matmul_v2_op.cc 13.8 KB
Newer Older
1
//   Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
S
ShenLiang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/matmul_v2_op.h"
16

S
ShenLiang 已提交
17 18 19
#include <string>
#include <vector>

20
#include "paddle/fluid/framework/infershape_utils.h"
21
#include "paddle/fluid/prim/api/composite_backward/composite_backward_api.h"
22 23
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/backward.h"
24

S
ShenLiang 已提交
25 26 27
namespace paddle {
namespace operators {

28 29 30 31 32 33 34 35 36 37 38 39
void MatMulV2Op::InferShape(framework::InferShapeContext* ctx) const {
  OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "matmul_v2");
  OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "matmul_v2");
  OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "matmul_v2");
  bool trans_x = ctx->Attrs().Get<bool>("trans_x");
  bool trans_y = ctx->Attrs().Get<bool>("trans_y");

  std::vector<int64_t> dims_x = phi::vectorize(ctx->GetInputDim("X"));
  std::vector<int64_t> dims_y = phi::vectorize(ctx->GetInputDim("Y"));
  auto ndims_x = dims_x.size();
  auto ndims_y = dims_y.size();
  PADDLE_ENFORCE_GT(ndims_x,
40
                    0,
41 42 43 44 45 46 47 48
                    phi::errors::InvalidArgument(
                        "The Input(X) dims size must be greater than 0,"
                        " but received dims size is 0. "));
  PADDLE_ENFORCE_GT(ndims_y,
                    0,
                    phi::errors::InvalidArgument(
                        "The Input(Y) dims size must be greater than 0,"
                        " but received dims size is 0. "));
S
ShenLiang 已提交
49

50 51
  bool x_broadcasted = false;
  bool y_broadcasted = false;
S
ShenLiang 已提交
52

53 54 55 56 57
  if (ndims_x == 1) {
    dims_x.insert(dims_x.begin(), 1);
    ndims_x = 2;
    x_broadcasted = true;
  }
S
ShenLiang 已提交
58

59 60 61 62 63
  if (ndims_y == 1) {
    dims_y.push_back(1);
    ndims_y = 2;
    y_broadcasted = true;
  }
64

65 66 67 68 69 70 71 72 73 74 75
  size_t M, N;
  if (trans_x) {
    M = dims_x[ndims_x - 1];
  } else {
    M = dims_x[ndims_x - 2];
  }
  if (trans_y) {
    N = dims_y[ndims_y - 2];
  } else {
    N = dims_y[ndims_y - 1];
  }
76

77 78 79 80 81 82 83 84 85
  std::vector<int64_t> new_dims;
  if (ndims_x > ndims_y) {
    new_dims.assign(dims_x.begin(), dims_x.end() - 2);
  } else if (ndims_x < ndims_y) {
    new_dims.assign(dims_y.begin(), dims_y.end() - 2);
  } else {
    new_dims.reserve(ndims_x);
    for (size_t i = 0; i < ndims_x - 2; ++i) {
      new_dims.push_back(std::max(dims_x[i], dims_y[i]));
86
    }
S
ShenLiang 已提交
87
  }
88 89 90 91 92 93
  if (!x_broadcasted) {
    new_dims.push_back(M);
  }
  if (!y_broadcasted) {
    new_dims.push_back(N);
  }
94

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
  ctx->SetOutputDim("Out", phi::make_ddim(new_dims));
  ctx->ShareLoD("X", "Out");
}

phi::KernelKey MatMulV2Op::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  auto input_data_type =
      OperatorWithKernel::IndicateOrPromoteVarDataTypes(ctx, "X", "Y");
  return phi::KernelKey(input_data_type, ctx.GetPlace());
}

phi::KernelKey MatMulV2Op::GetKernelTypeForVar(
    const std::string& var_name,
    const phi::DenseTensor& tensor,
    const phi::KernelKey& expected_kernel_type) const {
  if (framework::IsComplexType(expected_kernel_type.dtype())) {
    // only promote inputs’s types when contains complex input
    return phi::KernelKey(tensor.place(), tensor.layout(), tensor.dtype());
  } else {
114
#ifdef PADDLE_WITH_MKLDNN
115 116 117 118 119 120
    // When matmul_v2 is first oneDNN op in a chain (there was some non oneDNN
    // op previously) then we also need to rotate shape NHWC -> NCWH
    if ((expected_kernel_type.layout() == phi::DataLayout::ONEDNN) &&
        (tensor.layout() != phi::DataLayout::ONEDNN) &&
        phi::OneDNNContext::tls().get_cur_paddle_data_layout() ==
            phi::DataLayout::kNHWC) {
121
      return phi::KernelKey(
122
          tensor.place(), phi::DataLayout::kNHWC, expected_kernel_type.dtype());
123
    }
124 125 126
#endif
    return phi::KernelKey(
        tensor.place(), tensor.layout(), expected_kernel_type.dtype());
S
ShenLiang 已提交
127
  }
128
}
S
ShenLiang 已提交
129

130 131 132 133 134 135 136 137 138 139 140 141 142 143
void MatMulV2OpMaker::Make() {
  AddInput("X", "tensor of shape (d0, d1 ... M, K)");
  AddInput("Y", "tensor of shape (d0, d1 ... K, N)");
  AddOutput("Out", "tensor of shape (d0, d1 ... M, N)");
  AddAttr<bool>("trans_x",
                "Set true to transpose the last two dimensions of X before "
                "doing multiplication")
      .SetDefault(false);
  AddAttr<bool>("trans_y",
                "Set true to transpose the last two dimensions of Y before "
                "doing multiplication")
      .SetDefault(false);
  AddComment(
      R"DOC(Matrix multiplication Out = X * Y. A has shape (d0, d1 ... M, K),
144
        B has shape (d0, d1 ... K, N), Out has shape ((d0, d1 ... M, N)).
S
ShenLiang 已提交
145 146 147
        In addition, it also follows the broadcast rule which is similar as
        numpy.matmul.
)DOC");
148 149
  Apply();
}
S
ShenLiang 已提交
150 151 152 153 154 155

class MatMulV2OpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
156
  phi::KernelKey GetExpectedKernelType(
C
chentianyu03 已提交
157
      const framework::ExecutionContext& ctx) const override {
158 159
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
160
    return phi::KernelKey(input_data_type, ctx.GetPlace());
C
chentianyu03 已提交
161 162
  }

163
  phi::KernelKey GetKernelTypeForVar(
164
      const std::string& var_name,
165
      const phi::DenseTensor& tensor,
166 167
      const phi::KernelKey& expected_kernel_type) const override {
    if (framework::IsComplexType(expected_kernel_type.dtype())) {
C
chentianyu03 已提交
168
      // only promote inputs’s types when contains complex input
169
      return phi::KernelKey(tensor.place(), tensor.layout(), tensor.dtype());
C
chentianyu03 已提交
170
    } else {
171 172
      return phi::KernelKey(
          tensor.place(), tensor.layout(), expected_kernel_type.dtype());
C
chentianyu03 已提交
173 174
    }
  }
S
ShenLiang 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
};

template <typename T>
class MatMulV2GradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("matmul_v2_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Input("Y"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    op->SetAttrMap(this->Attrs());
  }
};

W
wawltor 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
class MatMulV2OpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* context) const override {
    OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "matmul");
    OP_INOUT_CHECK(context->HasInput("Y"), "Input", "Y", "matmul");
    OP_INOUT_CHECK(context->HasInput("DOut"), "Input", "DOut", "matmul");

    if (context->HasOutput("DX") && context->HasInput("DDY")) {
      context->ShareDim("X", "DX");
    }

    if (context->HasOutput("DY") && context->HasInput("DDX")) {
      context->ShareDim("Y", "DY");
    }

    if (context->HasOutput("DDOut") &&
        (context->HasInput("DDY") || context->HasInput("DDX"))) {
      context->ShareDim("DOut", "DDOut");
    }
  }
};

template <typename T>
class MatMulV2OpDoubleGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("matmul_v2_grad_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Input("Y"));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DDY", this->OutputGrad(framework::GradVarName("Y")));

    auto ddx = this->OutputGrad(framework::GradVarName("X"));
    auto ddy = this->OutputGrad(framework::GradVarName("Y"));

    if (!ddx.empty() || !ddy.empty()) {
      op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
    }
    op->SetOutput("DX",
                  ddy.empty() ? this->EmptyInputGrad() : this->InputGrad("X"));
    op->SetOutput("DY",
                  ddx.empty() ? this->EmptyInputGrad() : this->InputGrad("Y"));

    op->SetAttrMap(this->Attrs());
  }
};
247 248 249 250 251 252

class MatMulCompositeDoubleGradOpMaker : public prim::CompositeGradOpMakerBase {
 public:
  using prim::CompositeGradOpMakerBase::CompositeGradOpMakerBase;
  void Apply() override {
    // get inputs
253 254 255
    paddle::Tensor x = this->GetSingleForwardInput("X");
    paddle::Tensor y = this->GetSingleForwardInput("Y");
    paddle::Tensor dout =
256
        this->GetSingleForwardInput(framework::GradVarName("Out"));
257
    paddle::optional<paddle::Tensor> ddx =
258
        this->GetOptionalSingleOutputGrad(framework::GradVarName("X"));
259
    paddle::optional<paddle::Tensor> ddy =
260 261 262 263 264 265 266
        this->GetOptionalSingleOutputGrad(framework::GradVarName("Y"));

    // get attr
    bool trans_x = this->Attr<bool>("trans_x");
    bool trans_y = this->Attr<bool>("trans_y");

    // get output
267 268 269
    paddle::Tensor x_grad_t = this->GetSingleInputGrad("X");
    paddle::Tensor y_grad_t = this->GetSingleInputGrad("Y");
    paddle::Tensor grad_out_grad_t =
270 271 272
        this->GetSingleInputGrad(framework::GradVarName("Out"));

    // get output ptr
273 274 275
    paddle::Tensor* x_grad = this->GetOutputPtr(&x_grad_t);
    paddle::Tensor* y_grad = this->GetOutputPtr(&y_grad_t);
    paddle::Tensor* grad_out_grad = this->GetOutputPtr(&grad_out_grad_t);
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
    // get output orginal name
    std::string x_grad_name = this->GetOutputName(x_grad_t);
    std::string y_grad_name = this->GetOutputName(y_grad_t);
    std::string grad_out_grad_name = this->GetOutputName(grad_out_grad_t);
    VLOG(3) << "Runing matmul_double_grad composite func";
    // call composite backward func
    prim::matmul_double_grad<prim::DescTensor>(
        x, y, dout, ddx, ddy, trans_x, trans_y, x_grad, y_grad, grad_out_grad);
    // recover output name
    this->RecoverOutputName(x_grad_t, x_grad_name);
    this->RecoverOutputName(y_grad_t, y_grad_name);
    this->RecoverOutputName(grad_out_grad_t, grad_out_grad_name);
  }
};

291 292 293 294 295 296
class MatMulV2OpTripleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* context) const override {
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
    OP_INOUT_CHECK(
        context->HasInput("X"), "Input", "X", "matmul_v2_triple_grad");
    OP_INOUT_CHECK(
        context->HasInput("Y"), "Input", "Y", "matmul_v2_triple_grad");
    OP_INOUT_CHECK(
        context->HasInput("DOut"), "Input", "DOut", "matmul_v2_triple_grad");
    OP_INOUT_CHECK(
        context->HasInput("DDX"), "Input", "DDX", "matmul_v2_triple_grad");
    OP_INOUT_CHECK(
        context->HasInput("DDY"), "Input", "DDY", "matmul_v2_triple_grad");
    OP_INOUT_CHECK(
        context->HasInput("D_DX"), "Input", "D_DX", "matmul_v2_triple_grad");
    OP_INOUT_CHECK(
        context->HasInput("D_DY"), "Input", "D_DY", "matmul_v2_triple_grad");
    OP_INOUT_CHECK(context->HasInput("D_DDOut"),
                   "Input",
                   "D_DDOut",
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
                   "matmul_v2_triple_grad");

    if (context->HasOutput("D_X_out")) {
      context->ShareDim("X", "D_X_out");
    }
    if (context->HasOutput("D_Y_out")) {
      context->ShareDim("Y", "D_Y_out");
    }
    if (context->HasOutput("D_DOut_out")) {
      context->ShareDim("DOut", "D_DOut_out");
    }
    if (context->HasOutput("D_DDX_out")) {
      context->ShareDim("X", "D_DDX_out");
    }
    if (context->HasOutput("D_DDY_out")) {
      context->ShareDim("Y", "D_DDY_out");
    }
  }
};

template <typename T>
class MatMulV2OpTripleGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("matmul_v2_triple_grad");

    // get input from double grad
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Input("Y"));
    op->SetInput("DOut", this->Input("DOut"));
    op->SetInput("DDX", this->Input("DDX"));
    op->SetInput("DDY", this->Input("DDY"));
    op->SetInput("D_DX", this->OutputGrad("DX"));
    op->SetInput("D_DY", this->OutputGrad("DY"));
    op->SetInput("D_DDOut", this->OutputGrad("DDOut"));

    // set outputs
    op->SetOutput("D_X_out", this->InputGrad("X"));
    op->SetOutput("D_Y_out", this->InputGrad("Y"));
    op->SetOutput("D_DOut_out", this->InputGrad("DOut"));
    op->SetOutput("D_DDX_out", this->InputGrad("DDX"));
    op->SetOutput("D_DDY_out", this->InputGrad("DDY"));

    op->SetAttrMap(this->Attrs());
  }
};
S
ShenLiang 已提交
363 364 365 366
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
367 368 369
REGISTER_OPERATOR(matmul_v2,
                  ops::MatMulV2Op,
                  ops::MatMulV2OpMaker,
S
ShenLiang 已提交
370 371 372
                  ops::MatMulV2GradOpMaker<paddle::framework::OpDesc>,
                  ops::MatMulV2GradOpMaker<paddle::imperative::OpBase>);

373 374
DECLARE_INFER_SHAPE_FUNCTOR(matmul_v2_grad,
                            MatMulV2GradInferShapeFunctor,
375
                            PD_INFER_META(phi::GeneralBinaryGradInferMeta));
376 377
REGISTER_OPERATOR(matmul_v2_grad,
                  ops::MatMulV2OpGrad,
W
wawltor 已提交
378
                  ops::MatMulV2OpDoubleGradMaker<paddle::framework::OpDesc>,
379
                  ops::MatMulV2OpDoubleGradMaker<paddle::imperative::OpBase>,
380
                  ops::MatMulCompositeDoubleGradOpMaker,
381
                  MatMulV2GradInferShapeFunctor);
W
wawltor 已提交
382

383 384
REGISTER_OPERATOR(matmul_v2_grad_grad,
                  ops::MatMulV2OpDoubleGrad,
385 386 387 388
                  ops::MatMulV2OpTripleGradMaker<paddle::framework::OpDesc>,
                  ops::MatMulV2OpTripleGradMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(matmul_v2_triple_grad, ops::MatMulV2OpTripleGrad);