test_run_program_op.py 16.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import contextlib
import unittest
17

18 19
import numpy as np

20
import paddle
21
from paddle import _legacy_C_ops, fluid
22
from paddle.fluid import core, framework
23
from paddle.fluid.dygraph.base import switch_to_static_graph
24
from paddle.fluid.framework import global_var
25

26 27
paddle.enable_static()

28 29 30 31 32 33 34 35 36 37 38 39

@contextlib.contextmanager
def program_scope_guard():
    prog = fluid.Program()
    startup_prog = fluid.Program()
    scope = fluid.core.Scope()
    with fluid.scope_guard(scope):
        with fluid.program_guard(prog, startup_prog):
            with fluid.unique_name.guard():
                yield


40 41 42 43
@switch_to_static_graph
def _add_build_strategy_for(input_program, start_op_index, end_op_index):
    compiled_program = paddle.static.CompiledProgram(
        core.Graph(input_program.desc, start_op_index, end_op_index),
44 45 46 47 48
        build_strategy=paddle.static.BuildStrategy(),
    )
    compiled_program._compile(
        core.Scope(), paddle.framework._current_expected_place()
    )
49 50 51 52 53 54 55 56 57 58
    ir_graph = paddle.fluid.framework.IrGraph(compiled_program._graph)
    builded_program = ir_graph.to_program()
    return builded_program


@switch_to_static_graph
def _build_program_by_desc(program_desc):
    prog = framework.Program()
    prog.desc = program_desc
    prog.blocks = [
59
        framework.Block(prog, i) for i in range(prog.desc.num_blocks())
60 61 62 63 64
    ]
    prog._sync_with_cpp()
    return prog


65
# NOTE: Because RunProgramOp has a special output of type std::vector<Scope *>,
66 67 68 69 70 71 72 73 74
# the OpTest cannot be used in RunProgramOp. The variable type cannot be specified
# when creating output variables in OpTest, default type is LoDTensor
# NOTE: the gradient test method in OpTest also cannot be used for RunProgramOp,
# because it hold BlockDesc type attr, OperatorFactory can't parse this attr type
# when create Operator, so here compare gradients with static graph
# NOTE: Here rewrite a simple unittest framework for RunProgramOp
class RunProgramOpTest(unittest.TestCase):
    def build_model(self):
        raise NotImplementedError(
75 76
            "RunProgramOp test should implement build_model"
        )
77 78 79 80 81 82

    def check_output(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
83
            # TODO: RunProgramOp is not recommended for use in static graph mode now
84 85 86 87 88 89 90 91
            self.expect_outs = self.run_static_model(place, is_test=True)
            self.check_output_with_place(place)

    def check_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
92
            # TODO: RunProgramOp is not recommended for use in static graph mode now
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
            self.expect_grads = self.run_static_model(place, is_test=False)
            self.check_grad_with_place(place)

    def run_static_model(self, place, is_test=True):
        with program_scope_guard():
            startup_program = fluid.default_startup_program()
            main_program = fluid.default_main_program()

            self.build_model()

            exe = fluid.Executor(place)
            exe.run(startup_program)

            if is_test:
                fetch_list = self.output_names['Out']
            else:
                fetch_list = self.get_param_grad_names()

111 112 113
            outs = exe.run(
                main_program, feed=self.inputs['X'], fetch_list=fetch_list
            )
114 115 116 117 118 119 120
            return outs

    def get_program_desc(self):
        with program_scope_guard():
            fwd_op_num = self.build_model()
            return fluid.default_main_program().desc, fwd_op_num

121 122 123
    def get_forward_backward_program_desc(
        self, whole_program_desc, forward_op_num, output_num
    ):
124 125 126
        program = _build_program_by_desc(whole_program_desc)
        forward_program = _add_build_strategy_for(program, 0, forward_op_num)
        backward_program = _add_build_strategy_for(
127
            program,
128
            forward_op_num + output_num,
129 130
            program.desc.block(0).op_size(),
        )
131 132
        return forward_program.desc, backward_program.desc

133
    def prepare_attrs(self):
134 135
        return [
            'global_block',
136 137 138 139 140 141
            self.program_desc.block(0),
            'start_op_index',
            0,
            'end_op_index',
            self.fwd_op_num,
            'program_id',
142
            paddle.utils._hash_with_id(self.program_desc, self),
143
        ]
144 145 146 147 148 149 150 151 152 153 154 155

    def get_param_grad_names(self):
        grad_names = []
        for var_name in self.inputs['Params']:
            grad_names.append(var_name + core.grad_var_suffix())
        return grad_names

    def check_output_with_place(self, place):
        # Step 1. run op
        actual_outs = self.calc_dygraph_output(place)

        # Step 2. compare output
156
        for expect_v, actual_v in zip(self.expect_outs, actual_outs):
157 158 159
            np.testing.assert_allclose(
                expect_v, actual_v.numpy(), rtol=1e-05, atol=1e-05
            )
160 161 162 163 164 165

    def check_grad_with_place(self, place):
        # Step 1. calc grads
        actual_grads = self.calc_dygraph_grad(place)

        # Step 2. compare grads
166
        for expect_v, actual_v in zip(self.expect_grads, actual_grads):
167
            np.testing.assert_array_almost_equal(expect_v, actual_v)
168 169 170
            np.testing.assert_allclose(
                expect_v, actual_v, rtol=1e-05, atol=1e-05
            )
171 172 173

    def prepare_dygraph_input(self, place, return_param_list=False):
        def create_var_base(is_input, name, np_value, stop_gradient):
W
wanghuancoder 已提交
174 175 176
            var = core.eager.Tensor(
                value=np_value, name=name, place=place, zero_copy=True
            )
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
            var.stop_gradient = stop_gradient
            return var

        # build inputs
        inputs = {}
        param_list = []
        inputs['X'] = []
        for name, np_value in self.inputs['X'].items():
            var = create_var_base(True, name, np_value, True)
            inputs['X'].append(var)
        inputs['Params'] = []
        for name, np_value in self.inputs['Params'].items():
            var = create_var_base(True, name, np_value, False)
            inputs['Params'].append(var)
            if return_param_list:
                param_list.append(var)

        if return_param_list:
            return inputs, param_list
        return inputs

    def prepare_dygraph_output(self):
        def create_var_base(is_input, name):
200
            var = framework._create_tensor(dtype=None, shape=None, name=name)
201 202 203 204 205 206 207 208 209
            var.stop_gradient = False
            return var

        # build outputs
        outputs = {}
        outputs['Out'] = []
        for name in self.output_names['Out']:
            outputs['Out'].append(create_var_base(False, name))

210
        if global_var._in_eager_mode_:
0
0x45f 已提交
211 212
            outputs['OutScope'] = [core.Scope()]
        else:
213
            outputs['OutScope'] = framework._create_tensor(
0
0x45f 已提交
214 215
                type=core.VarDesc.VarType.STEP_SCOPES,
                name="program_out_scope",
216 217
                persistable=True,
            )
0
0x45f 已提交
218 219
            inner_scope = core.Scope()
            outputs['OutScope'].value().set_scope(inner_scope)
220 221

        outputs['DOut'] = [create_var_base(False, "Fake_var")]
222 223 224
        return outputs

    def calc_dygraph_output(self, place):
225 226 227
        self.program_desc, self.fwd_op_num = self.get_program_desc()
        self.attrs = self.prepare_attrs()

228 229 230 231
        with fluid.dygraph.guard(place):
            inputs = self.prepare_dygraph_input(place)
            outputs = self.prepare_dygraph_output()

232 233 234 235 236 237 238
            (
                forward_program_desc,
                backward_program_desc,
            ) = self.get_forward_backward_program_desc(
                self.program_desc, self.fwd_op_num, len(outputs['Out'])
            )

239
            use_interpretorcore = True
240 241 242
            self.attrs.extend(('use_interpretorcore', use_interpretorcore))
            if use_interpretorcore:
                self.attrs.extend(
243 244 245 246 247 248 249 250
                    (
                        'forward_global_block',
                        forward_program_desc.block(0),
                        'backward_global_block',
                        backward_program_desc.block(0),
                    )
                )

251 252 253 254 255 256 257 258 259
            self.attrs.extend(
                (
                    'param_grad_names',
                    [p.name + '@GRAD' for p in inputs['Params']],
                    'out_grad_names',
                    [out.name + '@GRAD' for out in outputs['Out']],
                )
            )

260 261 262 263 264 265 266 267 268
            _legacy_C_ops.run_program(
                inputs['X'],
                inputs['Params'],
                outputs['Out'],
                outputs['OutScope'],
                outputs['DOut'],
                None,
                *self.attrs
            )
269

270 271 272
            return outputs['Out']

    def calc_dygraph_grad(self, place):
273 274 275
        self.program_desc, self.fwd_op_num = self.get_program_desc()
        self.attrs = self.prepare_attrs()

276 277 278 279 280
        with fluid.dygraph.guard(place):
            # Step 1. run forward
            inputs, input_param_list = self.prepare_dygraph_input(place, True)
            outputs = self.prepare_dygraph_output()

281 282 283 284 285 286 287
            (
                forward_program_desc,
                backward_program_desc,
            ) = self.get_forward_backward_program_desc(
                self.program_desc, self.fwd_op_num, len(outputs['Out'])
            )

288
            use_interpretorcore = True
289 290 291
            self.attrs.extend(('use_interpretorcore', use_interpretorcore))
            if use_interpretorcore:
                self.attrs.extend(
292 293 294 295 296 297 298 299
                    (
                        'forward_global_block',
                        forward_program_desc.block(0),
                        'backward_global_block',
                        backward_program_desc.block(0),
                    )
                )

300 301 302 303 304 305 306 307 308
            self.attrs.extend(
                (
                    'param_grad_names',
                    [p.name + '@GRAD' for p in inputs['Params']],
                    'out_grad_names',
                    [out.name + '@GRAD' for out in outputs['Out']],
                )
            )

309 310 311 312 313 314 315 316 317
            _legacy_C_ops.run_program(
                inputs['X'],
                inputs['Params'],
                outputs['Out'],
                outputs['OutScope'],
                outputs['DOut'],
                None,
                *self.attrs
            )
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340

            for param in input_param_list:
                var_type = self._get_grad_vartype(param.name)
                if var_type is None:
                    continue
                param._set_grad_type(var_type)

            # Step 2. run backward
            # NOTE: in unittest, only support single output now
            actual_outs = outputs['Out']
            assert len(actual_outs) == 1
            actual_outs[0].backward()

            # Step 3. prepare grads
            grads = []
            for param in input_param_list:
                grad = param.gradient()
                grads.append(grad)
            return grads

    def _get_grad_vartype(self, name):
        assert self.program_desc is not None
        grad_name = name + core.grad_var_suffix()
341
        for i in range(self.program_desc.num_blocks()):
342
            block = self.program_desc.block(i)
343
            var_desc = block.find_var_recursive(grad_name.encode())
344 345 346 347 348 349 350 351 352
            return var_desc.type() if var_desc is not None else None


class TestRunProgramOpWithFC(RunProgramOpTest):
    def setUp(self):
        self.op_type = "run_program"
        self.dtype = np.float32
        self.input_names = {
            'X': ['img'],
353
            'Params': ['weight_param', 'bias_param'],
354 355 356 357 358
        }
        self.output_names = {'Out': ['fc_0.tmp_2']}

        self.inputs = {
            'X': {
359 360 361
                self.input_names['X'][0]: np.random.random(
                    (32, 1, 28, 28)
                ).astype(self.dtype)
362 363
            },
            'Params': {
364 365 366 367 368 369 370
                self.input_names['Params'][0]: np.random.random(
                    (784, 10)
                ).astype(self.dtype),
                self.input_names['Params'][1]: np.random.random(
                    (32, 10)
                ).astype(self.dtype),
            },
371 372 373 374 375 376 377 378 379 380
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad()

    def build_model(self):
        # 1. simple model
381
        img = paddle.static.data(
382 383 384 385
            name=self.input_names['X'][0],
            shape=[None, 1, 28, 28],
            dtype='float32',
        )
386 387 388
        weight_attr = fluid.ParamAttr(
            name=self.input_names['Params'][0],
            learning_rate=0.5,
389
            initializer=paddle.nn.initializer.Assign(
390 391 392 393
                self.inputs['Params'][self.input_names['Params'][0]]
            ),
            trainable=True,
        )
394 395 396
        bias_attr = fluid.ParamAttr(
            name=self.input_names['Params'][1],
            learning_rate=0.5,
397
            initializer=paddle.nn.initializer.Assign(
398 399 400 401
                self.inputs['Params'][self.input_names['Params'][1]]
            ),
            trainable=True,
        )
C
Charles-hit 已提交
402 403
        pred = paddle.static.nn.fc(
            x=img,
404
            size=10,
C
Charles-hit 已提交
405
            weight_attr=weight_attr,
406
            bias_attr=bias_attr,
C
Charles-hit 已提交
407
            activation='relu',
408
        )
409 410 411 412 413 414 415 416 417 418 419 420 421
        # 2. get forward op num
        fwd_op_num = fluid.default_main_program().global_block().desc.op_size()
        # 3. append backward
        grads = fluid.backward.gradients(targets=[pred], inputs=[img])

        return fwd_op_num


class TestRunProgramOpWithEmbedding(RunProgramOpTest):
    def setUp(self):
        self.op_type = "run_program"
        self.dtype = np.float32
        self.input_names = {'X': ['x'], 'Params': ['emb_weight']}
422
        self.output_names = {'Out': ['sum_0.tmp_0']}
423 424

        self.inputs = {
425
            'X': {'x': np.array([[1, 3, 0, 4, 7]]).astype("int64")},
426 427
            'Params': {
                'emb_weight': np.random.random(size=(10, 16)).astype("float32")
428
            },
429 430 431 432 433 434
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
435
        # NOTE: fecth not support SelectedRows, catnot compare
436 437 438 439 440
        # sparse gradients with staic mode, only run dygraph
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
441
            # TODO: RunProgramOp is not recommended for use in static graph mode now
442 443 444 445
            self.calc_dygraph_grad(place)

    def build_model(self):
        # 1. simple model
G
GGBond8488 已提交
446 447
        x = paddle.static.data(
            name=self.input_names['X'][0], shape=[-1, 5], dtype='int64'
448
        )
449
        emb = paddle.static.nn.embedding(
450 451 452 453 454
            input=x,
            size=[10, 16],
            param_attr=fluid.ParamAttr(
                name="emb_weight",
                learning_rate=10,
455
                initializer=paddle.nn.initializer.Assign(
456 457 458 459 460
                    self.inputs['Params'][self.input_names['Params'][0]]
                ),
            ),
            is_sparse=True,
        )
461
        y = paddle.sum(emb, axis=-1)
462 463 464 465 466 467 468 469
        # 2. get forward op num
        fwd_op_num = fluid.default_main_program().global_block().desc.op_size()
        # 3. append backward
        grads = fluid.backward.gradients(targets=[y], inputs=[x])

        return fwd_op_num


470 471
class Net(paddle.nn.Layer):
    def __init__(self):
472
        super().__init__()
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
        self.fc1 = paddle.nn.Linear(10, 10)
        self.fc2 = paddle.nn.Linear(10, 1)

    def forward(self, x):
        out = self.fc1(x)
        out.stop_gradient = True
        out = self.fc2(out)
        return out


class TestParametersWithStopGradient(unittest.TestCase):
    def setUp(self):
        self.seed = 2021
        self.iter = 5

    def train(self, to_static):
        # prepare env
        paddle.seed(self.seed)

        net = Net()
        if to_static:
            net = paddle.jit.to_static(net)
        sgd = paddle.optimizer.SGD(0.01, parameters=net.parameters())

        for i in range(self.iter):
            x = paddle.rand([4, 10])
            out = net(x)
            loss = paddle.mean(out)

            loss.backward()
            sgd.minimize(loss)
            net.clear_gradients()

        return loss

    def test_stop_gradient(self):
        paddle.disable_static()

        dy_loss = self.train(to_static=False)
        st_loss = self.train(to_static=True)
        self.assertEqual(dy_loss[0], st_loss[0])

        paddle.enable_static()


518 519
if __name__ == "__main__":
    unittest.main()