNbLayers(); i++) {
        auto layer = network()->getLayer(i);
        if (!is_layer_int8(layer)) {
          layer->setPrecision(nvinfer1::DataType::kFLOAT);
        }
166
      }
167 168 169 170 171
#else
      LOG(WARNING) << "If your TensorRT version is lower than 5.1.2.2, you "
                      "must provide quantization scales for all tensors using "
                      "TRT to run.";
#endif
172 173
#endif
    }
N
nhzlx 已提交
174
  }
Y
Yan Chunwei 已提交
175

176 177
  if (with_dynamic_shape_) {
#if IS_TRT_VERSION_GE(6000)
178
    LOG(INFO) << "Run Paddle-TRT Dynamic Shape mode.";
179 180 181 182 183 184 185 186 187 188 189
    for (auto &input : min_input_shape_) {
      optim_profile_->setDimensions(
          input.first.c_str(), nvinfer1::OptProfileSelector::kMIN,
          Vec2TRT_Dims(input.second, input.first, true));
      optim_profile_->setDimensions(
          input.first.c_str(), nvinfer1::OptProfileSelector::kMAX,
          Vec2TRT_Dims(max_input_shape_[input.first], input.first, true));
      optim_profile_->setDimensions(
          input.first.c_str(), nvinfer1::OptProfileSelector::kOPT,
          Vec2TRT_Dims(optim_input_shape_[input.first], input.first, true));
    }
190
    infer_builder_config_->addOptimizationProfile(optim_profile_);
191 192 193 194 195 196 197 198
    infer_builder_config_->setMaxWorkspaceSize(max_workspace_);
    if (enable_int8) {
      // Due to a bug of TRT, we must set precision BuilderFlag to kFP16 before
      // kINT8 here to perform INT8 inference.
      infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kFP16);
      infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kINT8);
      infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kSTRICT_TYPES);
    }
199 200 201 202 203 204 205 206 207 208
    if (WithFp16()) {
      infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kFP16);
      if (disable_trt_plugin_fp16()) {
        LOG(INFO) << "NOTE: In order to achieve higher accuracy, you have "
                     "disabled the fp16 mode of TRT Plugin,\n"
                  << "you can reopen it with "
                     "'config.SetDynamicShapeInfo(min_shape, max_shape, "
                     "opt_shape, false /*disable_trt_plugin_fp16*/)'";
      }
    }
209 210 211 212 213 214
    infer_engine_.reset(infer_builder_->buildEngineWithConfig(
        *network(), *infer_builder_config_));
#endif
  } else {
    infer_engine_.reset(infer_builder_->buildCudaEngine(*network()));
  }
215 216 217 218
  PADDLE_ENFORCE_NOT_NULL(
      infer_engine_, platform::errors::Fatal(
                         "Build TensorRT cuda engine failed! Please recheck "
                         "you configurations related to paddle-TensorRT."));
Y
Yan Chunwei 已提交
219 220
}

221
nvinfer1::ITensor *TensorRTEngine::DeclareInput(const std::string &name,
Y
Yan Chunwei 已提交
222
                                                nvinfer1::DataType dtype,
223
                                                const nvinfer1::Dims &dims) {
224 225 226 227
  PADDLE_ENFORCE_EQ(network() != nullptr, true,
                    platform::errors::InvalidArgument(
                        "The TRT network should be initialized first."));
  auto *input = network()->addInput(name.c_str(), dtype, dims);
228 229 230 231 232 233 234 235 236 237
  PADDLE_ENFORCE_NOT_NULL(
      input, platform::errors::InvalidArgument("Adding input %s failed in "
                                               "TensorRT inference network. "
                                               "Please recheck your input.",
                                               name));
  PADDLE_ENFORCE_EQ(input->isNetworkInput(), true,
                    platform::errors::InvalidArgument(
                        "Input %s is not the input of TRT inference network. "
                        "Please recheck your input.",
                        name));
L
Luo Tao 已提交
238
  TensorRTEngine::SetITensor(name, input);
Y
Yan Chunwei 已提交
239 240 241
  return input;
}

242 243 244
void TensorRTEngine::DeclareOutput(const nvinfer1::ILayer *layer, int offset,
                                   const std::string &name) {
  auto *output = layer->getOutput(offset);
245
  SetITensor(name, output);
246 247 248
  PADDLE_ENFORCE_NOT_NULL(
      output, platform::errors::InvalidArgument(
                  "The output %s of TRT engine should not be null.", name));
Y
Yan Chunwei 已提交
249
  output->setName(name.c_str());
250 251 252 253 254
  PADDLE_ENFORCE_EQ(output->isNetworkInput(), false,
                    platform::errors::InvalidArgument(
                        "The output %s of TRT engine should not be the input "
                        "of the network at the same time.",
                        name));
255
  network()->markOutput(*output);
256 257 258 259 260
  PADDLE_ENFORCE_EQ(
      output->isNetworkOutput(), true,
      platform::errors::InvalidArgument(
          "The output %s of TRT engine should be the output of the network.",
          name));
N
nhzlx 已提交
261 262
}

263 264
void TensorRTEngine::DeclareOutput(const std::string &name) {
  auto *output = TensorRTEngine::GetITensor(name);
265 266 267
  PADDLE_ENFORCE_NOT_NULL(
      output, platform::errors::InvalidArgument(
                  "The output %s of TRT engine should not be null.", name));
L
Luo Tao 已提交
268
  output->setName(name.c_str());
269 270 271 272 273
  PADDLE_ENFORCE_EQ(output->isNetworkInput(), false,
                    platform::errors::InvalidArgument(
                        "The output %s of TRT engine should not be the input "
                        "of the network at the same time.",
                        name));
274
  network()->markOutput(*output);
L
Luo Tao 已提交
275 276
}

277 278
void TensorRTEngine::SetITensor(const std::string &name,
                                nvinfer1::ITensor *tensor) {
279 280 281 282 283 284 285
  PADDLE_ENFORCE_NOT_NULL(
      tensor, platform::errors::InvalidArgument(
                  "Tensor named %s of TRT engine should not be null.", name));
  PADDLE_ENFORCE_EQ(
      0, itensor_map_.count(name),
      platform::errors::InvalidArgument(
          "Tensor named %s of TRT engine should not be duplicated", name));
L
Luo Tao 已提交
286 287 288
  itensor_map_[name] = tensor;
}

289
nvinfer1::ITensor *TensorRTEngine::GetITensor(const std::string &name) {
290 291 292
  PADDLE_ENFORCE_EQ(itensor_map_.count(name), true,
                    platform::errors::NotFound(
                        "Tensor named %s is not found in TRT engine", name));
L
Luo Tao 已提交
293 294 295
  return itensor_map_[name];
}

296 297 298 299
void TensorRTEngine::SetRuntimeBatch(size_t batch_size) {
  runtime_batch_ = batch_size;
}

300 301 302 303
float *TensorRTEngine::GetWeightCPUData(const std::string &name,
                                        framework::Tensor *weight_tensor,
                                        bool enable_int8,
                                        const std::vector<float> &scale) {
304 305
  static int name_suffix_counter = 0;
  std::string name_suffix = std::to_string(name_suffix_counter);
P
Pei Yang 已提交
306 307
  std::string splitter = "__";
  std::string name_with_suffix = name + splitter + name_suffix;
308
  platform::CPUPlace cpu_place;
309 310 311 312 313
  PADDLE_ENFORCE_EQ(weight_map.count(name_with_suffix), 0,
                    platform::errors::AlreadyExists(
                        "The weight named %s is set into the weight map "
                        "twice in TRT OP converter.",
                        name_with_suffix));
314 315 316 317 318 319
  weight_map[name_with_suffix].reset(new framework::Tensor());
  weight_map[name_with_suffix]->Resize(weight_tensor->dims());
  TensorCopySync(*weight_tensor, cpu_place, weight_map[name_with_suffix].get());
  float *weight_data =
      weight_map[name_with_suffix]->mutable_data<float>(cpu_place);
  name_suffix_counter += 1;
320 321 322
  return weight_data;
}

323 324
int TensorRTEngine::GetRuntimeBatch() { return runtime_batch_; }

N
nhzlx 已提交
325
nvinfer1::IPluginLayer *TensorRTEngine::AddPlugin(
326 327
    nvinfer1::ITensor *const *inputs, int num_inputs,
    plugin::PluginTensorRT *plugin) {
328
  owned_plugin_.emplace_back(plugin);
329
  return network()->addPluginExt(inputs, num_inputs, *plugin);
330 331
}

N
nhzlx 已提交
332 333 334
void TensorRTEngine::freshDeviceId() {
  int count;
  cudaGetDeviceCount(&count);
335 336 337 338
  PADDLE_ENFORCE_LT(device_id_, count,
                    platform::errors::OutOfRange(
                        "Device id %d exceeds the current device count: %d.",
                        device_id_, count));
N
nhzlx 已提交
339 340 341
  cudaSetDevice(device_id_);
}

Y
Yan Chunwei 已提交
342 343 344
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle