imperative.cc 35.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/pybind/imperative.h"
16

17
#include <Python.h>
18 19 20 21
#include <pybind11/chrono.h>
#include <pybind11/complex.h>
#include <pybind11/functional.h>
#include <pybind11/stl.h>
22
#include <memory>
23
#include <set>
J
Jiabin Yang 已提交
24
#include <string>
25 26
#include <unordered_map>
#include <utility>
J
Jiabin Yang 已提交
27 28
#include <vector>
#include "paddle/fluid/imperative/backward_strategy.h"
29
#include "paddle/fluid/imperative/basic_engine.h"
30
#include "paddle/fluid/imperative/data_loader.h"
31
#include "paddle/fluid/imperative/layer.h"
J
Jiabin Yang 已提交
32
#include "paddle/fluid/imperative/nccl_context.h"
33
#include "paddle/fluid/imperative/partial_grad_engine.h"
34
#include "paddle/fluid/imperative/profiler.h"
35
#include "paddle/fluid/imperative/tracer.h"
M
minqiyang 已提交
36
#include "paddle/fluid/imperative/type_defs.h"
37
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
38
#include "paddle/fluid/pybind/op_function.h"
39
#include "paddle/fluid/pybind/pybind_boost_headers.h"
L
Leo Chen 已提交
40
#include "paddle/fluid/pybind/tensor_py.h"
41

42 43 44
namespace paddle {
namespace pybind {

45 46
namespace py = ::pybind11;

47 48 49 50
class Layer : public imperative::Layer {
 public:
  using imperative::Layer::Layer;  // Inherit constructors

51 52 53 54
  std::vector<std::shared_ptr<imperative::VarBase>> Forward(
      const std::vector<std::shared_ptr<imperative::VarBase>> &inputs)
      override {
    PYBIND11_OVERLOAD(std::vector<std::shared_ptr<imperative::VarBase>>, Layer,
J
Jiabin Yang 已提交
55
                      Forward, inputs);  // NOLINT
56 57 58
  }
};

L
Leo Chen 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
static const platform::Place PyObjectToPlace(const py::object &place_obj) {
  if (py::isinstance<platform::CPUPlace>(place_obj)) {
    return place_obj.cast<platform::CPUPlace>();
  } else if (py::isinstance<platform::CUDAPlace>(place_obj)) {
    return place_obj.cast<platform::CUDAPlace>();
  } else if (py::isinstance<platform::CUDAPinnedPlace>(place_obj)) {
    return place_obj.cast<platform::CUDAPinnedPlace>();
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Place should be one of CPUPlace/CUDAPlace/CUDAPinnedPlace"));
  }
}

static void InitTensorForVarBase(imperative::VarBase *self,
                                 const py::array &array,
                                 const platform::Place place,
                                 bool persistable = false,
                                 bool zero_copy = false,
                                 std::string name = "") {
  if (name == "") {
    name = imperative::GetCurrentTracer()->GenerateUniqueName("generated_var");
  }
  new (self) imperative::VarBase(name);
82
  auto *tensor = self->MutableVar()->GetMutable<framework::LoDTensor>();
L
Leo Chen 已提交
83 84
  if (platform::is_cpu_place(place)) {
    SetTensorFromPyArray<platform::CPUPlace>(
85
        tensor, array, BOOST_GET_CONST(platform::CPUPlace, place), zero_copy);
L
Leo Chen 已提交
86 87
  } else if (platform::is_gpu_place(place)) {
    SetTensorFromPyArray<platform::CUDAPlace>(
88
        tensor, array, BOOST_GET_CONST(platform::CUDAPlace, place), zero_copy);
L
Leo Chen 已提交
89 90
  } else if (platform::is_cuda_pinned_place(place)) {
    SetTensorFromPyArray<platform::CUDAPinnedPlace>(
91 92
        tensor, array, BOOST_GET_CONST(platform::CUDAPinnedPlace, place),
        zero_copy);
93
  } else {
L
Leo Chen 已提交
94 95
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Place should be one of CPUPlace/CUDAPlace/CUDAPinnedPlace"));
J
Jiabin Yang 已提交
96
  }
L
Leo Chen 已提交
97
  self->SetPersistable(persistable);
98 99 100 101 102 103 104 105
  self->SetType(framework::proto::VarType::LOD_TENSOR);
  self->SetDataType(tensor->type());
}

static void InitVarBaseFromNumpyWithKwargs(imperative::VarBase *self,
                                           const py::kwargs &kwargs) {
  PADDLE_ENFORCE_EQ(
      kwargs.contains("value"), true,
106 107
      platform::errors::NotFound(
          "The kwargs used to create Varbase misses argument: value"));
L
Leo Chen 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120

  auto persistable = kwargs.contains("persistable")
                         ? kwargs["persistable"].cast<bool>()
                         : false;
  auto array = kwargs.contains("value") ? kwargs["value"].cast<py::array>()
                                        : py::array();
  auto zero_copy =
      kwargs.contains("zero_copy") ? kwargs["zero_copy"].cast<bool>() : false;
  auto name = kwargs.contains("name") ? kwargs["name"].cast<std::string>() : "";
  auto default_place = imperative::GetCurrentTracer()->ExpectedPlace();
  auto place = kwargs.contains("place") ? PyObjectToPlace(kwargs["place"])
                                        : default_place;
  InitTensorForVarBase(self, array, place, persistable, zero_copy, name);
121
}
122

123 124 125
template <typename P>
static void InitVarBaseFromNumpyWithArg(imperative::VarBase *self,
                                        const py::array &array, const P &place,
L
Leo Chen 已提交
126 127 128 129 130 131 132 133
                                        bool persistable = false,
                                        bool zero_copy = false,
                                        std::string name = "") {
  // 0: self, 1: value, 2: place, 3: persistable, 4: zero_copy, 5: name
  if (name == "") {
    name = imperative::GetCurrentTracer()->GenerateUniqueName("generated_var");
  }
  new (self) imperative::VarBase(name);
134 135 136 137 138 139 140 141
  self->SetPersistable(persistable);
  auto *tensor = self->MutableVar()->GetMutable<framework::LoDTensor>();
  SetTensorFromPyArray<P>(tensor, array, place, zero_copy);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
  self->SetDataType(tensor->type());
}

static void InitVarBaseFromNumpyWithArgDefault(imperative::VarBase *self,
L
Leo Chen 已提交
142 143 144
                                               const py::array &array) {
  auto place = imperative::GetCurrentTracer()->ExpectedPlace();
  InitTensorForVarBase(self, array, place);
145
}
146

147 148 149 150 151
static std::string GetTypeName(const imperative::VarBase &var) {
  if (var.Type() == framework::proto::VarType::RAW) {
    return "RAW";
  } else if (!var.Var().IsInitialized()) {
    return "nullptr";
152
  } else {
153
    return framework::ToTypeName(var.Var().Type());
154 155
  }
}
L
Leo Chen 已提交
156

157
using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;
158 159 160 161 162 163

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
164 165
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s", typeid(T).name()));
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
  }
}

// NOTE(zjl): py::handle is a very light wrapper of PyObject *.
// Unlike py::object, py::handle does not change reference count of PyObject *.
static std::vector<std::shared_ptr<imperative::VarBase>>
GetVarBaseListFromPyHandle(const py::handle &handle) {
  PyObject *py_obj = handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
    return {};
  }

  std::vector<std::shared_ptr<imperative::VarBase>> result;

181
  if (PyList_Check(py_obj)) {  // List of VarBase
182 183 184
    size_t len = PyList_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
185 186 187
      PyObject *py_ivar = PyList_GET_ITEM(py_obj, i);
      PADDLE_ENFORCE_NOT_NULL(
          py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
188 189 190
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    }
191
  } else if (PyTuple_Check(py_obj)) {  // Tuple of VarBase
192 193 194
    size_t len = PyTuple_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
195 196 197
      PyObject *py_ivar = PyTuple_GET_ITEM(py_obj, i);
      PADDLE_ENFORCE_NOT_NULL(
          py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
198 199 200
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    }
201 202 203
  } else {  // VarBase
    result.emplace_back(
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
204 205 206 207 208
  }

  return result;
}

J
Jiabin Yang 已提交
209 210 211
static imperative::NameVarBaseMap ConvertToNameVarBaseMap(
    const PyNameVarBaseMap &map) {
  imperative::NameVarBaseMap result;
212 213 214 215 216 217
  for (auto &pair : map) {
    auto var_vec = GetVarBaseListFromPyHandle(pair.second);
    if (!var_vec.empty()) {
      result.emplace(pair.first, std::move(var_vec));
    }
  }
J
Jiabin Yang 已提交
218

219 220 221
  PADDLE_ENFORCE_EQ(
      PyErr_Occurred(), nullptr,
      platform::errors::InvalidArgument(py::str(py::handle(PyErr_Occurred()))));
222 223 224
  return result;
}

S
songyouwei 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
static void ParseIndexingSlice(framework::LoDTensor *tensor, PyObject *_index,
                               std::vector<int> *slice_axes,
                               std::vector<int> *slice_starts,
                               std::vector<int> *slice_ends,
                               std::vector<int> *slice_strides,
                               std::vector<int> *decrease_axis,
                               std::vector<int> *infer_flags) {
  // We allow indexing by Integers, Slices, and tuples of those
  // types.
  // Ellipsis and None are not supported yet.
  // wrap to tuple
  PyObject *index = !PyTuple_Check(_index) ? PyTuple_Pack(1, _index) : _index;
  PADDLE_ENFORCE_EQ(
      tensor->IsInitialized(), true,
      platform::errors::InvalidArgument("tensor has not been initialized"));
  const auto &shape = tensor->dims();
  const int rank = shape.size();
  const int size = PyTuple_GET_SIZE(index);
  PADDLE_ENFORCE_EQ(
      size <= rank, true,
      platform::errors::InvalidArgument(
          "too many indices (%d) for tensor of dimension %d", size, rank));
  for (int dim = 0; dim < size; ++dim) {
    PyObject *slice_item = PyTuple_GetItem(index, dim);
    PADDLE_ENFORCE_EQ(
        PyNumber_Check(slice_item) || PySlice_Check(slice_item), true,
        platform::errors::InvalidArgument(
            "We allow indexing by Integers, Slices, and tuples of "
            "these types, but received %s in %dth slice item",
            std::string(Py_TYPE(slice_item)->tp_name), dim + 1));
    infer_flags->push_back(1);
    int dim_len = shape[dim];
    if (PyNumber_Check(slice_item)) {
      // integer
      int start = static_cast<int>(PyLong_AsLong(slice_item));
H
hong 已提交
260
      auto s_t = start;
S
songyouwei 已提交
261
      start = start < 0 ? start + dim_len : start;
H
hong 已提交
262 263 264 265 266 267 268 269 270 271
      if (start >= dim_len) {
        std::string str_error_message =
            "The starting index " + std::to_string(s_t) +
            " of slice is out of bounds in tensor " + std::to_string(dim) +
            "-th axis, it shound be in the range of [" +
            std::to_string(-dim_len) + ", " + std::to_string(dim_len) + ")";
        // py::index_error is corresponding to IndexError in Python
        // Used to indicate out of bounds access in __getitem__, __setitem__
        throw py::index_error(str_error_message);
      }
S
songyouwei 已提交
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
      slice_axes->push_back(dim);
      slice_starts->push_back(start);
      slice_ends->push_back(start + 1);
      slice_strides->push_back(1);
      decrease_axis->push_back(dim);
    } else {
      // slice
      Py_ssize_t start, end, step;
// The parameter type for the slice parameter was PySliceObject* before 3.2
#if PY_VERSION_HEX >= 0x03020000
      PySlice_GetIndices(slice_item, dim_len, &start, &end, &step);
#else
      PySlice_GetIndices(reinterpret_cast<PySliceObject *>(slice_item), dim_len,
                         &start, &end, &step);
#endif
      // :: or : or 0:dim_len:1
      if (start == 0 && end == dim_len && step == 1) continue;
      slice_axes->push_back(dim);
      slice_starts->push_back(start);
      slice_ends->push_back(end);
      slice_strides->push_back(step);
    }
  }
  if (!PyTuple_Check(_index)) Py_DecRef(index);
}

298
// Bind Methods
J
Jiabin Yang 已提交
299
void BindImperative(py::module *m_ptr) {
300 301
  auto &m = *m_ptr;

302 303
  BindOpFunctions(&m);

304 305
#ifndef _WIN32
  // Dygraph DataLoader signal handler
306 307 308 309 310 311 312 313 314 315 316 317 318
  m.def("_set_process_pids", [](int64_t key, py::object &obj) {
    PADDLE_ENFORCE_EQ(
        py::isinstance<py::tuple>(obj) || py::isinstance<py::list>(obj), true,
        platform::errors::InvalidArgument(
            "The subprocess ids set in DataLoader is illegal."
            "Expected data type is tuple or list, but received %s",
            obj.get_type()));
    py::list pids = py::cast<py::list>(obj);
    std::set<pid_t> pids_set = {};
    for (size_t i = 0; i < pids.size(); i++) {
      pids_set.insert(pids[i].cast<pid_t>());
    }
    imperative::SetLoadProcessPIDs(key, pids_set);
319
  });
320 321
  m.def("_erase_process_pids",
        [](int64_t key) { imperative::EraseLoadProcessPIDs(key); });
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
  m.def("_set_process_signal_handler",
        []() { imperative::SetLoadProcessSignalHandler(); });
  m.def("_throw_error_if_process_failed",
        []() { imperative::ThrowErrorIfLoadProcessFailed(); });

  // Dygraph DataLoader reader process & thread related functions
  m.def(
      "_convert_to_tensor_list",
      [](py::object &obj) -> py::list {
        // 0. input data check
        PADDLE_ENFORCE(
            py::isinstance<py::tuple>(obj) || py::isinstance<py::list>(obj),
            platform::errors::InvalidArgument(
                "The batch data read into DataLoader is illegal."
                "Expected data type is tuple or list, but received %s",
                obj.get_type()));
        py::list batch = py::cast<py::list>(obj);
        py::list tensors;
        for (size_t i = 0; i < batch.size(); ++i) {
          // 1. cast to python array
          auto array = batch[i].cast<py::array>();
          PADDLE_ENFORCE_NE(
              string::Sprintf("%s", array.dtype()).compare("object"), 0,
              platform::errors::InvalidArgument(
                  "Faild to convert input data to a regular ndarray.\n  * "
                  "Usually this means the input data contains nested "
                  "lists with different lengths.\n  * Check the reader "
                  "function passed to 'set_(sample/sample_list/batch)"
                  "_generator' to locate the data causes this issue."));
          // 2. construcct LoDTensor
          framework::LoDTensor t;
          SetTensorFromPyArray<platform::CPUPlace>(&t, array,
                                                   platform::CPUPlace(), true);
          // 3. allocate shared memory
          void *data_ptr = t.data<void>();
          size_t data_size = t.numel() * framework::SizeOfType(t.type());
          auto shared_writer_holder =
              memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
          // 4. maintain mmap fd set & backup ipc_name
          const std::string &ipc_name = shared_writer_holder->ipc_name();
          memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
          // 5. copy data & reset holder
          memory::Copy(platform::CPUPlace(), shared_writer_holder->ptr(),
                       platform::CPUPlace(), data_ptr, data_size);
          t.ResetHolder(shared_writer_holder);
          // 6. append to result list
          tensors.append(t);
        }
        return tensors;
      },
      py::return_value_policy::take_ownership);

  m.def("_remove_tensor_list_mmap_fds", [](py::list &tensor_list) {
    for (size_t i = 0; i < tensor_list.size(); ++i) {
      auto t = tensor_list[i].cast<framework::LoDTensor>();
      auto *mmap_writer_allocation =
          dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
              t.Holder().get());
      PADDLE_ENFORCE_NOT_NULL(
          mmap_writer_allocation,
          platform::errors::NotFound("The shared memory of LoDTensor in "
                                     "DataLoader's child process has been "
                                     "released."));
      memory::allocation::MemoryMapFdSet::Instance().Remove(
          mmap_writer_allocation->ipc_name());
    }
  });

  m.def("_cleanup_mmap_fds",
        []() { memory::allocation::MemoryMapFdSet::Instance().Clear(); });
#endif

394
  py::class_<imperative::detail::BackwardStrategy> backward_strategy(
395 396
      m, "BackwardStrategy", R"DOC(

J
Jiabin Yang 已提交
397
    BackwardStrategy is a descriptor of how to run the backward process.
398

J
Jiabin Yang 已提交
399
    **Note**:
T
tianshuo78520a 已提交
400
        **This API is only available in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **Mode**
401

J
Jiabin Yang 已提交
402 403
    Attribute:
        **sort_sum_gradient**:
404

J
Jiabin Yang 已提交
405
        If framework will sum the gradient by the reverse order of trace. eg. x_var ( :ref:`api_guide_Variable` ) will be the input of multiple OP such as :ref:`api_fluid_layers_scale` , this attr will decide if framework will sum gradient of `x_var` by the reverse order.
L
lujun 已提交
406

J
Jiabin Yang 已提交
407
        By Default: False
L
lujun 已提交
408

J
Jiabin Yang 已提交
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
        Examples:
            .. code-block:: python

                import numpy as np
                import paddle.fluid as fluid

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    x_var = fluid.dygraph.to_variable(x)
                    sums_inputs = []
                    # x_var will be multi-scales' input here
                    for _ in range(10):
                        sums_inputs.append(fluid.layers.scale(x_var))
                    ret2 = fluid.layers.sums(sums_inputs)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
427
      )DOC");
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
  backward_strategy.def(py::init())
      .def_property("sort_sum_gradient",
                    [](const imperative::detail::BackwardStrategy &self) {
                      return self.sorted_sum_gradient_;
                    },
                    [](imperative::detail::BackwardStrategy &self,
                       bool sorted_sum_gradient) {
                      self.sorted_sum_gradient_ = sorted_sum_gradient;
                    });

  m.def("start_imperative_gperf_profiler",
        []() { imperative::StartProfile(); });

  m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); });

Z
Zeng Jinle 已提交
443 444 445
  m.def("_is_dygraph_debug_enabled",
        []() { return imperative::IsDebugEnabled(); });
  m.def("_dygraph_debug_level", []() { return imperative::GetDebugLevel(); });
446 447 448 449
  m.def("_switch_tracer",
        [](const std::shared_ptr<imperative::Tracer> &tracer) {
          imperative::SetCurrentTracer(tracer);
        });
Z
Zeng Jinle 已提交
450

451
  py::class_<imperative::VarBase, std::shared_ptr<imperative::VarBase>>(
J
Jiabin Yang 已提交
452 453
      m, "VarBase",
      R"DOC()DOC")
Z
Zeng Jinle 已提交
454
      .def_static("_alive_vars", &imperative::VarBase::AliveVarNames)
J
Jiabin Yang 已提交
455
      .def("__init__",
456 457 458 459 460 461 462 463 464 465 466
           [](imperative::VarBase &self, framework::proto::VarType::Type dtype,
              const std::vector<int> &dims, const py::handle &name,
              framework::proto::VarType::Type type, bool persistable) {
             std::string act_name = "";
             if (!name.ptr() || name.ptr() == Py_None) {
               act_name = imperative::GetCurrentTracer()->GenerateUniqueName(
                   "generated_var");
             } else {
               act_name = name.cast<std::string>();
             }
             new (&self) imperative::VarBase(act_name);
J
Jiabin Yang 已提交
467 468 469 470 471 472 473 474 475
             self.SetPersistable(persistable);
             self.SetType(type);
             self.SetDataType(dtype);
             if (type == framework::proto::VarType::LOD_TENSOR) {
               auto *tensor =
                   self.MutableVar()->GetMutable<framework::LoDTensor>();
               tensor->Resize(framework::make_ddim(dims));
             }
           })
476 477
      .def("__init__", &InitVarBaseFromNumpyWithArg<platform::CPUPlace>,
           py::arg("value"), py::arg("place"), py::arg("persistable") = false,
L
Leo Chen 已提交
478
           py::arg("zero_copy") = false, py::arg("name") = "")
479 480
      .def("__init__", &InitVarBaseFromNumpyWithArg<platform::CUDAPlace>,
           py::arg("value"), py::arg("place"), py::arg("persistable") = false,
L
Leo Chen 已提交
481
           py::arg("zero_copy") = false, py::arg("name") = "")
482 483
      .def("__init__", &InitVarBaseFromNumpyWithArg<platform::CUDAPinnedPlace>,
           py::arg("value"), py::arg("place"), py::arg("persistable") = false,
L
Leo Chen 已提交
484 485
           py::arg("zero_copy") = false, py::arg("name") = "")
      .def("__init__", &InitVarBaseFromNumpyWithArgDefault, py::arg("value"))
486
      .def("__init__", &InitVarBaseFromNumpyWithKwargs)
487
      .def("__getitem__",
S
songyouwei 已提交
488
           [](std::shared_ptr<imperative::VarBase> &self, py::handle _index) {
489
             std::vector<int> slice_axes, slice_starts, slice_ends,
S
songyouwei 已提交
490 491 492 493 494 495
                 slice_strides, decrease_axis, infer_flags;
             auto tensor =
                 self->MutableVar()->GetMutable<framework::LoDTensor>();
             ParseIndexingSlice(tensor, _index.ptr(), &slice_axes,
                                &slice_starts, &slice_ends, &slice_strides,
                                &decrease_axis, &infer_flags);
496 497 498 499 500

             // release gil and do tracing
             py::gil_scoped_release release;
             const auto &tracer = imperative::GetCurrentTracer();
             if (slice_axes.empty()) {
S
songyouwei 已提交
501
               return self;
502
             } else {
S
songyouwei 已提交
503
               imperative::NameVarBaseMap ins = {{"Input", {self}}};
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
               framework::AttributeMap attrs = {
                   {"axes", slice_axes},
                   {"starts", slice_starts},
                   {"ends", slice_ends},
                   {"infer_flags", infer_flags},
                   {"decrease_axis", decrease_axis}};
               auto out = std::shared_ptr<imperative::VarBase>(
                   new imperative::VarBase(tracer->GenerateUniqueName()));
               imperative::NameVarBaseMap outs = {{"Out", {out}}};
               std::string op_type = "slice";
               for (auto stride : slice_strides) {
                 if (stride != 1) {
                   op_type = "strided_slice";
                   attrs.insert({"strides", slice_strides});
                   attrs.erase("decrease_axis");
                   break;
                 }
               }
               tracer->TraceOp(op_type, ins, outs, std::move(attrs));
               return out;
             }
           })
526 527 528 529 530 531 532
      .def("numpy",
           [](imperative::VarBase &self) -> py::array {
             const auto &tensor =
                 self.MutableVar()->Get<framework::LoDTensor>();
             PADDLE_ENFORCE_EQ(
                 tensor.IsInitialized(), true,
                 platform::errors::InvalidArgument(
533
                     "Tensor of %s is Empty, please check if it has no data.",
534 535 536 537 538
                     self.Name()));
             return TensorToPyArray(tensor, true);
           },
           R"DOC(
        **Notes**:
T
tianshuo78520a 已提交
539
            **This API is ONLY available in Dygraph mode**
540 541 542 543 544 545 546 547 548 549 550 551 552 553

        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
            ndarray: dtype is same as current Variable

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
554
                from paddle.fluid.dygraph import Linear
555 556 557 558
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
559
                    linear = Linear(32, 64)
560
                    data = to_variable(data)
561
                    x = linear(data)
562 563 564 565 566 567 568 569 570 571 572 573 574
                    print(x.numpy())

       )DOC")
      .def("detach",
           [](const imperative::VarBase &self) {
             const auto &tensor = self.Var().Get<framework::LoDTensor>();
             PADDLE_ENFORCE_EQ(tensor.IsInitialized(), true,
                               platform::errors::InvalidArgument(
                                   "%s has not been initialized", self.Name()));
             return self.NewVarBase(tensor.place(), false);
           },
           py::return_value_policy::copy, R"DOC(
        **Notes**:
T
tianshuo78520a 已提交
575
            **This API is ONLY available in Dygraph mode**
576 577 578 579 580 581 582 583 584 585 586 587

        Returns a new Variable, detached from the current graph.

        Returns:
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.


        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
588
                from paddle.fluid.dygraph import Linear
589 590 591 592
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
593
                    linear = Linear(32, 64)
594
                    data = to_variable(data)
595
                    x = linear(data)
596 597 598 599 600 601
                    y = x.detach()

       )DOC")
      .def("clear_gradient", &imperative::VarBase::ClearGradient, R"DOC(

        **Notes**:
T
tianshuo78520a 已提交
602
        **1. This API is ONLY available in Dygraph mode**
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631

        **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**

        Clear  (set to ``0`` ) the Gradient of Current Variable

        Returns:  None

        Examples:
             .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                         tmp = fluid.dygraph.base.to_variable(x)
                         tmp.stop_gradient=False
                         inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))
      )DOC")
L
Leo Chen 已提交
632 633 634 635 636 637
      .def("_run_backward",
           [](imperative::VarBase &self,
              const imperative::detail::BackwardStrategy &bckst,
              const imperative::Tracer &tracer) {
             // TODO(jiabin): when we impl more backward execution we can select
             // them
638
             auto *engine = tracer.GetEngine();
L
Leo Chen 已提交
639
             engine->Init(&self, bckst);
640
             VLOG(3) << "Start backward";
L
Leo Chen 已提交
641 642 643 644 645 646 647 648 649 650
             engine->Execute();
             VLOG(3) << "Finish backward";
           },
           py::call_guard<py::gil_scoped_release>())
      .def("_grad_name", &imperative::VarBase::GradVarName)
      .def("_grad_value",
           [](imperative::VarBase &self) {
             return self.MutableGradVar()->Get<framework::LoDTensor>();
           },
           py::return_value_policy::reference)
651 652 653 654
      .def("_set_grad_type",
           [](imperative::VarBase &self, framework::proto::VarType::Type type) {
             self.MutableGradVarBase()->SetType(type);
           })
655
      .def("_grad_ivar",
J
Jiabin Yang 已提交
656 657
           [](const imperative::VarBase &self) {
             auto &grad_var = self.GradVarBase();
658 659 660 661 662 663 664 665 666 667 668
             if (grad_var && grad_var->Var().IsInitialized()) {
               auto *tensor =
                   grad_var->MutableVar()->IsType<framework::LoDTensor>()
                       ? grad_var->MutableVar()
                             ->GetMutable<framework::LoDTensor>()
                       : grad_var->MutableVar()
                             ->GetMutable<framework::SelectedRows>()
                             ->mutable_value();
               if (tensor->IsInitialized()) {
                 return grad_var;
               }
J
Jiabin Yang 已提交
669
             }
670
             return std::shared_ptr<imperative::VarBase>(nullptr);
J
Jiabin Yang 已提交
671 672
           },
           py::return_value_policy::copy)
673 674
      .def("_copy_to",
           [](const imperative::VarBase &self, const platform::CPUPlace &place,
J
Jiabin Yang 已提交
675 676
              bool blocking) { return self.NewVarBase(place, blocking); },
           py::return_value_policy::copy)
677 678
      .def("_copy_to",
           [](const imperative::VarBase &self, const platform::CUDAPlace &place,
J
Jiabin Yang 已提交
679 680 681
              bool blocking) { return self.NewVarBase(place, blocking); },
           py::return_value_policy::copy)
      .def("value", [](imperative::VarBase &self) { return self.MutableVar(); },
682 683 684
           py::return_value_policy::reference)
      .def_property("name", &imperative::VarBase::Name,
                    &imperative::VarBase::SetName)
L
Leo Chen 已提交
685 686 687 688 689
      .def_property("stop_gradient",
                    &imperative::VarBase::OverridedStopGradient,
                    &imperative::VarBase::SetOverridedStopGradient)
      .def_property("persistable", &imperative::VarBase::Persistable,
                    &imperative::VarBase::SetPersistable)
J
Jiabin Yang 已提交
690 691 692 693
      .def_property_readonly(
          "shape",
          [](imperative::VarBase &self) {
            if (self.Var().IsType<framework::LoDTensor>()) {
694
              return framework::vectorize<int>(
J
Jiabin Yang 已提交
695
                  self.Var().Get<framework::LoDTensor>().dims());
696 697 698
            } else if (self.Var().IsType<framework::SelectedRows>()) {
              return framework::vectorize<int>(
                  self.Var().Get<framework::SelectedRows>().value().dims());
J
Jiabin Yang 已提交
699 700 701 702 703 704 705
            } else {
              VLOG(2) << "It is meaningless to get shape of variable type "
                      << GetTypeName(self);
              return std::vector<int>();
            }
          })
      .def_property_readonly("type", &imperative::VarBase::Type)
L
Leo Chen 已提交
706
      .def_property_readonly("dtype", &imperative::VarBase::DataType);
707 708 709

  py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
  layer.def(py::init<>())
710 711 712 713 714
      .def("forward",
           [](imperative::Layer &self,
              const std::vector<std::shared_ptr<imperative::VarBase>> &inputs) {
             return self.Forward(inputs);
           });
715

716 717 718 719 720
  py::class_<imperative::jit::ProgramDescTracer>(m, "ProgramDescTracer", "")
      .def("create_program_desc",
           &imperative::jit::ProgramDescTracer::CreateProgramDesc)
      .def("reset", &imperative::jit::ProgramDescTracer::Reset);

721 722 723
  py::class_<imperative::Tracer, std::shared_ptr<imperative::Tracer>>(
      m, "Tracer",
      R"DOC()DOC")
724
      .def("__init__",
J
Jiabin Yang 已提交
725
           [](imperative::Tracer &self) { new (&self) imperative::Tracer(); })
726 727 728
      .def_property("_enable_program_desc_tracing",
                    &imperative::Tracer::IsProgramDescTracingEnabled,
                    &imperative::Tracer::SetEnableProgramDescTracing)
729 730
      .def_property("_train_mode", &imperative::Tracer::HasGrad,
                    &imperative::Tracer::SetHasGrad)
731 732 733 734 735 736 737 738
      .def_property(
          "_expected_place",
          [](const imperative::Tracer &self) -> py::object {
            return py::cast(self.ExpectedPlace());
          },
          [](imperative::Tracer &self, const py::object &obj) {
            if (py::isinstance<platform::CUDAPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPlace *>();
L
Leo Chen 已提交
739
              self.SetExpectedPlace(*p);
740 741
            } else if (py::isinstance<platform::CPUPlace>(obj)) {
              auto p = obj.cast<platform::CPUPlace *>();
L
Leo Chen 已提交
742
              self.SetExpectedPlace(*p);
743 744
            } else if (py::isinstance<platform::CUDAPinnedPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPinnedPlace *>();
L
Leo Chen 已提交
745
              self.SetExpectedPlace(*p);
746
            } else {
L
Leo Chen 已提交
747
              PADDLE_THROW(platform::errors::InvalidArgument(
748
                  "Incompatible Place Type: supports CUDAPlace, CPUPlace, "
L
Leo Chen 已提交
749 750
                  "and CUDAPinnedPlace, "
                  "but got Unknown Type!"));
751 752
            }
          })
753 754 755
      .def("_get_program_desc_tracer",
           &imperative::Tracer::GetProgramDescTracer,
           py::return_value_policy::reference)
756 757
      .def("_generate_unique_name", &imperative::Tracer::GenerateUniqueName,
           py::arg("key") = "tmp")
M
minqiyang 已提交
758
      .def("trace",
J
Jiabin Yang 已提交
759 760 761 762 763 764
           [](imperative::Tracer &self, const std::string &type,
              const PyNameVarBaseMap &ins, const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs, const platform::CUDAPlace &place,
              bool trace_backward) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
765 766
             {
               py::gil_scoped_release release;
J
Jiabin Yang 已提交
767 768
               self.TraceOp(type, std::move(ins_map), std::move(outs_map),
                            std::move(attrs), place, trace_backward);
769
             }
M
minqiyang 已提交
770
           })
J
Jiabin Yang 已提交
771 772 773 774 775 776 777 778 779 780 781 782 783
      .def("trace",
           [](imperative::Tracer &self, const std::string &type,
              const PyNameVarBaseMap &ins, const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs, const platform::CPUPlace &place,
              bool trace_backward) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
               self.TraceOp(type, std::move(ins_map), std::move(outs_map),
                            std::move(attrs), place, trace_backward);
             }
           });
784 785

  // define parallel context
786 787 788
  py::class_<imperative::ParallelStrategy> parallel_strategy(
      m, "ParallelStrategy", "");
  parallel_strategy.def(py::init())
789 790
      .def_property(
          "nranks",
791 792
          [](const imperative::ParallelStrategy &self) { return self.nranks_; },
          [](imperative::ParallelStrategy &self, int nranks) {
793 794 795
            self.nranks_ = nranks;
          })
      .def_property("local_rank",
796
                    [](const imperative::ParallelStrategy &self) {
797 798
                      return self.local_rank_;
                    },
799
                    [](imperative::ParallelStrategy &self, int local_rank) {
800 801 802 803
                      self.local_rank_ = local_rank;
                    })
      .def_property(
          "trainer_endpoints",
804
          [](const imperative::ParallelStrategy &self) {
805 806
            return self.trainer_endpoints_;
          },
807
          [](imperative::ParallelStrategy &self, std::vector<std::string> eps) {
808 809 810
            self.trainer_endpoints_ = eps;
          })
      .def_property("current_endpoint",
811
                    [](const imperative::ParallelStrategy &self) {
812 813
                      return self.current_endpoint_;
                    },
814 815
                    [](imperative::ParallelStrategy &self,
                       const std::string &ep) { self.current_endpoint_ = ep; });
816 817 818 819 820 821 822 823 824 825

  m.def(
      "dygraph_partial_grad",
      [](const std::vector<std::shared_ptr<imperative::VarBase>> &input_targets,
         const std::vector<std::shared_ptr<imperative::VarBase>>
             &output_targets,
         const std::vector<std::shared_ptr<imperative::VarBase>> &output_grads,
         const std::vector<std::shared_ptr<imperative::VarBase>> &no_grad_vars,
         const platform::Place &place,
         const imperative::detail::BackwardStrategy &strategy,
Z
Zeng Jinle 已提交
826 827 828 829 830
         bool create_graph, bool retain_graph, bool allow_unused,
         bool only_inputs) {
        imperative::PartialGradEngine engine(
            input_targets, output_targets, output_grads, no_grad_vars, place,
            strategy, create_graph, retain_graph, allow_unused, only_inputs);
831 832 833 834 835
        engine.Execute();
        return engine.GetResult();
      },
      py::call_guard<py::gil_scoped_release>());

836
#if defined(PADDLE_WITH_NCCL)
837 838
  py::class_<imperative::NCCLParallelContext> nccl_ctx(m,
                                                       "NCCLParallelContext");
839 840

  nccl_ctx
841 842 843
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::CUDAPlace &>())
      .def("init", [](imperative::NCCLParallelContext &self) { self.Init(); });
844
#endif
845 846 847 848
}

}  // namespace pybind
}  // namespace paddle