matmul_v2_op.cc 11.9 KB
Newer Older
1
//   Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
S
ShenLiang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/matmul_v2_op.h"
16

S
ShenLiang 已提交
17 18 19
#include <string>
#include <vector>

20
#include "paddle/fluid/framework/infershape_utils.h"
21 22
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/backward.h"
23

S
ShenLiang 已提交
24 25 26
namespace paddle {
namespace operators {

27 28 29 30 31 32 33 34 35 36 37 38
void MatMulV2Op::InferShape(framework::InferShapeContext* ctx) const {
  OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "matmul_v2");
  OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "matmul_v2");
  OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "matmul_v2");
  bool trans_x = ctx->Attrs().Get<bool>("trans_x");
  bool trans_y = ctx->Attrs().Get<bool>("trans_y");

  std::vector<int64_t> dims_x = phi::vectorize(ctx->GetInputDim("X"));
  std::vector<int64_t> dims_y = phi::vectorize(ctx->GetInputDim("Y"));
  auto ndims_x = dims_x.size();
  auto ndims_y = dims_y.size();
  PADDLE_ENFORCE_GT(ndims_x,
39
                    0,
40 41 42 43 44 45 46 47
                    phi::errors::InvalidArgument(
                        "The Input(X) dims size must be greater than 0,"
                        " but received dims size is 0. "));
  PADDLE_ENFORCE_GT(ndims_y,
                    0,
                    phi::errors::InvalidArgument(
                        "The Input(Y) dims size must be greater than 0,"
                        " but received dims size is 0. "));
S
ShenLiang 已提交
48

49 50
  bool x_broadcasted = false;
  bool y_broadcasted = false;
S
ShenLiang 已提交
51

52 53 54 55 56
  if (ndims_x == 1) {
    dims_x.insert(dims_x.begin(), 1);
    ndims_x = 2;
    x_broadcasted = true;
  }
S
ShenLiang 已提交
57

58 59 60 61 62
  if (ndims_y == 1) {
    dims_y.push_back(1);
    ndims_y = 2;
    y_broadcasted = true;
  }
63

64 65 66 67 68 69 70 71 72 73 74
  size_t M, N;
  if (trans_x) {
    M = dims_x[ndims_x - 1];
  } else {
    M = dims_x[ndims_x - 2];
  }
  if (trans_y) {
    N = dims_y[ndims_y - 2];
  } else {
    N = dims_y[ndims_y - 1];
  }
75

76 77 78 79 80 81 82 83 84
  std::vector<int64_t> new_dims;
  if (ndims_x > ndims_y) {
    new_dims.assign(dims_x.begin(), dims_x.end() - 2);
  } else if (ndims_x < ndims_y) {
    new_dims.assign(dims_y.begin(), dims_y.end() - 2);
  } else {
    new_dims.reserve(ndims_x);
    for (size_t i = 0; i < ndims_x - 2; ++i) {
      new_dims.push_back(std::max(dims_x[i], dims_y[i]));
85
    }
S
ShenLiang 已提交
86
  }
87 88 89 90 91 92 93 94
  if (!x_broadcasted) {
    new_dims.push_back(M);
  }
  if (!y_broadcasted) {
    new_dims.push_back(N);
  }
  if (x_broadcasted && y_broadcasted) {
    new_dims.push_back(1);
95 96
  }

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
  ctx->SetOutputDim("Out", phi::make_ddim(new_dims));
  ctx->ShareLoD("X", "Out");
}

phi::KernelKey MatMulV2Op::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  auto input_data_type =
      OperatorWithKernel::IndicateOrPromoteVarDataTypes(ctx, "X", "Y");
  return phi::KernelKey(input_data_type, ctx.GetPlace());
}

phi::KernelKey MatMulV2Op::GetKernelTypeForVar(
    const std::string& var_name,
    const phi::DenseTensor& tensor,
    const phi::KernelKey& expected_kernel_type) const {
  if (framework::IsComplexType(expected_kernel_type.dtype())) {
    // only promote inputs’s types when contains complex input
    return phi::KernelKey(tensor.place(), tensor.layout(), tensor.dtype());
  } else {
116
#ifdef PADDLE_WITH_MKLDNN
117 118 119 120 121 122
    // When matmul_v2 is first oneDNN op in a chain (there was some non oneDNN
    // op previously) then we also need to rotate shape NHWC -> NCWH
    if ((expected_kernel_type.layout() == phi::DataLayout::ONEDNN) &&
        (tensor.layout() != phi::DataLayout::ONEDNN) &&
        phi::OneDNNContext::tls().get_cur_paddle_data_layout() ==
            phi::DataLayout::kNHWC) {
123
      return phi::KernelKey(
124
          tensor.place(), phi::DataLayout::kNHWC, expected_kernel_type.dtype());
125
    }
126 127 128
#endif
    return phi::KernelKey(
        tensor.place(), tensor.layout(), expected_kernel_type.dtype());
S
ShenLiang 已提交
129
  }
130
}
S
ShenLiang 已提交
131

132 133 134 135 136 137 138 139 140 141 142 143 144 145
void MatMulV2OpMaker::Make() {
  AddInput("X", "tensor of shape (d0, d1 ... M, K)");
  AddInput("Y", "tensor of shape (d0, d1 ... K, N)");
  AddOutput("Out", "tensor of shape (d0, d1 ... M, N)");
  AddAttr<bool>("trans_x",
                "Set true to transpose the last two dimensions of X before "
                "doing multiplication")
      .SetDefault(false);
  AddAttr<bool>("trans_y",
                "Set true to transpose the last two dimensions of Y before "
                "doing multiplication")
      .SetDefault(false);
  AddComment(
      R"DOC(Matrix multiplication Out = X * Y. A has shape (d0, d1 ... M, K),
146
        B has shape (d0, d1 ... K, N), Out has shape ((d0, d1 ... M, N)).
S
ShenLiang 已提交
147 148 149
        In addition, it also follows the broadcast rule which is similar as
        numpy.matmul.
)DOC");
150 151
  Apply();
}
S
ShenLiang 已提交
152 153 154 155 156 157

class MatMulV2OpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
158
  phi::KernelKey GetExpectedKernelType(
C
chentianyu03 已提交
159
      const framework::ExecutionContext& ctx) const override {
160 161
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
162
    return phi::KernelKey(input_data_type, ctx.GetPlace());
C
chentianyu03 已提交
163 164
  }

165
  phi::KernelKey GetKernelTypeForVar(
166
      const std::string& var_name,
167
      const phi::DenseTensor& tensor,
168 169
      const phi::KernelKey& expected_kernel_type) const override {
    if (framework::IsComplexType(expected_kernel_type.dtype())) {
C
chentianyu03 已提交
170
      // only promote inputs’s types when contains complex input
171
      return phi::KernelKey(tensor.place(), tensor.layout(), tensor.dtype());
C
chentianyu03 已提交
172
    } else {
173 174
      return phi::KernelKey(
          tensor.place(), tensor.layout(), expected_kernel_type.dtype());
C
chentianyu03 已提交
175 176
    }
  }
S
ShenLiang 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
};

template <typename T>
class MatMulV2GradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("matmul_v2_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Input("Y"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    op->SetAttrMap(this->Attrs());
  }
};

W
wawltor 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
class MatMulV2OpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* context) const override {
    OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "matmul");
    OP_INOUT_CHECK(context->HasInput("Y"), "Input", "Y", "matmul");
    OP_INOUT_CHECK(context->HasInput("DOut"), "Input", "DOut", "matmul");

    if (context->HasOutput("DX") && context->HasInput("DDY")) {
      context->ShareDim("X", "DX");
    }

    if (context->HasOutput("DY") && context->HasInput("DDX")) {
      context->ShareDim("Y", "DY");
    }

    if (context->HasOutput("DDOut") &&
        (context->HasInput("DDY") || context->HasInput("DDX"))) {
      context->ShareDim("DOut", "DDOut");
    }
  }
};

template <typename T>
class MatMulV2OpDoubleGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("matmul_v2_grad_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Input("Y"));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DDY", this->OutputGrad(framework::GradVarName("Y")));

    auto ddx = this->OutputGrad(framework::GradVarName("X"));
    auto ddy = this->OutputGrad(framework::GradVarName("Y"));

    if (!ddx.empty() || !ddy.empty()) {
      op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
    }
    op->SetOutput("DX",
                  ddy.empty() ? this->EmptyInputGrad() : this->InputGrad("X"));
    op->SetOutput("DY",
                  ddx.empty() ? this->EmptyInputGrad() : this->InputGrad("Y"));

    op->SetAttrMap(this->Attrs());
  }
};
249 250 251 252 253 254
class MatMulV2OpTripleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* context) const override {
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
    OP_INOUT_CHECK(
        context->HasInput("X"), "Input", "X", "matmul_v2_triple_grad");
    OP_INOUT_CHECK(
        context->HasInput("Y"), "Input", "Y", "matmul_v2_triple_grad");
    OP_INOUT_CHECK(
        context->HasInput("DOut"), "Input", "DOut", "matmul_v2_triple_grad");
    OP_INOUT_CHECK(
        context->HasInput("DDX"), "Input", "DDX", "matmul_v2_triple_grad");
    OP_INOUT_CHECK(
        context->HasInput("DDY"), "Input", "DDY", "matmul_v2_triple_grad");
    OP_INOUT_CHECK(
        context->HasInput("D_DX"), "Input", "D_DX", "matmul_v2_triple_grad");
    OP_INOUT_CHECK(
        context->HasInput("D_DY"), "Input", "D_DY", "matmul_v2_triple_grad");
    OP_INOUT_CHECK(context->HasInput("D_DDOut"),
                   "Input",
                   "D_DDOut",
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
                   "matmul_v2_triple_grad");

    if (context->HasOutput("D_X_out")) {
      context->ShareDim("X", "D_X_out");
    }
    if (context->HasOutput("D_Y_out")) {
      context->ShareDim("Y", "D_Y_out");
    }
    if (context->HasOutput("D_DOut_out")) {
      context->ShareDim("DOut", "D_DOut_out");
    }
    if (context->HasOutput("D_DDX_out")) {
      context->ShareDim("X", "D_DDX_out");
    }
    if (context->HasOutput("D_DDY_out")) {
      context->ShareDim("Y", "D_DDY_out");
    }
  }
};

template <typename T>
class MatMulV2OpTripleGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("matmul_v2_triple_grad");

    // get input from double grad
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Input("Y"));
    op->SetInput("DOut", this->Input("DOut"));
    op->SetInput("DDX", this->Input("DDX"));
    op->SetInput("DDY", this->Input("DDY"));
    op->SetInput("D_DX", this->OutputGrad("DX"));
    op->SetInput("D_DY", this->OutputGrad("DY"));
    op->SetInput("D_DDOut", this->OutputGrad("DDOut"));

    // set outputs
    op->SetOutput("D_X_out", this->InputGrad("X"));
    op->SetOutput("D_Y_out", this->InputGrad("Y"));
    op->SetOutput("D_DOut_out", this->InputGrad("DOut"));
    op->SetOutput("D_DDX_out", this->InputGrad("DDX"));
    op->SetOutput("D_DDY_out", this->InputGrad("DDY"));

    op->SetAttrMap(this->Attrs());
  }
};
S
ShenLiang 已提交
321 322 323 324
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
325 326 327
REGISTER_OPERATOR(matmul_v2,
                  ops::MatMulV2Op,
                  ops::MatMulV2OpMaker,
S
ShenLiang 已提交
328 329 330
                  ops::MatMulV2GradOpMaker<paddle::framework::OpDesc>,
                  ops::MatMulV2GradOpMaker<paddle::imperative::OpBase>);

331 332
DECLARE_INFER_SHAPE_FUNCTOR(matmul_v2_grad,
                            MatMulV2GradInferShapeFunctor,
333
                            PD_INFER_META(phi::GeneralBinaryGradInferMeta));
334 335
REGISTER_OPERATOR(matmul_v2_grad,
                  ops::MatMulV2OpGrad,
W
wawltor 已提交
336
                  ops::MatMulV2OpDoubleGradMaker<paddle::framework::OpDesc>,
337 338
                  ops::MatMulV2OpDoubleGradMaker<paddle::imperative::OpBase>,
                  MatMulV2GradInferShapeFunctor);
W
wawltor 已提交
339

340 341
REGISTER_OPERATOR(matmul_v2_grad_grad,
                  ops::MatMulV2OpDoubleGrad,
342 343 344 345
                  ops::MatMulV2OpTripleGradMaker<paddle::framework::OpDesc>,
                  ops::MatMulV2OpTripleGradMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(matmul_v2_triple_grad, ops::MatMulV2OpTripleGrad);