test_run_program_op.py 16.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import contextlib
import unittest
17

18 19
import numpy as np

20
import paddle
21
import paddle.fluid as fluid
22
from paddle import _legacy_C_ops
23
from paddle.fluid import core, framework
24
from paddle.fluid.dygraph.base import switch_to_static_graph
25 26
from paddle.fluid.executor import (
    _is_dy2st_enable_standalone_executor,
27
    _is_enable_standalone_executor,
28
)
29 30
from paddle.fluid.framework import _in_eager_mode_
from paddle.fluid.layers.utils import _hash_with_id
31

32 33
paddle.enable_static()

34 35 36 37 38 39 40 41 42 43 44 45

@contextlib.contextmanager
def program_scope_guard():
    prog = fluid.Program()
    startup_prog = fluid.Program()
    scope = fluid.core.Scope()
    with fluid.scope_guard(scope):
        with fluid.program_guard(prog, startup_prog):
            with fluid.unique_name.guard():
                yield


46 47 48 49
@switch_to_static_graph
def _add_build_strategy_for(input_program, start_op_index, end_op_index):
    compiled_program = paddle.static.CompiledProgram(
        core.Graph(input_program.desc, start_op_index, end_op_index),
50 51 52 53 54
        build_strategy=paddle.static.BuildStrategy(),
    )
    compiled_program._compile(
        core.Scope(), paddle.framework._current_expected_place()
    )
55 56 57 58 59 60 61 62 63 64
    ir_graph = paddle.fluid.framework.IrGraph(compiled_program._graph)
    builded_program = ir_graph.to_program()
    return builded_program


@switch_to_static_graph
def _build_program_by_desc(program_desc):
    prog = framework.Program()
    prog.desc = program_desc
    prog.blocks = [
65
        framework.Block(prog, i) for i in range(prog.desc.num_blocks())
66 67 68 69 70
    ]
    prog._sync_with_cpp()
    return prog


71
# NOTE: Because RunProgramOp has a special output of type std::vector<Scope *>,
72 73 74 75 76 77 78 79 80
# the OpTest cannot be used in RunProgramOp. The variable type cannot be specified
# when creating output variables in OpTest, default type is LoDTensor
# NOTE: the gradient test method in OpTest also cannot be used for RunProgramOp,
# because it hold BlockDesc type attr, OperatorFactory can't parse this attr type
# when create Operator, so here compare gradients with static graph
# NOTE: Here rewrite a simple unittest framework for RunProgramOp
class RunProgramOpTest(unittest.TestCase):
    def build_model(self):
        raise NotImplementedError(
81 82
            "RunProgramOp test should implement build_model"
        )
83 84 85 86 87 88

    def check_output(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
89
            # TODO: RunProgramOp is not recommended for use in static graph mode now
90 91 92 93 94 95 96 97
            self.expect_outs = self.run_static_model(place, is_test=True)
            self.check_output_with_place(place)

    def check_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
98
            # TODO: RunProgramOp is not recommended for use in static graph mode now
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
            self.expect_grads = self.run_static_model(place, is_test=False)
            self.check_grad_with_place(place)

    def run_static_model(self, place, is_test=True):
        with program_scope_guard():
            startup_program = fluid.default_startup_program()
            main_program = fluid.default_main_program()

            self.build_model()

            exe = fluid.Executor(place)
            exe.run(startup_program)

            if is_test:
                fetch_list = self.output_names['Out']
            else:
                fetch_list = self.get_param_grad_names()

117 118 119
            outs = exe.run(
                main_program, feed=self.inputs['X'], fetch_list=fetch_list
            )
120 121 122 123 124 125 126
            return outs

    def get_program_desc(self):
        with program_scope_guard():
            fwd_op_num = self.build_model()
            return fluid.default_main_program().desc, fwd_op_num

127 128 129
    def get_forward_backward_program_desc(
        self, whole_program_desc, forward_op_num, output_num
    ):
130 131 132
        program = _build_program_by_desc(whole_program_desc)
        forward_program = _add_build_strategy_for(program, 0, forward_op_num)
        backward_program = _add_build_strategy_for(
133 134 135 136
            program,
            forward_op_num + 2 * output_num,
            program.desc.block(0).op_size(),
        )
137 138
        return forward_program.desc, backward_program.desc

139
    def prepare_attrs(self):
140 141
        return [
            'global_block',
142 143 144 145 146 147 148
            self.program_desc.block(0),
            'start_op_index',
            0,
            'end_op_index',
            self.fwd_op_num,
            'program_id',
            _hash_with_id(self.program_desc, self),
149
        ]
150 151 152 153 154 155 156 157 158 159 160 161

    def get_param_grad_names(self):
        grad_names = []
        for var_name in self.inputs['Params']:
            grad_names.append(var_name + core.grad_var_suffix())
        return grad_names

    def check_output_with_place(self, place):
        # Step 1. run op
        actual_outs = self.calc_dygraph_output(place)

        # Step 2. compare output
162
        for expect_v, actual_v in zip(self.expect_outs, actual_outs):
163 164 165
            np.testing.assert_allclose(
                expect_v, actual_v.numpy(), rtol=1e-05, atol=1e-05
            )
166 167 168 169 170 171

    def check_grad_with_place(self, place):
        # Step 1. calc grads
        actual_grads = self.calc_dygraph_grad(place)

        # Step 2. compare grads
172
        for expect_v, actual_v in zip(self.expect_grads, actual_grads):
173
            np.testing.assert_array_almost_equal(expect_v, actual_v)
174 175 176
            np.testing.assert_allclose(
                expect_v, actual_v, rtol=1e-05, atol=1e-05
            )
177 178 179

    def prepare_dygraph_input(self, place, return_param_list=False):
        def create_var_base(is_input, name, np_value, stop_gradient):
0
0x45f 已提交
180
            if _in_eager_mode_:
181 182 183
                var = core.eager.Tensor(
                    value=np_value, name=name, place=place, zero_copy=True
                )
0
0x45f 已提交
184
            else:
185 186 187
                var = core.VarBase(
                    value=np_value, name=name, place=place, zero_copy=True
                )
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
            var.stop_gradient = stop_gradient
            return var

        # build inputs
        inputs = {}
        param_list = []
        inputs['X'] = []
        for name, np_value in self.inputs['X'].items():
            var = create_var_base(True, name, np_value, True)
            inputs['X'].append(var)
        inputs['Params'] = []
        for name, np_value in self.inputs['Params'].items():
            var = create_var_base(True, name, np_value, False)
            inputs['Params'].append(var)
            if return_param_list:
                param_list.append(var)

        if return_param_list:
            return inputs, param_list
        return inputs

    def prepare_dygraph_output(self):
        def create_var_base(is_input, name):
            var = framework._varbase_creator(dtype=None, shape=None, name=name)
            var.stop_gradient = False
            return var

        # build outputs
        outputs = {}
        outputs['Out'] = []
        for name in self.output_names['Out']:
            outputs['Out'].append(create_var_base(False, name))

0
0x45f 已提交
221 222 223 224 225 226
        if _in_eager_mode_:
            outputs['OutScope'] = [core.Scope()]
        else:
            outputs['OutScope'] = framework._varbase_creator(
                type=core.VarDesc.VarType.STEP_SCOPES,
                name="program_out_scope",
227 228
                persistable=True,
            )
0
0x45f 已提交
229 230
            inner_scope = core.Scope()
            outputs['OutScope'].value().set_scope(inner_scope)
231 232

        outputs['DOut'] = [create_var_base(False, "Fake_var")]
233 234 235
        return outputs

    def calc_dygraph_output(self, place):
236 237 238
        self.program_desc, self.fwd_op_num = self.get_program_desc()
        self.attrs = self.prepare_attrs()

239 240 241 242
        with fluid.dygraph.guard(place):
            inputs = self.prepare_dygraph_input(place)
            outputs = self.prepare_dygraph_output()

243 244 245 246 247 248 249 250 251 252 253
            (
                forward_program_desc,
                backward_program_desc,
            ) = self.get_forward_backward_program_desc(
                self.program_desc, self.fwd_op_num, len(outputs['Out'])
            )

            use_interpretorcore = (
                _is_enable_standalone_executor()
                and _is_dy2st_enable_standalone_executor()
            )
254 255 256
            self.attrs.extend(('use_interpretorcore', use_interpretorcore))
            if use_interpretorcore:
                self.attrs.extend(
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
                    (
                        'forward_global_block',
                        forward_program_desc.block(0),
                        'backward_global_block',
                        backward_program_desc.block(0),
                    )
                )

            _legacy_C_ops.run_program(
                inputs['X'],
                inputs['Params'],
                outputs['Out'],
                outputs['OutScope'],
                outputs['DOut'],
                None,
                *self.attrs
            )
274

275 276 277
            return outputs['Out']

    def calc_dygraph_grad(self, place):
278 279 280
        self.program_desc, self.fwd_op_num = self.get_program_desc()
        self.attrs = self.prepare_attrs()

281 282 283 284 285
        with fluid.dygraph.guard(place):
            # Step 1. run forward
            inputs, input_param_list = self.prepare_dygraph_input(place, True)
            outputs = self.prepare_dygraph_output()

286 287 288 289 290 291 292 293 294 295 296
            (
                forward_program_desc,
                backward_program_desc,
            ) = self.get_forward_backward_program_desc(
                self.program_desc, self.fwd_op_num, len(outputs['Out'])
            )

            use_interpretorcore = (
                _is_enable_standalone_executor()
                and _is_dy2st_enable_standalone_executor()
            )
297 298 299
            self.attrs.extend(('use_interpretorcore', use_interpretorcore))
            if use_interpretorcore:
                self.attrs.extend(
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
                    (
                        'forward_global_block',
                        forward_program_desc.block(0),
                        'backward_global_block',
                        backward_program_desc.block(0),
                    )
                )

            _legacy_C_ops.run_program(
                inputs['X'],
                inputs['Params'],
                outputs['Out'],
                outputs['OutScope'],
                outputs['DOut'],
                None,
                *self.attrs
            )
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339

            for param in input_param_list:
                var_type = self._get_grad_vartype(param.name)
                if var_type is None:
                    continue
                param._set_grad_type(var_type)

            # Step 2. run backward
            # NOTE: in unittest, only support single output now
            actual_outs = outputs['Out']
            assert len(actual_outs) == 1
            actual_outs[0].backward()

            # Step 3. prepare grads
            grads = []
            for param in input_param_list:
                grad = param.gradient()
                grads.append(grad)
            return grads

    def _get_grad_vartype(self, name):
        assert self.program_desc is not None
        grad_name = name + core.grad_var_suffix()
340
        for i in range(self.program_desc.num_blocks()):
341
            block = self.program_desc.block(i)
342
            var_desc = block.find_var_recursive(grad_name.encode())
343 344 345 346 347 348 349 350 351
            return var_desc.type() if var_desc is not None else None


class TestRunProgramOpWithFC(RunProgramOpTest):
    def setUp(self):
        self.op_type = "run_program"
        self.dtype = np.float32
        self.input_names = {
            'X': ['img'],
352
            'Params': ['weight_param', 'bias_param'],
353 354 355 356 357
        }
        self.output_names = {'Out': ['fc_0.tmp_2']}

        self.inputs = {
            'X': {
358 359 360
                self.input_names['X'][0]: np.random.random(
                    (32, 1, 28, 28)
                ).astype(self.dtype)
361 362
            },
            'Params': {
363 364 365 366 367 368 369
                self.input_names['Params'][0]: np.random.random(
                    (784, 10)
                ).astype(self.dtype),
                self.input_names['Params'][1]: np.random.random(
                    (32, 10)
                ).astype(self.dtype),
            },
370 371 372 373 374 375 376 377 378 379
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad()

    def build_model(self):
        # 1. simple model
380 381 382 383 384
        img = fluid.data(
            name=self.input_names['X'][0],
            shape=[None, 1, 28, 28],
            dtype='float32',
        )
385 386 387
        weight_attr = fluid.ParamAttr(
            name=self.input_names['Params'][0],
            learning_rate=0.5,
388
            initializer=fluid.initializer.NumpyArrayInitializer(
389 390 391 392
                self.inputs['Params'][self.input_names['Params'][0]]
            ),
            trainable=True,
        )
393 394 395
        bias_attr = fluid.ParamAttr(
            name=self.input_names['Params'][1],
            learning_rate=0.5,
396
            initializer=fluid.initializer.NumpyArrayInitializer(
397 398 399 400
                self.inputs['Params'][self.input_names['Params'][1]]
            ),
            trainable=True,
        )
C
Charles-hit 已提交
401 402
        pred = paddle.static.nn.fc(
            x=img,
403
            size=10,
C
Charles-hit 已提交
404
            weight_attr=weight_attr,
405
            bias_attr=bias_attr,
C
Charles-hit 已提交
406
            activation='relu',
407
        )
408 409 410 411 412 413 414 415 416 417 418 419 420
        # 2. get forward op num
        fwd_op_num = fluid.default_main_program().global_block().desc.op_size()
        # 3. append backward
        grads = fluid.backward.gradients(targets=[pred], inputs=[img])

        return fwd_op_num


class TestRunProgramOpWithEmbedding(RunProgramOpTest):
    def setUp(self):
        self.op_type = "run_program"
        self.dtype = np.float32
        self.input_names = {'X': ['x'], 'Params': ['emb_weight']}
421
        self.output_names = {'Out': ['sum_0.tmp_0']}
422 423

        self.inputs = {
424
            'X': {'x': np.array([[1, 3, 0, 4, 7]]).astype("int64")},
425 426
            'Params': {
                'emb_weight': np.random.random(size=(10, 16)).astype("float32")
427
            },
428 429 430 431 432 433
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
434
        # NOTE: fecth not support SelectedRows, catnot compare
435 436 437 438 439
        # sparse gradients with staic mode, only run dygraph
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
440
            # TODO: RunProgramOp is not recommended for use in static graph mode now
441 442 443 444
            self.calc_dygraph_grad(place)

    def build_model(self):
        # 1. simple model
445 446 447
        x = fluid.layers.data(
            name=self.input_names['X'][0], shape=[5], dtype='int64'
        )
448 449 450 451 452 453
        emb = fluid.input.embedding(
            input=x,
            size=[10, 16],
            param_attr=fluid.ParamAttr(
                name="emb_weight",
                learning_rate=10,
454
                initializer=fluid.initializer.NumpyArrayInitializer(
455 456 457 458 459
                    self.inputs['Params'][self.input_names['Params'][0]]
                ),
            ),
            is_sparse=True,
        )
460
        y = paddle.sum(emb, axis=-1)
461 462 463 464 465 466 467 468
        # 2. get forward op num
        fwd_op_num = fluid.default_main_program().global_block().desc.op_size()
        # 3. append backward
        grads = fluid.backward.gradients(targets=[y], inputs=[x])

        return fwd_op_num


469 470
class Net(paddle.nn.Layer):
    def __init__(self):
471
        super().__init__()
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
        self.fc1 = paddle.nn.Linear(10, 10)
        self.fc2 = paddle.nn.Linear(10, 1)

    def forward(self, x):
        out = self.fc1(x)
        out.stop_gradient = True
        out = self.fc2(out)
        return out


class TestParametersWithStopGradient(unittest.TestCase):
    def setUp(self):
        self.seed = 2021
        self.iter = 5

    def train(self, to_static):
        # prepare env
        paddle.seed(self.seed)

        net = Net()
        if to_static:
            net = paddle.jit.to_static(net)
        sgd = paddle.optimizer.SGD(0.01, parameters=net.parameters())

        for i in range(self.iter):
            x = paddle.rand([4, 10])
            out = net(x)
            loss = paddle.mean(out)

            loss.backward()
            sgd.minimize(loss)
            net.clear_gradients()

        return loss

    def test_stop_gradient(self):
        paddle.disable_static()

        dy_loss = self.train(to_static=False)
        st_loss = self.train(to_static=True)
        self.assertEqual(dy_loss[0], st_loss[0])

        paddle.enable_static()


517 518
if __name__ == "__main__":
    unittest.main()