activation_op.h 59.4 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5 6 7 8 9 10 11
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
12 13

#pragma once
D
dzhwinter 已提交
14
#include <glog/logging.h>
Y
Yihua Xu 已提交
15
#include <algorithm>
16
#include <memory>
D
dzhwinter 已提交
17 18
#include <string>
#include <unordered_set>
19 20
#include <utility>
#include <vector>
21

C
Clementine 已提交
22 23 24 25 26
#include <cmath>
#ifndef _USE_MATH_DEFINES
#define _USE_MATH_DEFINES
#endif

Y
Yi Wang 已提交
27 28 29
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
Y
Yihua Xu 已提交
30
#include "paddle/fluid/operators/math/blas.h"
31
#include "paddle/fluid/platform/float16.h"
Q
qijun 已提交
32

33 34 35 36
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

Q
qijun 已提交
37 38 39
namespace paddle {
namespace operators {

40 41 42 43 44 45 46 47 48 49 50 51
enum ActBwdOpFwdDeps {
  kNoDeps = 0x00,  // Do not need any forward input/output
  kDepX = 0x01,    // Only need forward input X
  kDepOut = 0x02,  // Only need forward output Out

  // Never add kDepXOut, because Out can be always calculated
  // by forward input X in backward part.
  // FIXME(zjl): but in MKLDNN abs, X and Out are all needed...
  // Developers should not rely on this enum value!
  kDepXOut = 0x03
};

C
chengduo 已提交
52 53 54 55 56 57
/* The following operator can be used to process SelectedRows, because the
 * output of those operator for zero is zero too.
 */
static std::unordered_set<std::string> CanBeUsedBySelectedRows = {
    "abs", "abs_grad", "square", "square_grad", "sqrt", "sqrt_grad"};

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
inline void ExtractActivationTensor(const framework::ExecutionContext& context,
                                    const framework::Tensor** X,
                                    framework::Tensor** Out) {
  auto x_var = context.InputVar("X");
  auto out_var = context.OutputVar("Out");
  PADDLE_ENFORCE(x_var != nullptr,
                 "Cannot get input Variable X, variable name = %s",
                 context.op().Input("X"));
  PADDLE_ENFORCE(out_var != nullptr,
                 "Cannot get output Variable Out, variable name = %s",
                 context.op().Output("Out"));
  if (CanBeUsedBySelectedRows.count(context.op().Type())) {
    *X = paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*x_var);
    *Out = paddle::framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(
        out_var);
  } else {
    *X = context.Input<framework::Tensor>("X");
    *Out = context.Output<framework::Tensor>("Out");
  }

  PADDLE_ENFORCE(*Out != nullptr,
                 "Cannot get output tensor Out, variable name = %s",
                 context.op().Output("Out"));
}

83
template <ActBwdOpFwdDeps kDepValue>
84 85 86 87 88 89
inline void ExtractActivationGradTensor(
    const framework::ExecutionContext& context, const framework::Tensor** X,
    const framework::Tensor** Out, const framework::Tensor** dOut,
    framework::Tensor** dX) {
  auto out_grad_var = context.InputVar(framework::GradVarName("Out"));
  auto x_grad_var = context.OutputVar(framework::GradVarName("X"));
90 91 92 93 94 95 96 97
  const framework::Variable* out_var = nullptr;

  if (static_cast<int>(kDepValue) & static_cast<int>(kDepOut)) {
    out_var = context.InputVar("Out");
    PADDLE_ENFORCE(out_var != nullptr,
                   "Cannot get input Variable Out, variable name = %s",
                   context.op().Input("Out"));
  }
98 99 100 101 102 103 104 105 106 107 108 109 110 111
  PADDLE_ENFORCE(out_grad_var != nullptr,
                 "Cannot get input Variable %s, variable name = %s",
                 framework::GradVarName("Out"),
                 context.op().Input(framework::GradVarName("Out")));
  PADDLE_ENFORCE(x_grad_var != nullptr,
                 "Cannot get output Variable %s, variable name = %s",
                 framework::GradVarName("X"),
                 context.op().Output(framework::GradVarName("X")));

  if (CanBeUsedBySelectedRows.count(context.op().Type())) {
    *dOut = paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(
        *out_grad_var);
    *dX = paddle::framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(
        x_grad_var);
112 113 114 115 116 117 118 119

    if (out_var) {
      *Out =
          paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*out_var);
    } else {
      *Out = *dOut;  // fake out
    }

120 121 122 123
  } else {
    *Out = context.Input<framework::Tensor>("Out");
    *dOut = context.Input<framework::Tensor>(framework::GradVarName("Out"));
    *dX = context.Output<framework::Tensor>(framework::GradVarName("X"));
124 125 126 127 128 129

    if (out_var) {
      *Out = &(out_var->Get<framework::LoDTensor>());
    } else {
      *Out = *dOut;  // fake out
    }
130
  }
131

132 133 134 135 136
  PADDLE_ENFORCE(*dX != nullptr,
                 "Cannot get output tensor %s, variable name = %s",
                 framework::GradVarName("X"),
                 context.op().Output(framework::GradVarName("X")));

137
  if (static_cast<int>(kDepValue) & static_cast<int>(kDepX)) {
C
chengduo 已提交
138 139
    auto x_var = context.InputVar("X");
    PADDLE_ENFORCE(x_var != nullptr,
140
                   "Cannot get input tensor X, variable name = %s",
C
chengduo 已提交
141 142
                   context.op().Input("X"));
    if (CanBeUsedBySelectedRows.count(context.op().Type())) {
143
      *X = paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*x_var);
C
chengduo 已提交
144
    } else {
145
      *X = context.Input<framework::Tensor>("X");
C
chengduo 已提交
146
    }
147 148 149 150 151
  } else {
    VLOG(10) << " Inplace activation of Op : " << context.op().Type();
    *X = *dX;
  }
}
C
chengduo 已提交
152

153 154 155 156 157
template <typename DeviceContext, typename Functor>
class ActivationKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
C
chengduo 已提交
158

159 160 161 162
  void Compute(const framework::ExecutionContext& context) const override {
    const framework::Tensor* X = nullptr;
    framework::Tensor* Out = nullptr;
    ExtractActivationTensor(context, &X, &Out);
C
chengduo 已提交
163
    Out->mutable_data<T>(context.GetPlace());
164 165 166

    auto x = framework::EigenVector<T>::Flatten(detail::Ref(X));
    auto out = framework::EigenVector<T>::Flatten(detail::Ref(Out));
Q
QI JUN 已提交
167 168
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();
Q
qijun 已提交
169
    Functor functor;
170 171 172 173 174

    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
F
fengjiayi 已提交
175
    functor(*place, x, out);
Q
qijun 已提交
176 177 178
  }
};

Q
QI JUN 已提交
179
template <typename DeviceContext, typename Functor>
180 181
class ActivationGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
Q
qijun 已提交
182
 public:
183
  using T = typename Functor::ELEMENT_TYPE;
Q
qijun 已提交
184
  void Compute(const framework::ExecutionContext& context) const override {
185 186 187
    const framework::Tensor *X, *Out, *dOut;
    framework::Tensor* dX = nullptr;
    X = Out = dOut = nullptr;
188 189
    ExtractActivationGradTensor<Functor::FwdDeps()>(context, &X, &Out, &dOut,
                                                    &dX);
Q
qijun 已提交
190
    dX->mutable_data<T>(context.GetPlace());
191 192 193 194
    auto dout = framework::EigenVector<T>::Flatten(detail::Ref(dOut));
    auto out = framework::EigenVector<T>::Flatten(detail::Ref(Out));
    auto dx = framework::EigenVector<T>::Flatten(detail::Ref(dX));
    auto x = framework::EigenVector<T>::Flatten(detail::Ref(X));
Q
QI JUN 已提交
195 196
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();
Q
qijun 已提交
197
    Functor functor;
198 199 200 201
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
202
    functor(*place, x, out, dout, dx);
Q
qijun 已提交
203 204 205
  }
};

206 207 208 209 210 211 212 213 214
template <typename T>
struct BaseActivationFunctor {
  using ELEMENT_TYPE = T;

  using AttrPair = std::vector<std::pair<const char*, float*>>;

  AttrPair GetAttrs() { return AttrPair(); }
};

215
// sigmoid(x) = 1 / (1 + exp(-x))
Q
qijun 已提交
216
template <typename T>
217
struct SigmoidFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
218 219 220
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = static_cast<T>(1) / (static_cast<T>(1) + (-x).exp());
Q
qijun 已提交
221 222 223
  }
};

224
template <typename T>
225
struct SigmoidGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
226 227 228 229
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * out * (static_cast<T>(1) - out);
Q
qijun 已提交
230
  }
231 232

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
Q
qijun 已提交
233 234
};

235 236 237 238
// Originally: logsigmoid(x) = -log (1 + exp(-x))
// For numerical stability, we can use the log-sum-exp trick:
// https://hips.seas.harvard.edu/blog/2013/01/09/computing-log-sum-exp/
// We can rewrite the above equation as:
F
fengjiayi 已提交
239
// out = -log( exp(0) + exp(-x)) [since exp(0) = 1]
240 241 242 243 244 245 246 247 248 249
//   = -log( exp(max(-x, 0) - max(-x, 0)) + exp(-x + max(-x, 0) - max(-x, 0)))
//   = -log( exp(max(-x, 0)) * exp(-max(-x, 0)) - exp(max(-x, 0)) * exp(-x -
//           max(-x, 0)))
//   = -log( exp(max(-x, 0)) * (exp(-max(-x, 0)) + exp(-x - max(-x, 0))))
//   = -log( exp(max(-x, 0)) - log(exp(-max(-x, 0)) + exp(-x - max(-x, 0)))
//
// Hence, logsigmoid(x) = - (max(-x, 0) + log(exp(-max(-x, 0))
// + exp(-x - max(-x, 0))))
template <typename T>
struct LogSigmoidFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
250 251
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
252
    auto temp = (-x).cwiseMax(static_cast<T>(0));  // temp = max(-x, 0)
F
fengjiayi 已提交
253
    out.device(d) = -temp - (((-temp).exp() + (-x - temp).exp()).log());
254 255 256 257 258 259 260 261
  }
};

// Originally: f' = exp(-x) / (1 + exp(-x))
// For numerical stability: f' = exp(-x - max(-x, 0)) / (exp(-max(-x, 0)) +
// exp(-x - max(-x, 0)))
template <typename T>
struct LogSigmoidGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
262 263 264
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
265 266
    auto temp = (-x).cwiseMax(static_cast<T>(0));  // temp = max(-x, 0)
    dx.device(d) =
F
fengjiayi 已提交
267
        dout * ((-x - temp).exp() / ((-temp).exp() + (-x - temp).exp()));
268
  }
269 270

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
271 272
};

Q
qijun 已提交
273
// exp(x) = e^x
274 275
template <typename T>
struct ExpFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
276 277 278
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.exp();
Q
qijun 已提交
279 280 281
  }
};

282 283
template <typename T>
struct ExpGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
284 285 286 287
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * out;
Q
qijun 已提交
288
  }
289 290

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
Q
qijun 已提交
291 292
};

Q
qijun 已提交
293
// relu(x) = max(x, 0)
Q
qijun 已提交
294
template <typename T>
295
struct ReluFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
296 297 298
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.cwiseMax(static_cast<T>(0));
Q
qijun 已提交
299 300
  }
};
Q
qijun 已提交
301

Q
qijun 已提交
302
template <typename T>
303
struct ReluGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
304 305 306
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
D
dzhwinter 已提交
307
    dx.device(d) = dout * (out > static_cast<T>(0)).template cast<T>();
Q
qijun 已提交
308
  }
309 310

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
Q
qijun 已提交
311
};
Q
qijun 已提交
312

C
Clementine 已提交
313 314 315 316 317
// gelu(x) = 0.5 * x *  (1 + erf(x / sqrt(2)))
template <typename T>
struct GeluFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yihua Xu 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
// Because the execute or device context can not be deliver here, it keep the
// marco for NVCC.
#if defined(PADDLE_WITH_MKLML) && !defined(_WIN32) && !defined(__APPLE__) && \
    !defined(__OSX__) && !defined(PADDLE_WITH_CUDA)
    auto x_data = x.data();
    auto out_data = out.data();
    int n = std::min(x.size(), out.size());

    std::memset(out_data, 0, n * sizeof(T));
    math::CBlas<T>::AXPY(n, static_cast<T>(M_SQRT1_2), x_data, 1, out_data, 1);
    math::CBlas<T>::VMERF(n, out_data, out_data, VML_LA);
    for (int i = 0; i < n; i++) {
      out_data[i] += static_cast<T>(1);
    }
    math::CBlas<T>::VMUL(n, x_data, out_data, out_data);
    for (int i = 0; i < n; i++) {
      out_data[i] *= static_cast<T>(0.5);
    }
#else
337
    auto temp = (x * static_cast<T>(M_SQRT1_2)).erf();
C
Clementine 已提交
338
    out.device(d) = x * static_cast<T>(0.5) * (static_cast<T>(1) + temp);
Y
Yihua Xu 已提交
339
#endif
C
Clementine 已提交
340 341 342
  }
};

A
Adam 已提交
343 344
// gelu_grad(x) = dout * (0.5 * (1 + erf(x / sqrt(2))) + 0.5 * 2 / sqrt(pi) /
// sqrt(2) * x * exp (-0.5 * x^2))
C
Clementine 已提交
345 346 347 348 349
template <typename T>
struct GeluGradFunctor : BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
350 351 352 353
#if defined(PADDLE_WITH_MKLML) && !defined(_WIN32) && !defined(__APPLE__) && \
    !defined(__OSX__) && !defined(PADDLE_WITH_CUDA)
    auto x_data = x.data();
    auto dx_data = dx.data();
A
Adam 已提交
354
    auto dout_data = dout.data();
355 356
    int n = std::min(x.size(), dx.size());

A
Adam 已提交
357 358
    auto first = static_cast<T*>(std::malloc(n * sizeof(T)));
    std::memset(first, 0, n * sizeof(T));
359 360 361
    auto second = static_cast<T*>(std::malloc(n * sizeof(T)));
    std::memset(second, 0, n * sizeof(T));

A
Adam 已提交
362 363 364
    // first = (0.5 * (1 + erf(x / sqrt(2))))
    math::CBlas<T>::AXPY(n, static_cast<T>(M_SQRT1_2), x_data, 1, first, 1);
    math::CBlas<T>::VMERF(n, first, first, VML_LA);
365
    for (int i = 0; i < n; i++) {
A
Adam 已提交
366
      first[i] += static_cast<T>(1);
367
    }
A
Adam 已提交
368 369 370 371 372
    math::CBlas<T>::SCAL(n, static_cast<T>(0.5), first, 1);

    // second = (0.5 * 2/sqrt(pi) * 1/sqrt(2) * x * exp(-0.5 * x^2))
    math::CBlas<T>::VSQUARE(n, x_data, second);
    math::CBlas<T>::SCAL(n, -static_cast<T>(0.5), second, 1);
373 374
    math::CBlas<T>::VEXP(n, second, second);
    math::CBlas<T>::VMUL(n, x_data, second, second);
A
Adam 已提交
375 376
    math::CBlas<T>::SCAL(n, static_cast<T>(0.5 * M_2_SQRTPI * M_SQRT1_2),
                         second, 1);
377

A
Adam 已提交
378 379 380
    // dx = dout * (first + second);
    math::CBlas<T>::VADD(n, first, second, first);
    math::CBlas<T>::VMUL(n, dout_data, first, dx_data);
381

A
Adam 已提交
382
    std::free(first);
383 384
    std::free(second);
#else
385 386 387 388 389 390
    auto first = static_cast<T>(0.5) *
                 (static_cast<T>(1) + ((x * static_cast<T>(M_SQRT1_2)).erf()));

    auto second = static_cast<T>(0.5 * M_2_SQRTPI * M_SQRT1_2) * x *
                  (-static_cast<T>(0.5) * x.square()).exp();
    dx.device(d) = dout * (first + second);
391
#endif
C
Clementine 已提交
392
  }
393 394

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
C
Clementine 已提交
395 396
};

397
// tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
398 399
template <typename T>
struct TanhFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
400 401 402
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.tanh();
Q
qijun 已提交
403 404 405 406
  }
};

template <typename T>
407
struct TanhGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
408 409 410 411
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (static_cast<T>(1) - out * out);
Q
qijun 已提交
412
  }
413 414

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
Q
qijun 已提交
415 416
};

K
Kavya Srinet 已提交
417 418 419 420
// tanhshrink(x) = x - tanh(x)
// where tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
template <typename T>
struct TanhShrinkFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
421 422 423
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x - x.tanh();
K
Kavya Srinet 已提交
424 425 426 427 428
  }
};

template <typename T>
struct TanhShrinkGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
429 430 431 432
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (x.tanh() * x.tanh());
K
Kavya Srinet 已提交
433
  }
434 435

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
K
Kavya Srinet 已提交
436 437
};

438 439 440 441 442 443 444 445 446
// tanhshrink(x) = x - tanh(x)
// where tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
template <typename T>
struct HardShrinkFunctor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
F
fengjiayi 已提交
447 448
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Z
Zeng Jinle 已提交
449 450
    auto temp1 = (x < static_cast<T>(threshold * -1)).template cast<T>();
    auto temp2 = (x > static_cast<T>(threshold)).template cast<T>();
F
fengjiayi 已提交
451
    out.device(d) = x * (temp1 + temp2);
452 453 454 455 456 457 458 459 460 461 462
  }
};

template <typename T>
struct HardShrinkGradFunctor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
463 464 465
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Z
Zeng Jinle 已提交
466 467
    auto temp1 = (x < static_cast<T>(threshold * -1)).template cast<T>();
    auto temp2 = (x > static_cast<T>(threshold)).template cast<T>();
F
fengjiayi 已提交
468
    dx.device(d) = dout * (temp1 + temp2).template cast<T>();
469
  }
470 471

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
472 473
};

K
Kexin Zhao 已提交
474
// softshrink(x) = x - lambda, if x > lambda; x + lambda, if x < -lambda; 0
475 476 477 478 479 480 481 482
// otherwise
template <typename T>
struct SoftShrinkFunctor : public BaseActivationFunctor<T> {
  float lambda;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"lambda", &lambda}};
  }

F
fengjiayi 已提交
483 484
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
485
    auto lambdaT = static_cast<T>(lambda);
Z
Zeng Jinle 已提交
486 487
    auto temp1 = (x > lambdaT).template cast<T>();
    auto temp2 = (x < -lambdaT).template cast<T>();
F
fengjiayi 已提交
488
    out.device(d) = temp1 * (x - lambdaT) + temp2 * (x + lambdaT);
489 490 491 492 493 494 495 496 497
  }
};

template <typename T>
struct SoftShrinkGradFunctor : public BaseActivationFunctor<T> {
  float lambda;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"lambda", &lambda}};
  }
F
fengjiayi 已提交
498 499 500
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
501
    auto lambdaT = static_cast<T>(lambda);
Z
Zeng Jinle 已提交
502 503
    auto temp1 = (x > lambdaT).template cast<T>();
    auto temp2 = (x < -lambdaT).template cast<T>();
F
fengjiayi 已提交
504
    dx.device(d) = dout * (temp1 + temp2).template cast<T>();
505
  }
506 507

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
508 509
};

Q
qijun 已提交
510
// sqrt(x) = x^(1/2)
511 512
template <typename T>
struct SqrtFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
513 514 515
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.sqrt();
Q
qijun 已提交
516 517 518 519
  }
};

template <typename T>
520
struct SqrtGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
521 522 523
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
C
chengduo 已提交
524
    dx.device(d) = static_cast<T>(0.5) * dout / out;
Q
qijun 已提交
525
  }
526 527

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
Q
qijun 已提交
528 529
};

Z
zhoukunsheng 已提交
530 531 532 533 534 535 536 537 538 539 540 541 542 543
// rsqrt(x) = x^(-1/2)
template <typename T>
struct RsqrtFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.rsqrt();
  }
};

template <typename T>
struct RsqrtGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
544
    dx.device(d) = static_cast<T>(-0.5) * dout * out * out * out;
Z
zhoukunsheng 已提交
545
  }
Z
zhoukunsheng 已提交
546 547

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
Z
zhoukunsheng 已提交
548 549
};

D
dzhwinter 已提交
550 551 552
// ceil(x) = ceiling(x)
template <typename T>
struct CeilFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
553 554 555
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.ceil();
D
dzhwinter 已提交
556 557 558 559 560
  }
};

template <typename T>
struct ZeroGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
561 562 563
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Z
Zeng Jinle 已提交
564
    dx.device(d) = static_cast<T>(0) * out;
D
dzhwinter 已提交
565
  }
566 567

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kNoDeps; }
D
dzhwinter 已提交
568 569 570 571 572
};

// floor(x) = flooring(x)
template <typename T>
struct FloorFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
573 574
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Q
Qiao Longfei 已提交
575
    out.device(d) = x.floor();
D
dzhwinter 已提交
576 577 578
  }
};

C
add cos  
chengduoZH 已提交
579 580 581 582 583
template <typename T>
struct Sine {
  HOSTDEVICE T operator()(const T& val) const { return sin(val); }
};

584 585 586 587 588 589 590
template <>
struct Sine<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(sin(static_cast<float>(val)));
  }
};

C
add cos  
chengduoZH 已提交
591 592 593 594 595
template <typename T>
struct Cosine {
  HOSTDEVICE T operator()(const T& val) const { return cos(val); }
};

596 597 598 599 600 601 602
template <>
struct Cosine<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(cos(static_cast<float>(val)));
  }
};

C
add cos  
chengduoZH 已提交
603 604 605 606 607 608 609 610
// cosine'(x) = -sin(x)
template <typename T>
struct CosGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = -dout * x.unaryExpr(Sine<T>());
  }
611 612

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
C
add cos  
chengduoZH 已提交
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
};

// cosine(x) = cos(x)
template <typename T>
struct CosFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Cosine<T>());
  }
};

// sine'(x) = cos(x)
template <typename T>
struct SinGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * x.unaryExpr(Cosine<T>());
  }
632 633

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
C
add cos  
chengduoZH 已提交
634 635 636 637 638 639 640 641 642 643 644
};

// sine(x) = sin(x)
template <typename T>
struct SinFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Sine<T>());
  }
};

645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
template <typename T>
struct Acos {
  HOSTDEVICE T operator()(const T& val) const { return acos(val); }
};

template <>
struct Acos<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(acos(static_cast<float>(val)));
  }
};

// Acos(x) = acos(x)
template <typename T>
struct AcosFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Acos<T>());
  }
};

// acos'(x) = -1/sqrt(1-x^2)
template <typename T>
struct AcosGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) =
        -dout * static_cast<T>(1) / (static_cast<T>(1) - x.square()).sqrt();
  }
675 676

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
};

template <typename T>
struct Asin {
  HOSTDEVICE T operator()(const T& val) const { return asin(val); }
};

template <>
struct Asin<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(asin(static_cast<float>(val)));
  }
};

// Asin(x) = asin(x)
template <typename T>
struct AsinFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Asin<T>());
  }
};

// asin'(x) = 1/sqrt(1-x^2)
template <typename T>
struct AsinGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) =
        dout * static_cast<T>(1) / (static_cast<T>(1) - x.square()).sqrt();
  }
709 710

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
};

template <typename T>
struct Atan {
  HOSTDEVICE T operator()(const T& val) const { return atan(val); }
};

template <>
struct Atan<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(atan(static_cast<float>(val)));
  }
};

// Atan(x) = atan(x)
template <typename T>
struct AtanFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Atan<T>());
  }
};

// atan'(x) =  1 / (1 + x^2)
template <typename T>
struct AtanGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(1) / (static_cast<T>(1) + x.square());
  }
742 743

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
744 745
};

D
dzhwinter 已提交
746 747 748
// round(x) = [x]
template <typename T>
struct RoundFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
749 750 751
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.round();
D
dzhwinter 已提交
752 753 754
  }
};

Q
qijun 已提交
755
// abs(x) = |x|
756 757
template <typename T>
struct AbsFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
758 759 760
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.abs();
Q
qijun 已提交
761 762 763
  }
};

764 765
template <typename T>
struct AbsGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
766 767 768 769
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * x.sign();
770
  }
771 772

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepXOut; }
773 774
};

Q
qijun 已提交
775 776
// reciprocal(x) = 1 / x
template <typename T>
777
struct ReciprocalFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
778 779 780
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = static_cast<T>(1) / x;
Q
qijun 已提交
781 782 783
  }
};

784
template <typename T>
785
struct ReciprocalGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
786 787 788 789
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(-1) * out * out;
Q
qijun 已提交
790
  }
791 792

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
Q
qijun 已提交
793 794 795
};

// log(x) = natural logarithm of x
796 797
template <typename T>
struct LogFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
798 799 800
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.log();
Q
qijun 已提交
801 802 803
  }
};

804
template <typename T>
805
struct LogGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
806 807 808 809
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (static_cast<T>(1) / x);
Q
qijun 已提交
810
  }
811 812

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
Q
qijun 已提交
813 814 815
};

// square(x) = x^2
816 817
template <typename T>
struct SquareFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
818 819 820
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.square();
Q
qijun 已提交
821
  }
822
};
Q
qijun 已提交
823

824
template <typename T>
825
struct SquareGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
826 827 828 829
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(2) * x;
830
  }
831 832

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
833 834
};

835 836 837 838 839 840 841 842 843 844
template <typename T>
struct BReluFunctor : public BaseActivationFunctor<T> {
  float t_min;
  float t_max;

  // NOTE: Explicit hides the `BaseActivationFunctor<T>::GetAttrs`
  // not polymorphism for speed.
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"t_min", &t_min}, {"t_max", &t_max}};
  }
845

F
fengjiayi 已提交
846 847 848
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) =
Y
Yu Yang 已提交
849
        x.cwiseMax(static_cast<T>(t_min)).cwiseMin(static_cast<T>(t_max));
850 851 852
  }
};

853 854 855 856 857 858 859
template <typename T>
struct BReluGradFunctor : public BaseActivationFunctor<T> {
  float t_min;
  float t_max;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"t_min", &t_min}, {"t_max", &t_max}};
  }
F
fengjiayi 已提交
860 861 862 863
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout *
Y
Yu Yang 已提交
864 865
                   ((x > static_cast<T>(t_min)) * (x < static_cast<T>(t_max)))
                       .template cast<T>();
866
  }
867 868

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
869 870
};

871 872 873 874 875 876 877 878 879
// relu6(x) = min(max(0, x), 6)
template <typename T>
struct Relu6Functor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
880 881 882
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) =
Y
Yu Yang 已提交
883
        x.cwiseMax(static_cast<T>(0)).cwiseMin(static_cast<T>(threshold));
884 885 886 887 888 889 890 891 892
  }
};

template <typename T>
struct Relu6GradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
F
fengjiayi 已提交
893 894 895
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
D
dzhwinter 已提交
896 897 898 899
    dx.device(d) =
        dout *
        ((out > static_cast<T>(0)) * (out < static_cast<T>(threshold)))
            .template cast<T>();
900
  }
901 902

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
903 904
};

H
huangjun12 已提交
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
// HardSwish = min(max(0, x+3), 6) * x / 6
template <typename T>
struct HardSwishFunctor : public BaseActivationFunctor<T> {
  float threshold;
  float scale;
  float offset;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}, {"scale", &scale}, {"offset", &offset}};
  }

  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = (x + static_cast<T>(offset))
                        .cwiseMax(static_cast<T>(0))
                        .cwiseMin(static_cast<T>(threshold)) *
                    x / static_cast<T>(scale);
  }
};

template <typename T>
struct HardSwishGradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  float scale;
  float offset;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}, {"scale", &scale}, {"offset", &offset}};
  }
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    auto tmp = ((x + static_cast<T>(offset)) < static_cast<T>(threshold))
                   .template cast<T>();
    dx.device(d) =
        dout *
        (((x + static_cast<T>(offset)) > static_cast<T>(0)).template cast<T>() *
             (static_cast<T>(2) * x + static_cast<T>(offset)) /
             static_cast<T>(scale) * tmp +
         static_cast<T>(1) * (static_cast<T>(1) - tmp));
  }

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
};

K
kexinzhao 已提交
950 951 952 953 954 955 956
// softplus(x) = log(1 + exp(x))
// When x is a very large positive number, exp(x) may explode to inf,
// Using trick below for numerical stability
// https://hips.seas.harvard.edu/blog/2013/01/09/computing-log-sum-exp/
// Then: softplus(x) = max(x, 0) + log(exp(-max(x, 0)) + exp(x - max(x, 0)))
template <typename T>
struct SoftplusFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
957 958
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) {
K
kexinzhao 已提交
959
    auto temp = x.cwiseMax(static_cast<T>(0));  // temp = max(x, 0)
F
fengjiayi 已提交
960
    out.device(d) = temp + (((-temp).exp() + (x - temp).exp()).log());
K
kexinzhao 已提交
961 962 963 964 965 966 967 968 969
  }
};

// d(softplus(x))/dx = exp(x) / (1 + exp(x))
// For numerical stability:
// d(softplus(x))/dx = exp(x - max(x, 0)) / (exp(-max(x, 0)) +
// exp(x - max(x, 0)))
template <typename T>
struct SoftplusGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
970 971 972
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) {
K
kexinzhao 已提交
973
    auto temp = x.cwiseMax(static_cast<T>(0));  // temp = max(x, 0)
F
fengjiayi 已提交
974 975
    dx.device(d) =
        dout * ((x - temp).exp() / ((-temp).exp() + (x - temp).exp()));
K
kexinzhao 已提交
976
  }
977 978

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
K
kexinzhao 已提交
979 980
};

981 982
// softsign(x) = x / (1 + |x|)
template <typename T>
983
struct SoftsignFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
984 985 986
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) {
    out.device(d) = x / (static_cast<T>(1) + x.abs());
987 988 989 990 991 992
  }
};

// d(softsign(x))/dx = 1 / (1 + |x|)^2
// Taken from https://en.wikipedia.org/wiki/Activation_function
template <typename T>
993
struct SoftsignGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
994 995 996
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) {
997
    dx.device(d) =
F
fengjiayi 已提交
998
        dout * (static_cast<T>(1) / (static_cast<T>(1) + x.abs()).square());
999
  }
1000 1001

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
1002 1003
};

1004 1005 1006 1007 1008 1009
template <typename T>
struct SoftReluFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
1010

F
fengjiayi 已提交
1011 1012
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
1013 1014
    auto tmp = static_cast<T>(threshold);
    auto temp = x.cwiseMax(-tmp).cwiseMin(tmp);
F
fengjiayi 已提交
1015
    out.device(d) = (static_cast<T>(1) + temp.exp()).log();
1016 1017 1018
  }
};

1019 1020 1021 1022 1023 1024
template <typename T>
struct SoftReluGradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
F
fengjiayi 已提交
1025 1026 1027
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
1028
    auto tmp = static_cast<T>(threshold);
Z
Zeng Jinle 已提交
1029
    auto temp = ((out > -tmp) * (out < tmp)).template cast<T>();
F
fengjiayi 已提交
1030
    dx.device(d) = dout * (static_cast<T>(1) - (-out).exp()) * temp;
1031
  }
1032 1033

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
1034 1035
};

K
Kavya Srinet 已提交
1036 1037 1038 1039 1040 1041
template <typename T>
struct LeakyReluFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
1042

F
fengjiayi 已提交
1043 1044 1045
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.cwiseMax(static_cast<T>(alpha) * x);
1046 1047 1048
  }
};

K
Kavya Srinet 已提交
1049 1050 1051 1052 1053 1054
template <typename T>
struct LeakyReluGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
F
fengjiayi 已提交
1055 1056 1057
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Z
Zeng Jinle 已提交
1058
    auto temp1 =
1059 1060
        static_cast<T>(alpha) * (out <= static_cast<T>(0)).template cast<T>();
    auto temp2 = (out > static_cast<T>(0)).template cast<T>();
F
fengjiayi 已提交
1061
    dx.device(d) = dout * (temp1 + temp2).template cast<T>();
1062
  }
1063

Z
Zeng Jinle 已提交
1064
  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
1065 1066
};

1067 1068 1069 1070 1071 1072
template <typename T>
struct ELUFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
1073

F
fengjiayi 已提交
1074 1075 1076 1077 1078
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.cwiseMax(static_cast<T>(0)) +
                    (static_cast<T>(alpha) * (x.exp() - static_cast<T>(1)))
                        .cwiseMin(static_cast<T>(0));
1079 1080 1081
  }
};

1082 1083 1084 1085 1086 1087
template <typename T>
struct ELUGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
F
fengjiayi 已提交
1088 1089 1090 1091
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (x > static_cast<T>(0)).template cast<T>() +
1092
                   dout * static_cast<T>(alpha) * x.exp() *
Y
Yu Yang 已提交
1093
                       (x < static_cast<T>(0)).template cast<T>();
1094
  }
1095 1096

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
1097 1098
};

Q
QI JUN 已提交
1099
// FIXME(qijun) https://github.com/PaddlePaddle/Paddle/issues/5198
1100 1101 1102 1103 1104 1105
template <typename T>
struct PowFunctor : public BaseActivationFunctor<T> {
  float factor;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"factor", &factor}};
  }
F
fengjiayi 已提交
1106 1107 1108
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.pow(static_cast<T>(factor));
1109 1110 1111
  }
};

1112 1113 1114 1115 1116 1117
template <typename T>
struct PowGradFunctor : public BaseActivationFunctor<T> {
  float factor;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"factor", &factor}};
  }
F
fengjiayi 已提交
1118 1119 1120 1121
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(factor) *
C
chengduo 已提交
1122
                   x.pow(static_cast<T>(factor) - static_cast<T>(1));
1123
  }
1124 1125

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
1126 1127
};

1128 1129 1130 1131 1132 1133 1134
template <typename T>
struct STanhFunctor : public BaseActivationFunctor<T> {
  float scale_a;
  float scale_b;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"scale_a", &scale_a}, {"scale_b", &scale_b}};
  }
1135

F
fengjiayi 已提交
1136 1137 1138
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) =
Y
Yu Yang 已提交
1139
        static_cast<T>(scale_b) * (static_cast<T>(scale_a) * x).tanh();
1140 1141 1142
  }
};

1143 1144 1145 1146 1147 1148 1149
template <typename T>
struct STanhGradFunctor : public BaseActivationFunctor<T> {
  float scale_a;
  float scale_b;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"scale_a", &scale_a}, {"scale_b", &scale_b}};
  }
1150

F
fengjiayi 已提交
1151 1152 1153
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
1154 1155 1156
    auto a = static_cast<T>(scale_a);
    auto b = static_cast<T>(scale_b);
    auto temp = (a * x).tanh() * (a * x).tanh();
F
fengjiayi 已提交
1157
    dx.device(d) = dout * a * b * (static_cast<T>(1) - temp);
Q
qijun 已提交
1158
  }
1159 1160

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
Q
qijun 已提交
1161 1162
};

1163 1164 1165 1166 1167 1168 1169
template <typename T>
struct ThresholdedReluFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
1170 1171
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
1172
    auto th = static_cast<T>(threshold);
F
fengjiayi 已提交
1173
    out.device(d) = (x > th).template cast<T>() * x;
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
  }
};

template <typename T>
struct ThresholdedReluGradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
1184 1185 1186
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
1187
    auto th = static_cast<T>(threshold);
F
fengjiayi 已提交
1188
    dx.device(d) = dout * (x > th).template cast<T>();
1189
  }
1190 1191

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
1192 1193
};

1194 1195 1196 1197 1198 1199 1200 1201
template <typename T>
struct HardSigmoidFunctor : public BaseActivationFunctor<T> {
  float slope;
  float offset;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"slope", &slope}, {"offset", &offset}};
  }

F
fengjiayi 已提交
1202 1203
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
1204
    auto temp = x * static_cast<T>(slope) + static_cast<T>(offset);
F
fengjiayi 已提交
1205 1206
    out.device(d) =
        temp.cwiseMax(static_cast<T>(0)).cwiseMin(static_cast<T>(1));
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
  }
};

template <typename T>
struct HardSigmoidGradFunctor : public BaseActivationFunctor<T> {
  float slope;
  float offset;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"slope", &slope}, {"offset", &offset}};
  }
F
fengjiayi 已提交
1217 1218 1219 1220 1221 1222 1223
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout *
                   ((out > static_cast<T>(0)) * (out < static_cast<T>(1)))
                       .template cast<T>() *
                   static_cast<T>(slope);
1224
  }
1225 1226

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
1227 1228
};

A
Abhinav Arora 已提交
1229 1230 1231 1232 1233 1234 1235
template <typename T>
struct SwishFunctor : public BaseActivationFunctor<T> {
  float beta;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}};
  }

F
fengjiayi 已提交
1236 1237 1238
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x / (static_cast<T>(1) + (static_cast<T>(-beta) * x).exp());
A
Abhinav Arora 已提交
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
  }
};

template <typename T>
struct SwishGradFunctor : public BaseActivationFunctor<T> {
  float beta;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}};
  }

F
fengjiayi 已提交
1249 1250
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
1251
  void operator()(Device d, X x, Out fake_out, dOut dout, dX dx) const {
A
Abhinav Arora 已提交
1252
    auto temp1 = static_cast<T>(1) /
1253
                 (static_cast<T>(1) + (static_cast<T>(-beta) * x).exp());
1254
    auto out = x * temp1;
D
dzhwinter 已提交
1255 1256
    auto temp2 = temp1 * (static_cast<T>(1) - (static_cast<T>(beta) * out));
    dx.device(d) = dout * ((static_cast<T>(beta) * out) + temp2);
A
Abhinav Arora 已提交
1257
  }
1258 1259

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
A
Abhinav Arora 已提交
1260 1261
};

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
/*
 * in arguments: x, out, ddx
 * out arguments: ddout, dout, dx
 */
template <ActBwdOpFwdDeps kDepValue>
inline void ExtractActivationDoubleGradTensor(
    const framework::ExecutionContext& ctx, const framework::Tensor** X,
    const framework::Tensor** Out, const framework::Tensor** ddX,
    framework::Tensor** dX, framework::Tensor** dOut,
    framework::Tensor** ddOut) {
  auto ddx_var = ctx.InputVar("DDX");
  auto ddo_var = ctx.OutputVar("DDOut");
  PADDLE_ENFORCE(ddx_var != nullptr,
1275
                 "Cannot get input Variable Out, variable name = %s",
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
                 ctx.op().Input("DDX"));
  if (CanBeUsedBySelectedRows.count(ctx.op().Type())) {
    *ddX = paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*ddx_var);
    if (ddo_var) {
      *ddOut = paddle::framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(
          ddo_var);
    }
  } else {
    *ddX = ctx.Input<framework::Tensor>("DDX");
    if (ddo_var) {
      *ddOut = ctx.Output<framework::Tensor>("DDOut");
    }
  }
  PADDLE_ENFORCE(*ddX != nullptr,
1290
                 "Cannot get output tensor DDX, variable name = %s",
1291 1292 1293 1294 1295
                 ctx.op().Output("DDX"));

  if (static_cast<int>(kDepValue) & static_cast<int>(kDepX)) {
    auto x_var = ctx.InputVar("X");
    PADDLE_ENFORCE(x_var != nullptr,
1296
                   "Cannot get input Variable Out, variable name = %s",
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
                   ctx.op().Input("X"));
    auto dx_var = ctx.OutputVar("DX");
    if (CanBeUsedBySelectedRows.count(ctx.op().Type())) {
      *X = paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*x_var);
      if (dx_var) {
        *dX = paddle::framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(
            dx_var);
      }
    } else {
      *X = ctx.Input<framework::Tensor>("X");
      if (dx_var) {
        *dX = ctx.Output<framework::Tensor>("DX");
      }
    }
  } else {
1312
    VLOG(10) << "Inplace activation of Op: " << ctx.op().Type();
1313 1314
    *X = *ddX;
  }
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
  if (static_cast<int>(kDepValue) & static_cast<int>(kDepOut)) {
    auto out_var = ctx.InputVar("Out");
    PADDLE_ENFORCE(out_var != nullptr,
                   "Cannot get input tensor Out, variable name = %s",
                   ctx.op().Input("Out"));
    auto dout_var = ctx.OutputVar("DOut");
    if (CanBeUsedBySelectedRows.count(ctx.op().Type())) {
      *Out =
          paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*out_var);
      if (dout_var) {
        *dOut =
            paddle::framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(
                dout_var);
      }
    } else {
      *Out = ctx.Input<framework::Tensor>("Out");
      if (dout_var) {
        *dOut = ctx.Output<framework::Tensor>("DOut");
      }
    }
  } else {
    VLOG(10) << "Inplace activation of Op: " << ctx.op().Type();
    *Out = *ddX;
  }
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
}

template <typename DeviceContext, typename Functor>
class ActivationDoubleGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor *X, *Out, *ddX;
    X = Out = ddX = nullptr;
    framework::Tensor *ddOut, *dOut, *dX;
    ddOut = dOut = dX = nullptr;

    ExtractActivationDoubleGradTensor<Functor::FwdDeps()>(ctx, &X, &Out, &ddX,
                                                          &dX, &dOut, &ddOut);

    if (ddOut) ddOut->mutable_data<T>(ctx.GetPlace());
    if (dOut) dOut->mutable_data<T>(ctx.GetPlace());
    if (dX) dX->mutable_data<T>(Out->dims(), ctx.GetPlace());

    auto& place = ctx.template device_context<DeviceContext>();

    Functor functor;
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = ctx.Attr<float>(attr.first);
    }
    functor(place, X, Out, ddX, ddOut, dOut, dX);
  }
};

template <typename T>
struct ReluGradGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* X,
                  const framework::Tensor* Out, const framework::Tensor* ddX,
                  framework::Tensor* ddOut, framework::Tensor* dOut,
                  framework::Tensor* dX) const {
    auto* d = dev.eigen_device();
    auto ddx = framework::EigenVector<T>::Flatten(detail::Ref(ddX));
    auto out = framework::EigenVector<T>::Flatten(detail::Ref(Out));
    if (ddOut) {
      auto ddout = framework::EigenVector<T>::Flatten(detail::Ref(ddOut));
      ddout.device(*d) = ddx * (out > static_cast<T>(0)).template cast<T>();
    }
  }
  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
};

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
template <typename T>
struct LeakyReluGradGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* X,
                  const framework::Tensor* Out, const framework::Tensor* ddX,
                  framework::Tensor* ddOut, framework::Tensor* dOut,
                  framework::Tensor* dX) const {
    if (ddOut) {
Z
Zeng Jinle 已提交
1400 1401 1402
      auto* d = dev.eigen_device();
      auto ddx = framework::EigenVector<T>::Flatten(detail::Ref(ddX));
      auto out = framework::EigenVector<T>::Flatten(detail::Ref(Out));
1403
      auto ddout = framework::EigenVector<T>::Flatten(detail::Ref(ddOut));
1404 1405 1406 1407 1408
      ddout.device(*d) = ddx *
                         ((out > static_cast<T>(0)).template cast<T>() +
                          static_cast<T>(alpha) *
                              (out <= static_cast<T>(0)).template cast<T>())
                             .template cast<T>();
1409 1410
    }
  }
Z
Zeng Jinle 已提交
1411
  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
1412 1413
};

L
lvmengsi 已提交
1414 1415 1416 1417 1418 1419 1420 1421 1422
template <typename T>
struct SqrtGradGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* Out,
                  const framework::Tensor* ddX, framework::Tensor* ddOut,
                  framework::Tensor* dOut, const framework::Tensor* dX) const {
    auto* d = dev.eigen_device();
    auto ddx = framework::EigenVector<T>::Flatten(detail::Ref(ddX));
    auto out = framework::EigenVector<T>::Flatten(detail::Ref(Out));
1423 1424
    // sqrt GradGrad: ddy = 0.5 * ddx / y, dy = -1 * dx * ddx
    // calculate dy first, so ddy can inplace ddx
L
lvmengsi 已提交
1425 1426 1427 1428 1429
    if (dOut) {
      auto dx = framework::EigenVector<T>::Flatten(detail::Ref(dX));
      auto dout = framework::EigenVector<T>::Flatten(detail::Ref(dOut));
      dout.device(*d) = dx * ddx * static_cast<T>(-1) / out;
    }
1430 1431 1432 1433
    if (ddOut) {
      auto ddout = framework::EigenVector<T>::Flatten(detail::Ref(ddOut));
      ddout.device(*d) = ddx * static_cast<T>(0.5) / out;
    }
L
lvmengsi 已提交
1434 1435 1436 1437
  }
  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
};

1438 1439 1440 1441 1442 1443 1444 1445 1446
template <typename T>
struct SquareGradGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* X,
                  const framework::Tensor* ddX, framework::Tensor* ddOut,
                  const framework::Tensor* dOut, framework::Tensor* dX) const {
    auto* d = dev.eigen_device();
    auto ddx = framework::EigenVector<T>::Flatten(detail::Ref(ddX));
    auto x = framework::EigenVector<T>::Flatten(detail::Ref(X));
1447 1448
    // square GradGrad: ddy=2x*ddx, dx=2dy*ddx
    // calculate dx first, so ddy can inplace ddx
1449 1450 1451 1452 1453
    if (dX) {
      auto dx = framework::EigenVector<T>::Flatten(detail::Ref(dX));
      auto dout = framework::EigenVector<T>::Flatten(detail::Ref(dOut));
      dx.device(*d) = ddx * static_cast<T>(2) * dout;
    }
1454 1455 1456 1457
    if (ddOut) {
      auto ddout = framework::EigenVector<T>::Flatten(detail::Ref(ddOut));
      ddout.device(*d) = ddx * static_cast<T>(2) * x;
    }
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
  }
  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
};

// TODO(dengkaipeng): double gradient calculation for Square/Sqrt need
// DOut(dy) as input(not output), tensor extraction is different from
// others. Impliment extraction kernel seperately here.
inline void ExtractDoubleGradTensorWithInputDOut(
    const framework::ExecutionContext& ctx, const framework::Tensor** X,
    const framework::Tensor** ddX, framework::Tensor** dX,
    const framework::Tensor** dOut, framework::Tensor** ddOut) {
  // extract ddX(output), ddOut(input)
  auto ddx_var = ctx.InputVar("DDX");
  auto ddo_var = ctx.OutputVar("DDOut");
  PADDLE_ENFORCE(ddx_var != nullptr,
                 "Cannot get input Variable Out, variable name = %s",
                 ctx.op().Input("DDX"));
  *ddX = ctx.Input<framework::Tensor>("DDX");
  if (ddo_var) {
    *ddOut = ctx.Output<framework::Tensor>("DDOut");
  }
  PADDLE_ENFORCE(*ddX != nullptr,
                 "Cannot get output tensor DDX, variable name = %s",
                 ctx.op().Output("DDX"));

  // extract x(input), dx(output)
  auto x_var = ctx.InputVar("X");
  PADDLE_ENFORCE(x_var != nullptr,
                 "Cannot get input Variable Out, variable name = %s",
                 ctx.op().Input("X"));
  auto dx_var = ctx.OutputVar("DX");
  *X = ctx.Input<framework::Tensor>("X");
  if (dx_var) {
    *dX = ctx.Output<framework::Tensor>("DX");
  }

  // extract dOut(input)
  auto dout_var = ctx.InputVar("DOut");
  if (dout_var) {
    *dOut = ctx.Input<framework::Tensor>("DOut");
  }
}

template <typename DeviceContext, typename Functor>
class SquareDoubleGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor *X, *ddX, *dOut;
    X = ddX = dOut = nullptr;
    framework::Tensor *dX, *ddOut;
    dX = ddOut = nullptr;

    ExtractDoubleGradTensorWithInputDOut(ctx, &X, &ddX, &dX, &dOut, &ddOut);

L
lvmengsi 已提交
1514 1515
    if (dX) dX->mutable_data<T>(X->dims(), ctx.GetPlace());
    if (ddOut) ddOut->mutable_data<T>(ctx.GetPlace());
1516 1517 1518 1519 1520 1521 1522 1523

    auto& place = ctx.template device_context<DeviceContext>();

    Functor functor;
    functor(place, X, ddX, ddOut, dOut, dX);
  }
};

L
lvmengsi 已提交
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
template <typename DeviceContext, typename Functor>
class SqrtDoubleGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor *Out, *dX, *ddX;
    Out = dX = ddX = nullptr;
    framework::Tensor *ddOut, *dOut;
    ddOut = dOut = nullptr;

    // extract ddx(input), ddout(output)
    auto ddx_var = ctx.InputVar("DDX");
    auto ddo_var = ctx.OutputVar("DDOut");
    PADDLE_ENFORCE(ddx_var != nullptr,
                   "Cannot get input Variable DDX, variable name = %s",
                   ctx.op().Input("DDX"));
    ddX = ctx.Input<framework::Tensor>("DDX");
    if (ddo_var) {
      ddOut = ctx.Output<framework::Tensor>("DDOut");
    }
    PADDLE_ENFORCE(ddX != nullptr,
                   "Cannot get input Variable DDX, variable name = %s",
                   ctx.op().Input("DDX"));

    // extract out(input), dout(output)
    auto out_var = ctx.InputVar("Out");
    PADDLE_ENFORCE(out_var != nullptr,
                   "Cannot get input Variable Out, variable name = %s",
                   ctx.op().Input("Out"));
    auto dout_var = ctx.OutputVar("DOut");
    Out = ctx.Input<framework::Tensor>("Out");
    if (dout_var) {
      dOut = ctx.Output<framework::Tensor>("DOut");
    }

    // extract dx(input)
    auto dx_var = ctx.InputVar("DX");
    PADDLE_ENFORCE(dx_var != nullptr,
                   "Cannot get input Variable DX, variable name = %s",
                   ctx.op().Input("DX"));
    if (dx_var) {
      dX = ctx.Input<framework::Tensor>("DX");
    }

    if (dOut) dOut->mutable_data<T>(Out->dims(), ctx.GetPlace());
    if (ddOut) ddOut->mutable_data<T>(Out->dims(), ctx.GetPlace());

    auto& place = ctx.template device_context<DeviceContext>();

    Functor functor;
    functor(place, Out, ddX, ddOut, dOut, dX);
  }
};

1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
template <typename DeviceContext, typename Functor>
class PowKernel : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;

  void Compute(const framework::ExecutionContext& context) const override {
    const framework::Tensor* X = nullptr;
    framework::Tensor* Out = nullptr;
    ExtractActivationTensor(context, &X, &Out);
    Out->mutable_data<T>(context.GetPlace());

    auto x = framework::EigenVector<T>::Flatten(detail::Ref(X));
    auto out = framework::EigenVector<T>::Flatten(detail::Ref(Out));
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();
    Functor functor;
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
    // get FactorTensor
    auto* factor_tensor = context.HasInput("FactorTensor")
                              ? context.Input<framework::Tensor>("FactorTensor")
                              : nullptr;
    if (factor_tensor) {
      auto* factor_data = factor_tensor->data<float>();
      framework::Tensor cpu_factor_tensor;
      if (platform::is_gpu_place(factor_tensor->place())) {
        TensorCopySync(*factor_tensor, platform::CPUPlace(),
                       &cpu_factor_tensor);
        factor_data = cpu_factor_tensor.data<float>();
      }
      auto factor =
          std::vector<float>(factor_data, factor_data + factor_tensor->numel());
      PADDLE_ENFORCE_EQ(factor.size(), 1,
                        "The shape of factor(tensor) MUST BE [1].");
      for (auto& attr : attrs) {
        *attr.second = factor[0];
      }
    }
    functor(*place, x, out);
  }
};

template <typename DeviceContext, typename Functor>
class PowGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& context) const override {
    const framework::Tensor *X, *Out, *dOut;
    framework::Tensor* dX = nullptr;
    X = Out = dOut = nullptr;
    ExtractActivationGradTensor<Functor::FwdDeps()>(context, &X, &Out, &dOut,
                                                    &dX);
    dX->mutable_data<T>(context.GetPlace());
    auto dout = framework::EigenVector<T>::Flatten(detail::Ref(dOut));
    auto out = framework::EigenVector<T>::Flatten(detail::Ref(Out));
    auto dx = framework::EigenVector<T>::Flatten(detail::Ref(dX));
    auto x = framework::EigenVector<T>::Flatten(detail::Ref(X));
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();
    Functor functor;
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
    // get FactorTensor
    auto* factor_tensor =
        context.HasInput("FactorTensor")
            ? context.Input<framework::LoDTensor>("FactorTensor")
            : nullptr;
    if (factor_tensor) {
      auto* factor_data = factor_tensor->data<float>();
      framework::Tensor cpu_factor_tensor;
      if (platform::is_gpu_place(factor_tensor->place())) {
        TensorCopySync(*factor_tensor, platform::CPUPlace(),
                       &cpu_factor_tensor);
        factor_data = cpu_factor_tensor.data<float>();
      }
      auto factor =
          std::vector<float>(factor_data, factor_data + factor_tensor->numel());
      PADDLE_ENFORCE_EQ(factor.size(), 1,
                        "The shape of factor(tensor) MUST BE [1].");
      for (auto& attr : attrs) {
        *attr.second = factor[0];
      }
    }
    functor(*place, x, out, dout, dx);
  }
};
Q
qijun 已提交
1670 1671
}  // namespace operators
}  // namespace paddle
1672

1673 1674 1675 1676 1677 1678 1679 1680
#define FOR_EACH_ACTIVATION_OP(__macro)                                       \
  __macro(sigmoid, Sigmoid, SigmoidFunctor, SigmoidGradFunctor);              \
  __macro(logsigmoid, LogSigmoid, LogSigmoidFunctor, LogSigmoidGradFunctor);  \
  __macro(exp, Exp, ExpFunctor, ExpGradFunctor);                              \
  __macro(gelu, Gelu, GeluFunctor, GeluGradFunctor);                          \
  __macro(tanh, Tanh, TanhFunctor, TanhGradFunctor);                          \
  __macro(atan, Atan, AtanFunctor, AtanGradFunctor);                          \
  __macro(softshrink, SoftShrink, SoftShrinkFunctor, SoftShrinkGradFunctor);  \
Z
zhoukunsheng 已提交
1681
  __macro(rsqrt, Rsqrt, RsqrtFunctor, RsqrtGradFunctor);                      \
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
  __macro(abs, Abs, AbsFunctor, AbsGradFunctor);                              \
  __macro(ceil, Ceil, CeilFunctor, ZeroGradFunctor);                          \
  __macro(floor, Floor, FloorFunctor, ZeroGradFunctor);                       \
  __macro(cos, Cos, CosFunctor, CosGradFunctor);                              \
  __macro(acos, Acos, AcosFunctor, AcosGradFunctor);                          \
  __macro(sin, Sin, SinFunctor, SinGradFunctor);                              \
  __macro(asin, Asin, AsinFunctor, AsinGradFunctor);                          \
  __macro(round, Round, RoundFunctor, ZeroGradFunctor);                       \
  __macro(reciprocal, Reciprocal, ReciprocalFunctor, ReciprocalGradFunctor);  \
  __macro(log, Log, LogFunctor, LogGradFunctor);                              \
  __macro(brelu, BRelu, BReluFunctor, BReluGradFunctor);                      \
  __macro(soft_relu, SoftRelu, SoftReluFunctor, SoftReluGradFunctor);         \
  __macro(stanh, STanh, STanhFunctor, STanhGradFunctor);                      \
  __macro(softplus, Softplus, SoftplusFunctor, SoftplusGradFunctor);          \
  __macro(softsign, Softsign, SoftsignFunctor, SoftsignGradFunctor);          \
  __macro(relu6, Relu6, Relu6Functor, Relu6GradFunctor);                      \
  __macro(tanh_shrink, TanhShrink, TanhShrinkFunctor, TanhShrinkGradFunctor); \
  __macro(elu, ELU, ELUFunctor, ELUGradFunctor);                              \
  __macro(hard_shrink, HardShrink, HardShrinkFunctor, HardShrinkGradFunctor); \
  __macro(hard_sigmoid, HardSigmoid, HardSigmoidFunctor,                      \
          HardSigmoidGradFunctor);                                            \
  __macro(swish, Swish, SwishFunctor, SwishGradFunctor);                      \
  __macro(thresholded_relu, ThresholdedRelu, ThresholdedReluFunctor,          \
H
huangjun12 已提交
1705 1706
          ThresholdedReluGradFunctor);                                        \
  __macro(hard_swish, HardSwish, HardSwishFunctor, HardSwishGradFunctor);