activation_op.h 35.4 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
11 12

#pragma once
D
dzhwinter 已提交
13 14 15
#include <glog/logging.h>
#include <string>
#include <unordered_set>
16 17
#include <utility>
#include <vector>
18

C
Clementine 已提交
19 20 21 22 23
#include <cmath>
#ifndef _USE_MATH_DEFINES
#define _USE_MATH_DEFINES
#endif

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
27
#include "paddle/fluid/platform/float16.h"
Q
qijun 已提交
28

29 30 31 32
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

Q
qijun 已提交
33 34 35
namespace paddle {
namespace operators {

D
dzhwinter 已提交
36 37 38 39 40 41 42 43
/* Use ugly global variable, for the using in python layer side
   Please refer to the layer_helper.py and get the details.
 */
static std::unordered_set<std::string> InplaceOpSet = {
    "sigmoid", "exp",        "relu",  "tanh",      "sqrt",         "ceil",
    "floor",   "reciprocal", "relu6", "soft_relu", "hard_sigmoid",
};

C
chengduo 已提交
44 45 46 47 48 49
/* The following operator can be used to process SelectedRows, because the
 * output of those operator for zero is zero too.
 */
static std::unordered_set<std::string> CanBeUsedBySelectedRows = {
    "abs", "abs_grad", "square", "square_grad", "sqrt", "sqrt_grad"};

D
dzhwinter 已提交
50 51
static bool IsInplace(std::string op) { return InplaceOpSet.count(op); }

Q
QI JUN 已提交
52
template <typename DeviceContext, typename Functor>
53 54
class ActivationKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
Q
qijun 已提交
55
 public:
56 57
  using T = typename Functor::ELEMENT_TYPE;

Q
qijun 已提交
58
  void Compute(const framework::ExecutionContext& context) const override {
C
chengduo 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
    auto x_var = context.InputVar("X");
    auto out_var = context.OutputVar("Out");
    PADDLE_ENFORCE(x_var != nullptr,
                   "Cannot get input Variable X, variable name = %s",
                   context.op().Input("X"));
    PADDLE_ENFORCE(out_var != nullptr,
                   "Cannot get output Variable Out, variable name = %s",
                   context.op().Output("Out"));

    framework::Tensor X, *Out;

    if (CanBeUsedBySelectedRows.count(context.op().Type())) {
      X = detail::Ref(
          paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*x_var),
          "Cannot get input Tensor X, variable name = %s",
          context.op().Input("X"));
      Out = paddle::framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(
          out_var);
    } else {
      X = detail::Ref(context.Input<framework::Tensor>("X"),
                      "Cannot get input Tensor X, variable name = %s",
                      context.op().Input("X"));
      Out = context.Output<framework::Tensor>("Out");
    }

    PADDLE_ENFORCE(Out != nullptr,
                   "Cannot get output tensor Out, variable name = %s",
                   context.op().Output("Out"));

    Out->mutable_data<T>(context.GetPlace());
Y
Update  
Yang Yu 已提交
89
    auto x = framework::EigenVector<T>::Flatten(X);
C
chengduo 已提交
90
    auto out = framework::EigenVector<T>::Flatten(*Out);
Q
QI JUN 已提交
91 92
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();
Q
qijun 已提交
93
    Functor functor;
94 95 96 97 98

    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
F
fengjiayi 已提交
99
    functor(*place, x, out);
Q
qijun 已提交
100 101 102
  }
};

Q
QI JUN 已提交
103
template <typename DeviceContext, typename Functor>
104 105
class ActivationGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
Q
qijun 已提交
106
 public:
107
  using T = typename Functor::ELEMENT_TYPE;
Q
qijun 已提交
108
  void Compute(const framework::ExecutionContext& context) const override {
C
chengduo 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    auto out_var = context.InputVar("Out");
    auto out_grad_var = context.InputVar(framework::GradVarName("Out"));
    auto x_grad_var = context.OutputVar(framework::GradVarName("X"));
    PADDLE_ENFORCE(out_var != nullptr,
                   "Cannot get input Variable Out, variable name = %s",
                   context.op().Input("Out"));
    PADDLE_ENFORCE(out_grad_var != nullptr,
                   "Cannot get input Variable %s, variable name = %s",
                   framework::GradVarName("Out"),
                   context.op().Input(framework::GradVarName("Out")));
    PADDLE_ENFORCE(x_grad_var != nullptr,
                   "Cannot get output Variable %s, variable name = %s",
                   framework::GradVarName("X"),
                   context.op().Output(framework::GradVarName("X")));

    framework::Tensor Out, dOut, *dX;
    if (CanBeUsedBySelectedRows.count(context.op().Type())) {
      Out = detail::Ref(
          paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*out_var),
          "Cannot get input Tensor Out, variable name = %s",
          context.op().Input("Out"));
      dOut =
          detail::Ref(paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(
                          *out_grad_var),
                      "Cannot get input Tensor %s, variable name = %s",
                      framework::GradVarName("Out"),
                      context.op().Input(framework::GradVarName("Out")));
      dX = paddle::framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(
          x_grad_var);
    } else {
      Out = detail::Ref(context.Input<framework::Tensor>("Out"),
                        "Cannot get input Tensor Out, variable name = %s",
                        context.op().Input("Out"));
      dOut = detail::Ref(
          context.Input<framework::Tensor>(framework::GradVarName("Out")),
          "Cannot get input Tensor %s, variable name = %s",
          framework::GradVarName("Out"),
          context.op().Input(framework::GradVarName("Out")));
      dX = context.Output<framework::Tensor>(framework::GradVarName("X"));
    }
    PADDLE_ENFORCE(dX != nullptr,
                   "Cannot get output tensor %s, variable name = %s",
                   framework::GradVarName("X"),
                   context.op().Output(framework::GradVarName("X")));
Q
qijun 已提交
153 154
    dX->mutable_data<T>(context.GetPlace());

C
chengduo 已提交
155 156
    auto dout = framework::EigenVector<T>::Flatten(dOut);
    auto out = framework::EigenVector<T>::Flatten(Out);
Q
qijun 已提交
157
    auto dx = framework::EigenVector<T>::Flatten(*dX);
Q
QI JUN 已提交
158 159
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();
Q
qijun 已提交
160
    Functor functor;
161 162 163 164
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
D
dzhwinter 已提交
165 166
    bool inplace = functor.Inplace();
    if (!inplace) {
C
chengduo 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179
      auto x_var = context.InputVar("X");
      PADDLE_ENFORCE(x_var != nullptr,
                     "Cannot get input tensor X, variable name = %s",
                     context.op().Input("X"));
      framework::Tensor X;
      if (CanBeUsedBySelectedRows.count(context.op().Type())) {
        X = detail::Ref(
            paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*x_var));
      } else {
        X = detail::Ref(context.Input<framework::Tensor>("X"));
      }

      auto x = framework::EigenVector<T>::Flatten(X);
D
dzhwinter 已提交
180 181
      functor(*place, x, out, dout, dx);
    } else {
M
minqiyang 已提交
182
      VLOG(10) << " Inplace activation ";
D
dzhwinter 已提交
183 184 185
      auto x = framework::EigenVector<T>::Flatten(*dX);
      functor(*place, x, out, dout, dx);
    }
Q
qijun 已提交
186 187 188
  }
};

189 190 191 192 193 194 195
template <typename T>
struct BaseActivationFunctor {
  using ELEMENT_TYPE = T;

  using AttrPair = std::vector<std::pair<const char*, float*>>;

  AttrPair GetAttrs() { return AttrPair(); }
D
dzhwinter 已提交
196 197 198 199 200 201 202 203

  /* NOTE(*): Output reuse X memory if X is not dependented by its Gradient.
     For example, sigmoid op's gradient didn't involve x, so its output can
     reuse
     input memory. But abs op's gradient use x, it can not be inplaced.
     gradient did use x.
   */
  bool Inplace() const { return false; }
204 205
};

206
// sigmoid(x) = 1 / (1 + exp(-x))
Q
qijun 已提交
207
template <typename T>
208
struct SigmoidFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
209 210 211
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = static_cast<T>(1) / (static_cast<T>(1) + (-x).exp());
Q
qijun 已提交
212 213 214
  }
};

215
template <typename T>
216
struct SigmoidGradFunctor : public BaseActivationFunctor<T> {
D
dzhwinter 已提交
217
  bool Inplace() const { return IsInplace("sigmoid"); }
F
fengjiayi 已提交
218 219 220 221
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * out * (static_cast<T>(1) - out);
Q
qijun 已提交
222 223 224
  }
};

225 226 227 228
// Originally: logsigmoid(x) = -log (1 + exp(-x))
// For numerical stability, we can use the log-sum-exp trick:
// https://hips.seas.harvard.edu/blog/2013/01/09/computing-log-sum-exp/
// We can rewrite the above equation as:
F
fengjiayi 已提交
229
// out = -log( exp(0) + exp(-x)) [since exp(0) = 1]
230 231 232 233 234 235 236 237 238 239
//   = -log( exp(max(-x, 0) - max(-x, 0)) + exp(-x + max(-x, 0) - max(-x, 0)))
//   = -log( exp(max(-x, 0)) * exp(-max(-x, 0)) - exp(max(-x, 0)) * exp(-x -
//           max(-x, 0)))
//   = -log( exp(max(-x, 0)) * (exp(-max(-x, 0)) + exp(-x - max(-x, 0))))
//   = -log( exp(max(-x, 0)) - log(exp(-max(-x, 0)) + exp(-x - max(-x, 0)))
//
// Hence, logsigmoid(x) = - (max(-x, 0) + log(exp(-max(-x, 0))
// + exp(-x - max(-x, 0))))
template <typename T>
struct LogSigmoidFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
240 241
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
242
    auto temp = (-x).cwiseMax(static_cast<T>(0));  // temp = max(-x, 0)
F
fengjiayi 已提交
243
    out.device(d) = -temp - (((-temp).exp() + (-x - temp).exp()).log());
244 245 246 247 248 249 250 251
  }
};

// Originally: f' = exp(-x) / (1 + exp(-x))
// For numerical stability: f' = exp(-x - max(-x, 0)) / (exp(-max(-x, 0)) +
// exp(-x - max(-x, 0)))
template <typename T>
struct LogSigmoidGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
252 253 254
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
255 256
    auto temp = (-x).cwiseMax(static_cast<T>(0));  // temp = max(-x, 0)
    dx.device(d) =
F
fengjiayi 已提交
257
        dout * ((-x - temp).exp() / ((-temp).exp() + (-x - temp).exp()));
258 259 260
  }
};

Q
qijun 已提交
261
// exp(x) = e^x
262 263
template <typename T>
struct ExpFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
264 265 266
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.exp();
Q
qijun 已提交
267 268 269
  }
};

270 271
template <typename T>
struct ExpGradFunctor : public BaseActivationFunctor<T> {
D
dzhwinter 已提交
272
  bool Inplace() const { return IsInplace("exp"); }
F
fengjiayi 已提交
273 274 275 276
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * out;
Q
qijun 已提交
277 278 279
  }
};

Q
qijun 已提交
280
// relu(x) = max(x, 0)
Q
qijun 已提交
281
template <typename T>
282
struct ReluFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
283 284 285
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.cwiseMax(static_cast<T>(0));
Q
qijun 已提交
286 287
  }
};
Q
qijun 已提交
288

Q
qijun 已提交
289
template <typename T>
290
struct ReluGradFunctor : public BaseActivationFunctor<T> {
D
dzhwinter 已提交
291
  bool Inplace() const { return IsInplace("relu"); }
F
fengjiayi 已提交
292 293 294
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
D
dzhwinter 已提交
295
    dx.device(d) = dout * (out > static_cast<T>(0)).template cast<T>();
Q
qijun 已提交
296 297
  }
};
Q
qijun 已提交
298

C
Clementine 已提交
299 300 301 302 303
// gelu(x) = 0.5 * x *  (1 + erf(x / sqrt(2)))
template <typename T>
struct GeluFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
304
    auto temp = (x * static_cast<T>(M_SQRT1_2)).erf();
C
Clementine 已提交
305 306 307 308 309 310 311 312 313
    out.device(d) = x * static_cast<T>(0.5) * (static_cast<T>(1) + temp);
  }
};

template <typename T>
struct GeluGradFunctor : BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
314 315 316 317 318 319
    auto first = static_cast<T>(0.5) *
                 (static_cast<T>(1) + ((x * static_cast<T>(M_SQRT1_2)).erf()));

    auto second = static_cast<T>(0.5 * M_2_SQRTPI * M_SQRT1_2) * x *
                  (-static_cast<T>(0.5) * x.square()).exp();
    dx.device(d) = dout * (first + second);
C
Clementine 已提交
320 321 322
  }
};

323
// tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
324 325
template <typename T>
struct TanhFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
326 327 328
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.tanh();
Q
qijun 已提交
329 330 331 332
  }
};

template <typename T>
333
struct TanhGradFunctor : public BaseActivationFunctor<T> {
D
dzhwinter 已提交
334
  bool Inplace() const { return IsInplace("tanh"); }
F
fengjiayi 已提交
335 336 337 338
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (static_cast<T>(1) - out * out);
Q
qijun 已提交
339 340 341
  }
};

K
Kavya Srinet 已提交
342 343 344 345
// tanhshrink(x) = x - tanh(x)
// where tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
template <typename T>
struct TanhShrinkFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
346 347 348
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x - x.tanh();
K
Kavya Srinet 已提交
349 350 351 352 353
  }
};

template <typename T>
struct TanhShrinkGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
354 355 356 357
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (x.tanh() * x.tanh());
K
Kavya Srinet 已提交
358 359 360
  }
};

361 362 363 364 365 366 367 368 369
// tanhshrink(x) = x - tanh(x)
// where tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
template <typename T>
struct HardShrinkFunctor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
F
fengjiayi 已提交
370 371
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
372 373
    auto temp1 = (x < static_cast<T>(threshold * -1)).template cast<T>().eval();
    auto temp2 = (x > static_cast<T>(threshold)).template cast<T>().eval();
F
fengjiayi 已提交
374
    out.device(d) = x * (temp1 + temp2);
375 376 377 378 379 380 381 382 383 384 385
  }
};

template <typename T>
struct HardShrinkGradFunctor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
386 387 388
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
389 390
    auto temp1 = (x < static_cast<T>(threshold * -1)).template cast<T>().eval();
    auto temp2 = (x > static_cast<T>(threshold)).template cast<T>().eval();
F
fengjiayi 已提交
391
    dx.device(d) = dout * (temp1 + temp2).template cast<T>();
392 393 394
  }
};

K
Kexin Zhao 已提交
395
// softshrink(x) = x - lambda, if x > lambda; x + lambda, if x < -lambda; 0
396 397 398 399 400 401 402 403
// otherwise
template <typename T>
struct SoftShrinkFunctor : public BaseActivationFunctor<T> {
  float lambda;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"lambda", &lambda}};
  }

F
fengjiayi 已提交
404 405
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
406 407 408
    auto lambdaT = static_cast<T>(lambda);
    auto temp1 = (x > lambdaT).template cast<T>().eval();
    auto temp2 = (x < -lambdaT).template cast<T>().eval();
F
fengjiayi 已提交
409
    out.device(d) = temp1 * (x - lambdaT) + temp2 * (x + lambdaT);
410 411 412 413 414 415 416 417 418
  }
};

template <typename T>
struct SoftShrinkGradFunctor : public BaseActivationFunctor<T> {
  float lambda;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"lambda", &lambda}};
  }
F
fengjiayi 已提交
419 420 421
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
422 423 424
    auto lambdaT = static_cast<T>(lambda);
    auto temp1 = (x > lambdaT).template cast<T>().eval();
    auto temp2 = (x < -lambdaT).template cast<T>().eval();
F
fengjiayi 已提交
425
    dx.device(d) = dout * (temp1 + temp2).template cast<T>();
426 427 428
  }
};

Q
qijun 已提交
429
// sqrt(x) = x^(1/2)
430 431
template <typename T>
struct SqrtFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
432 433 434
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.sqrt();
Q
qijun 已提交
435 436 437 438
  }
};

template <typename T>
439
struct SqrtGradFunctor : public BaseActivationFunctor<T> {
D
dzhwinter 已提交
440
  bool Inplace() const { return IsInplace("sqrt"); }
F
fengjiayi 已提交
441 442 443
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
C
chengduo 已提交
444
    dx.device(d) = static_cast<T>(0.5) * dout / out;
Q
qijun 已提交
445 446 447
  }
};

D
dzhwinter 已提交
448 449 450
// ceil(x) = ceiling(x)
template <typename T>
struct CeilFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
451 452 453
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.ceil();
D
dzhwinter 已提交
454 455 456 457 458
  }
};

template <typename T>
struct ZeroGradFunctor : public BaseActivationFunctor<T> {
D
dzhwinter 已提交
459
  bool Inplace() const { return IsInplace("ceil"); }
F
fengjiayi 已提交
460 461 462
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
D
dzhwinter 已提交
463
    dx.device(d) = static_cast<T>(0) / out;
D
dzhwinter 已提交
464 465 466 467 468 469
  }
};

// floor(x) = flooring(x)
template <typename T>
struct FloorFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
470 471
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Q
Qiao Longfei 已提交
472
    out.device(d) = x.floor();
D
dzhwinter 已提交
473 474 475
  }
};

C
add cos  
chengduoZH 已提交
476 477 478 479 480
template <typename T>
struct Sine {
  HOSTDEVICE T operator()(const T& val) const { return sin(val); }
};

481 482 483 484 485 486 487
template <>
struct Sine<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(sin(static_cast<float>(val)));
  }
};

C
add cos  
chengduoZH 已提交
488 489 490 491 492
template <typename T>
struct Cosine {
  HOSTDEVICE T operator()(const T& val) const { return cos(val); }
};

493 494 495 496 497 498 499
template <>
struct Cosine<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(cos(static_cast<float>(val)));
  }
};

C
add cos  
chengduoZH 已提交
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
// cosine'(x) = -sin(x)
template <typename T>
struct CosGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = -dout * x.unaryExpr(Sine<T>());
  }
};

// cosine(x) = cos(x)
template <typename T>
struct CosFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Cosine<T>());
  }
};

// sine'(x) = cos(x)
template <typename T>
struct SinGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * x.unaryExpr(Cosine<T>());
  }
};

// sine(x) = sin(x)
template <typename T>
struct SinFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Sine<T>());
  }
};

D
dzhwinter 已提交
538 539 540
// round(x) = [x]
template <typename T>
struct RoundFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
541 542 543
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.round();
D
dzhwinter 已提交
544 545 546
  }
};

Q
qijun 已提交
547
// abs(x) = |x|
548 549
template <typename T>
struct AbsFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
550 551 552
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.abs();
Q
qijun 已提交
553 554 555
  }
};

556 557
template <typename T>
struct AbsGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
558 559 560 561
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * x.sign();
562 563 564
  }
};

Q
qijun 已提交
565 566
// reciprocal(x) = 1 / x
template <typename T>
567
struct ReciprocalFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
568 569 570
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = static_cast<T>(1) / x;
Q
qijun 已提交
571 572 573
  }
};

574
template <typename T>
575
struct ReciprocalGradFunctor : public BaseActivationFunctor<T> {
D
dzhwinter 已提交
576
  bool Inplace() const { return IsInplace("reciprocal"); }
F
fengjiayi 已提交
577 578 579 580
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(-1) * out * out;
Q
qijun 已提交
581 582 583 584
  }
};

// log(x) = natural logarithm of x
585 586
template <typename T>
struct LogFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
587 588 589
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.log();
Q
qijun 已提交
590 591 592
  }
};

593
template <typename T>
594
struct LogGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
595 596 597 598
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (static_cast<T>(1) / x);
Q
qijun 已提交
599 600 601 602
  }
};

// square(x) = x^2
603 604
template <typename T>
struct SquareFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
605 606 607
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.square();
Q
qijun 已提交
608
  }
609
};
Q
qijun 已提交
610

611
template <typename T>
612
struct SquareGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
613 614 615 616
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(2) * x;
617 618 619
  }
};

620 621 622 623 624 625 626 627 628 629
template <typename T>
struct BReluFunctor : public BaseActivationFunctor<T> {
  float t_min;
  float t_max;

  // NOTE: Explicit hides the `BaseActivationFunctor<T>::GetAttrs`
  // not polymorphism for speed.
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"t_min", &t_min}, {"t_max", &t_max}};
  }
630

F
fengjiayi 已提交
631 632 633
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) =
Y
Yu Yang 已提交
634
        x.cwiseMax(static_cast<T>(t_min)).cwiseMin(static_cast<T>(t_max));
635 636 637
  }
};

638 639 640 641 642 643 644
template <typename T>
struct BReluGradFunctor : public BaseActivationFunctor<T> {
  float t_min;
  float t_max;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"t_min", &t_min}, {"t_max", &t_max}};
  }
F
fengjiayi 已提交
645 646 647 648
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout *
Y
Yu Yang 已提交
649 650
                   ((x > static_cast<T>(t_min)) * (x < static_cast<T>(t_max)))
                       .template cast<T>();
651 652 653
  }
};

654 655 656 657 658 659 660 661 662
// relu6(x) = min(max(0, x), 6)
template <typename T>
struct Relu6Functor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
663 664 665
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) =
Y
Yu Yang 已提交
666
        x.cwiseMax(static_cast<T>(0)).cwiseMin(static_cast<T>(threshold));
667 668 669 670 671 672 673 674 675
  }
};

template <typename T>
struct Relu6GradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
D
dzhwinter 已提交
676
  bool Inplace() const { return IsInplace("relu6"); }
F
fengjiayi 已提交
677 678 679
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
D
dzhwinter 已提交
680 681 682 683
    dx.device(d) =
        dout *
        ((out > static_cast<T>(0)) * (out < static_cast<T>(threshold)))
            .template cast<T>();
684 685 686
  }
};

K
kexinzhao 已提交
687 688 689 690 691 692 693
// softplus(x) = log(1 + exp(x))
// When x is a very large positive number, exp(x) may explode to inf,
// Using trick below for numerical stability
// https://hips.seas.harvard.edu/blog/2013/01/09/computing-log-sum-exp/
// Then: softplus(x) = max(x, 0) + log(exp(-max(x, 0)) + exp(x - max(x, 0)))
template <typename T>
struct SoftplusFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
694 695
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) {
K
kexinzhao 已提交
696
    auto temp = x.cwiseMax(static_cast<T>(0));  // temp = max(x, 0)
F
fengjiayi 已提交
697
    out.device(d) = temp + (((-temp).exp() + (x - temp).exp()).log());
K
kexinzhao 已提交
698 699 700 701 702 703 704 705 706
  }
};

// d(softplus(x))/dx = exp(x) / (1 + exp(x))
// For numerical stability:
// d(softplus(x))/dx = exp(x - max(x, 0)) / (exp(-max(x, 0)) +
// exp(x - max(x, 0)))
template <typename T>
struct SoftplusGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
707 708 709
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) {
K
kexinzhao 已提交
710
    auto temp = x.cwiseMax(static_cast<T>(0));  // temp = max(x, 0)
F
fengjiayi 已提交
711 712
    dx.device(d) =
        dout * ((x - temp).exp() / ((-temp).exp() + (x - temp).exp()));
K
kexinzhao 已提交
713 714 715
  }
};

716 717
// softsign(x) = x / (1 + |x|)
template <typename T>
718
struct SoftsignFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
719 720 721
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) {
    out.device(d) = x / (static_cast<T>(1) + x.abs());
722 723 724 725 726 727
  }
};

// d(softsign(x))/dx = 1 / (1 + |x|)^2
// Taken from https://en.wikipedia.org/wiki/Activation_function
template <typename T>
728
struct SoftsignGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
729 730 731
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) {
732
    dx.device(d) =
F
fengjiayi 已提交
733
        dout * (static_cast<T>(1) / (static_cast<T>(1) + x.abs()).square());
734 735 736
  }
};

737 738 739 740 741 742
template <typename T>
struct SoftReluFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
743

F
fengjiayi 已提交
744 745
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
746 747
    auto tmp = static_cast<T>(threshold);
    auto temp = x.cwiseMax(-tmp).cwiseMin(tmp);
F
fengjiayi 已提交
748
    out.device(d) = (static_cast<T>(1) + temp.exp()).log();
749 750 751
  }
};

752 753 754 755 756 757
template <typename T>
struct SoftReluGradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
D
dzhwinter 已提交
758
  bool Inplace() const { return IsInplace("soft_relu"); }
F
fengjiayi 已提交
759 760 761
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
762
    auto tmp = static_cast<T>(threshold);
D
dzhwinter 已提交
763
    auto temp = ((out > -tmp) * (out < tmp)).template cast<T>().eval();
F
fengjiayi 已提交
764
    dx.device(d) = dout * (static_cast<T>(1) - (-out).exp()) * temp;
765 766 767
  }
};

K
Kavya Srinet 已提交
768 769 770 771 772 773
template <typename T>
struct LeakyReluFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
774

F
fengjiayi 已提交
775 776 777
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.cwiseMax(static_cast<T>(alpha) * x);
778 779 780
  }
};

K
Kavya Srinet 已提交
781 782 783 784 785 786
template <typename T>
struct LeakyReluGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
F
fengjiayi 已提交
787 788 789
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
790 791
    auto temp1 = static_cast<T>(alpha) *
                 (x < static_cast<T>(0)).template cast<T>().eval();
K
Kavya Srinet 已提交
792
    auto temp2 = (x >= static_cast<T>(0)).template cast<T>().eval();
F
fengjiayi 已提交
793
    dx.device(d) = dout * (temp1 + temp2).template cast<T>();
794 795 796
  }
};

797 798 799 800 801 802
template <typename T>
struct ELUFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
803

F
fengjiayi 已提交
804 805 806 807 808
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.cwiseMax(static_cast<T>(0)) +
                    (static_cast<T>(alpha) * (x.exp() - static_cast<T>(1)))
                        .cwiseMin(static_cast<T>(0));
809 810 811
  }
};

812 813 814 815 816 817
template <typename T>
struct ELUGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
F
fengjiayi 已提交
818 819 820 821 822
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (x > static_cast<T>(0)).template cast<T>() +
                   dout * (out + static_cast<T>(alpha)) *
Y
Yu Yang 已提交
823
                       (x < static_cast<T>(0)).template cast<T>();
824 825 826
  }
};

Q
QI JUN 已提交
827
// FIXME(qijun) https://github.com/PaddlePaddle/Paddle/issues/5198
828 829 830 831 832 833
template <typename T>
struct PowFunctor : public BaseActivationFunctor<T> {
  float factor;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"factor", &factor}};
  }
F
fengjiayi 已提交
834 835 836
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.pow(static_cast<T>(factor));
837 838 839
  }
};

840 841 842 843 844 845
template <typename T>
struct PowGradFunctor : public BaseActivationFunctor<T> {
  float factor;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"factor", &factor}};
  }
F
fengjiayi 已提交
846 847 848 849
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(factor) *
C
chengduo 已提交
850
                   x.pow(static_cast<T>(factor) - static_cast<T>(1));
851 852 853
  }
};

854 855 856 857 858 859 860
template <typename T>
struct STanhFunctor : public BaseActivationFunctor<T> {
  float scale_a;
  float scale_b;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"scale_a", &scale_a}, {"scale_b", &scale_b}};
  }
861

F
fengjiayi 已提交
862 863 864
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) =
Y
Yu Yang 已提交
865
        static_cast<T>(scale_b) * (static_cast<T>(scale_a) * x).tanh();
866 867 868
  }
};

869 870 871 872 873 874 875
template <typename T>
struct STanhGradFunctor : public BaseActivationFunctor<T> {
  float scale_a;
  float scale_b;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"scale_a", &scale_a}, {"scale_b", &scale_b}};
  }
876

F
fengjiayi 已提交
877 878 879
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
880 881 882
    auto a = static_cast<T>(scale_a);
    auto b = static_cast<T>(scale_b);
    auto temp = (a * x).tanh() * (a * x).tanh();
F
fengjiayi 已提交
883
    dx.device(d) = dout * a * b * (static_cast<T>(1) - temp);
Q
qijun 已提交
884 885 886
  }
};

887 888 889 890 891 892 893
template <typename T>
struct ThresholdedReluFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
894 895
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
896
    auto th = static_cast<T>(threshold);
F
fengjiayi 已提交
897
    out.device(d) = (x > th).template cast<T>() * x;
898 899 900 901 902 903 904 905 906 907
  }
};

template <typename T>
struct ThresholdedReluGradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
908 909 910
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
911
    auto th = static_cast<T>(threshold);
F
fengjiayi 已提交
912
    dx.device(d) = dout * (x > th).template cast<T>();
913 914 915
  }
};

916 917 918 919 920 921 922 923
template <typename T>
struct HardSigmoidFunctor : public BaseActivationFunctor<T> {
  float slope;
  float offset;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"slope", &slope}, {"offset", &offset}};
  }

F
fengjiayi 已提交
924 925
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
926
    auto temp = x * static_cast<T>(slope) + static_cast<T>(offset);
F
fengjiayi 已提交
927 928
    out.device(d) =
        temp.cwiseMax(static_cast<T>(0)).cwiseMin(static_cast<T>(1));
929 930 931 932 933 934 935 936 937 938
  }
};

template <typename T>
struct HardSigmoidGradFunctor : public BaseActivationFunctor<T> {
  float slope;
  float offset;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"slope", &slope}, {"offset", &offset}};
  }
D
dzhwinter 已提交
939
  bool Inplace() { return IsInplace("hard_sigmoid"); }
F
fengjiayi 已提交
940 941 942 943 944 945 946
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout *
                   ((out > static_cast<T>(0)) * (out < static_cast<T>(1)))
                       .template cast<T>() *
                   static_cast<T>(slope);
947 948 949
  }
};

A
Abhinav Arora 已提交
950 951 952 953 954 955 956
template <typename T>
struct SwishFunctor : public BaseActivationFunctor<T> {
  float beta;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}};
  }

F
fengjiayi 已提交
957 958 959
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x / (static_cast<T>(1) + (static_cast<T>(-beta) * x).exp());
A
Abhinav Arora 已提交
960 961 962 963 964 965 966 967 968 969
  }
};

template <typename T>
struct SwishGradFunctor : public BaseActivationFunctor<T> {
  float beta;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}};
  }

F
fengjiayi 已提交
970 971 972
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
A
Abhinav Arora 已提交
973
    auto temp1 = static_cast<T>(1) /
974
                 (static_cast<T>(1) + (static_cast<T>(-beta) * x).exp());
D
dzhwinter 已提交
975 976
    auto temp2 = temp1 * (static_cast<T>(1) - (static_cast<T>(beta) * out));
    dx.device(d) = dout * ((static_cast<T>(beta) * out) + temp2);
A
Abhinav Arora 已提交
977 978 979
  }
};

Q
qijun 已提交
980 981
}  // namespace operators
}  // namespace paddle
982

983 984 985 986
#define FOR_EACH_KERNEL_FUNCTOR(__macro)                             \
  __macro(sigmoid, SigmoidFunctor, SigmoidGradFunctor);              \
  __macro(logsigmoid, LogSigmoidFunctor, LogSigmoidGradFunctor);     \
  __macro(exp, ExpFunctor, ExpGradFunctor);                          \
987
  __macro(relu, ReluFunctor, ReluGradFunctor);                       \
C
Clementine 已提交
988
  __macro(gelu, GeluFunctor, GeluGradFunctor);                       \
989 990 991 992
  __macro(tanh, TanhFunctor, TanhGradFunctor);                       \
  __macro(softshrink, SoftShrinkFunctor, SoftShrinkGradFunctor);     \
  __macro(sqrt, SqrtFunctor, SqrtGradFunctor);                       \
  __macro(abs, AbsFunctor, AbsGradFunctor);                          \
D
dzhwinter 已提交
993 994
  __macro(ceil, CeilFunctor, ZeroGradFunctor);                       \
  __macro(floor, FloorFunctor, ZeroGradFunctor);                     \
C
add cos  
chengduoZH 已提交
995
  __macro(cos, CosFunctor, CosGradFunctor);                          \
C
add sin  
chengduoZH 已提交
996
  __macro(sin, SinFunctor, SinGradFunctor);                          \
D
dzhwinter 已提交
997
  __macro(round, RoundFunctor, ZeroGradFunctor);                     \
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
  __macro(reciprocal, ReciprocalFunctor, ReciprocalGradFunctor);     \
  __macro(log, LogFunctor, LogGradFunctor);                          \
  __macro(square, SquareFunctor, SquareGradFunctor);                 \
  __macro(brelu, BReluFunctor, BReluGradFunctor);                    \
  __macro(soft_relu, SoftReluFunctor, SoftReluGradFunctor);          \
  __macro(pow, PowFunctor, PowGradFunctor);                          \
  __macro(stanh, STanhFunctor, STanhGradFunctor);                    \
  __macro(softplus, SoftplusFunctor, SoftplusGradFunctor);           \
  __macro(softsign, SoftsignFunctor, SoftsignGradFunctor);           \
  __macro(relu6, Relu6Functor, Relu6GradFunctor);                    \
  __macro(leaky_relu, LeakyReluFunctor, LeakyReluGradFunctor);       \
  __macro(tanh_shrink, TanhShrinkFunctor, TanhShrinkGradFunctor);    \
  __macro(elu, ELUFunctor, ELUGradFunctor);                          \
  __macro(hard_shrink, HardShrinkFunctor, HardShrinkGradFunctor);    \
  __macro(hard_sigmoid, HardSigmoidFunctor, HardSigmoidGradFunctor); \
A
Abhinav Arora 已提交
1013
  __macro(swish, SwishFunctor, SwishGradFunctor);                    \
1014
  __macro(thresholded_relu, ThresholdedReluFunctor, ThresholdedReluGradFunctor);