test_run_program_op.py 17.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import contextlib
import unittest
17

18 19
import numpy as np

20
import paddle
21
from paddle import _legacy_C_ops, fluid
22
from paddle.fluid import core, framework
23
from paddle.fluid.dygraph.base import switch_to_static_graph
24 25
from paddle.fluid.executor import (
    _is_dy2st_enable_standalone_executor,
26
    _is_enable_standalone_executor,
27
)
28
from paddle.fluid.framework import global_var
29

30 31
paddle.enable_static()

32 33 34 35 36 37 38 39 40 41 42 43

@contextlib.contextmanager
def program_scope_guard():
    prog = fluid.Program()
    startup_prog = fluid.Program()
    scope = fluid.core.Scope()
    with fluid.scope_guard(scope):
        with fluid.program_guard(prog, startup_prog):
            with fluid.unique_name.guard():
                yield


44 45 46 47
@switch_to_static_graph
def _add_build_strategy_for(input_program, start_op_index, end_op_index):
    compiled_program = paddle.static.CompiledProgram(
        core.Graph(input_program.desc, start_op_index, end_op_index),
48 49 50 51 52
        build_strategy=paddle.static.BuildStrategy(),
    )
    compiled_program._compile(
        core.Scope(), paddle.framework._current_expected_place()
    )
53 54 55 56 57 58 59 60 61 62
    ir_graph = paddle.fluid.framework.IrGraph(compiled_program._graph)
    builded_program = ir_graph.to_program()
    return builded_program


@switch_to_static_graph
def _build_program_by_desc(program_desc):
    prog = framework.Program()
    prog.desc = program_desc
    prog.blocks = [
63
        framework.Block(prog, i) for i in range(prog.desc.num_blocks())
64 65 66 67 68
    ]
    prog._sync_with_cpp()
    return prog


69
# NOTE: Because RunProgramOp has a special output of type std::vector<Scope *>,
70 71 72 73 74 75 76 77 78
# the OpTest cannot be used in RunProgramOp. The variable type cannot be specified
# when creating output variables in OpTest, default type is LoDTensor
# NOTE: the gradient test method in OpTest also cannot be used for RunProgramOp,
# because it hold BlockDesc type attr, OperatorFactory can't parse this attr type
# when create Operator, so here compare gradients with static graph
# NOTE: Here rewrite a simple unittest framework for RunProgramOp
class RunProgramOpTest(unittest.TestCase):
    def build_model(self):
        raise NotImplementedError(
79 80
            "RunProgramOp test should implement build_model"
        )
81 82 83 84 85 86

    def check_output(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
87
            # TODO: RunProgramOp is not recommended for use in static graph mode now
88 89 90 91 92 93 94 95
            self.expect_outs = self.run_static_model(place, is_test=True)
            self.check_output_with_place(place)

    def check_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
96
            # TODO: RunProgramOp is not recommended for use in static graph mode now
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
            self.expect_grads = self.run_static_model(place, is_test=False)
            self.check_grad_with_place(place)

    def run_static_model(self, place, is_test=True):
        with program_scope_guard():
            startup_program = fluid.default_startup_program()
            main_program = fluid.default_main_program()

            self.build_model()

            exe = fluid.Executor(place)
            exe.run(startup_program)

            if is_test:
                fetch_list = self.output_names['Out']
            else:
                fetch_list = self.get_param_grad_names()

115 116 117
            outs = exe.run(
                main_program, feed=self.inputs['X'], fetch_list=fetch_list
            )
118 119 120 121 122 123 124
            return outs

    def get_program_desc(self):
        with program_scope_guard():
            fwd_op_num = self.build_model()
            return fluid.default_main_program().desc, fwd_op_num

125 126 127
    def get_forward_backward_program_desc(
        self, whole_program_desc, forward_op_num, output_num
    ):
128 129 130
        program = _build_program_by_desc(whole_program_desc)
        forward_program = _add_build_strategy_for(program, 0, forward_op_num)
        backward_program = _add_build_strategy_for(
131
            program,
132
            forward_op_num + output_num,
133 134
            program.desc.block(0).op_size(),
        )
135 136
        return forward_program.desc, backward_program.desc

137
    def prepare_attrs(self):
138 139
        return [
            'global_block',
140 141 142 143 144 145
            self.program_desc.block(0),
            'start_op_index',
            0,
            'end_op_index',
            self.fwd_op_num,
            'program_id',
146
            paddle.utils._hash_with_id(self.program_desc, self),
147
        ]
148 149 150 151 152 153 154 155 156 157 158 159

    def get_param_grad_names(self):
        grad_names = []
        for var_name in self.inputs['Params']:
            grad_names.append(var_name + core.grad_var_suffix())
        return grad_names

    def check_output_with_place(self, place):
        # Step 1. run op
        actual_outs = self.calc_dygraph_output(place)

        # Step 2. compare output
160
        for expect_v, actual_v in zip(self.expect_outs, actual_outs):
161 162 163
            np.testing.assert_allclose(
                expect_v, actual_v.numpy(), rtol=1e-05, atol=1e-05
            )
164 165 166 167 168 169

    def check_grad_with_place(self, place):
        # Step 1. calc grads
        actual_grads = self.calc_dygraph_grad(place)

        # Step 2. compare grads
170
        for expect_v, actual_v in zip(self.expect_grads, actual_grads):
171
            np.testing.assert_array_almost_equal(expect_v, actual_v)
172 173 174
            np.testing.assert_allclose(
                expect_v, actual_v, rtol=1e-05, atol=1e-05
            )
175 176 177

    def prepare_dygraph_input(self, place, return_param_list=False):
        def create_var_base(is_input, name, np_value, stop_gradient):
W
wanghuancoder 已提交
178 179 180
            var = core.eager.Tensor(
                value=np_value, name=name, place=place, zero_copy=True
            )
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
            var.stop_gradient = stop_gradient
            return var

        # build inputs
        inputs = {}
        param_list = []
        inputs['X'] = []
        for name, np_value in self.inputs['X'].items():
            var = create_var_base(True, name, np_value, True)
            inputs['X'].append(var)
        inputs['Params'] = []
        for name, np_value in self.inputs['Params'].items():
            var = create_var_base(True, name, np_value, False)
            inputs['Params'].append(var)
            if return_param_list:
                param_list.append(var)

        if return_param_list:
            return inputs, param_list
        return inputs

    def prepare_dygraph_output(self):
        def create_var_base(is_input, name):
            var = framework._varbase_creator(dtype=None, shape=None, name=name)
            var.stop_gradient = False
            return var

        # build outputs
        outputs = {}
        outputs['Out'] = []
        for name in self.output_names['Out']:
            outputs['Out'].append(create_var_base(False, name))

214
        if global_var._in_eager_mode_:
0
0x45f 已提交
215 216 217 218 219
            outputs['OutScope'] = [core.Scope()]
        else:
            outputs['OutScope'] = framework._varbase_creator(
                type=core.VarDesc.VarType.STEP_SCOPES,
                name="program_out_scope",
220 221
                persistable=True,
            )
0
0x45f 已提交
222 223
            inner_scope = core.Scope()
            outputs['OutScope'].value().set_scope(inner_scope)
224 225

        outputs['DOut'] = [create_var_base(False, "Fake_var")]
226 227 228
        return outputs

    def calc_dygraph_output(self, place):
229 230 231
        self.program_desc, self.fwd_op_num = self.get_program_desc()
        self.attrs = self.prepare_attrs()

232 233 234 235
        with fluid.dygraph.guard(place):
            inputs = self.prepare_dygraph_input(place)
            outputs = self.prepare_dygraph_output()

236 237 238 239 240 241 242 243 244 245 246
            (
                forward_program_desc,
                backward_program_desc,
            ) = self.get_forward_backward_program_desc(
                self.program_desc, self.fwd_op_num, len(outputs['Out'])
            )

            use_interpretorcore = (
                _is_enable_standalone_executor()
                and _is_dy2st_enable_standalone_executor()
            )
247 248 249
            self.attrs.extend(('use_interpretorcore', use_interpretorcore))
            if use_interpretorcore:
                self.attrs.extend(
250 251 252 253 254 255 256 257
                    (
                        'forward_global_block',
                        forward_program_desc.block(0),
                        'backward_global_block',
                        backward_program_desc.block(0),
                    )
                )

258 259 260 261 262 263 264 265 266
            self.attrs.extend(
                (
                    'param_grad_names',
                    [p.name + '@GRAD' for p in inputs['Params']],
                    'out_grad_names',
                    [out.name + '@GRAD' for out in outputs['Out']],
                )
            )

267 268 269 270 271 272 273 274 275
            _legacy_C_ops.run_program(
                inputs['X'],
                inputs['Params'],
                outputs['Out'],
                outputs['OutScope'],
                outputs['DOut'],
                None,
                *self.attrs
            )
276

277 278 279
            return outputs['Out']

    def calc_dygraph_grad(self, place):
280 281 282
        self.program_desc, self.fwd_op_num = self.get_program_desc()
        self.attrs = self.prepare_attrs()

283 284 285 286 287
        with fluid.dygraph.guard(place):
            # Step 1. run forward
            inputs, input_param_list = self.prepare_dygraph_input(place, True)
            outputs = self.prepare_dygraph_output()

288 289 290 291 292 293 294 295 296 297 298
            (
                forward_program_desc,
                backward_program_desc,
            ) = self.get_forward_backward_program_desc(
                self.program_desc, self.fwd_op_num, len(outputs['Out'])
            )

            use_interpretorcore = (
                _is_enable_standalone_executor()
                and _is_dy2st_enable_standalone_executor()
            )
299 300 301
            self.attrs.extend(('use_interpretorcore', use_interpretorcore))
            if use_interpretorcore:
                self.attrs.extend(
302 303 304 305 306 307 308 309
                    (
                        'forward_global_block',
                        forward_program_desc.block(0),
                        'backward_global_block',
                        backward_program_desc.block(0),
                    )
                )

310 311 312 313 314 315 316 317 318
            self.attrs.extend(
                (
                    'param_grad_names',
                    [p.name + '@GRAD' for p in inputs['Params']],
                    'out_grad_names',
                    [out.name + '@GRAD' for out in outputs['Out']],
                )
            )

319 320 321 322 323 324 325 326 327
            _legacy_C_ops.run_program(
                inputs['X'],
                inputs['Params'],
                outputs['Out'],
                outputs['OutScope'],
                outputs['DOut'],
                None,
                *self.attrs
            )
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350

            for param in input_param_list:
                var_type = self._get_grad_vartype(param.name)
                if var_type is None:
                    continue
                param._set_grad_type(var_type)

            # Step 2. run backward
            # NOTE: in unittest, only support single output now
            actual_outs = outputs['Out']
            assert len(actual_outs) == 1
            actual_outs[0].backward()

            # Step 3. prepare grads
            grads = []
            for param in input_param_list:
                grad = param.gradient()
                grads.append(grad)
            return grads

    def _get_grad_vartype(self, name):
        assert self.program_desc is not None
        grad_name = name + core.grad_var_suffix()
351
        for i in range(self.program_desc.num_blocks()):
352
            block = self.program_desc.block(i)
353
            var_desc = block.find_var_recursive(grad_name.encode())
354 355 356 357 358 359 360 361 362
            return var_desc.type() if var_desc is not None else None


class TestRunProgramOpWithFC(RunProgramOpTest):
    def setUp(self):
        self.op_type = "run_program"
        self.dtype = np.float32
        self.input_names = {
            'X': ['img'],
363
            'Params': ['weight_param', 'bias_param'],
364 365 366 367 368
        }
        self.output_names = {'Out': ['fc_0.tmp_2']}

        self.inputs = {
            'X': {
369 370 371
                self.input_names['X'][0]: np.random.random(
                    (32, 1, 28, 28)
                ).astype(self.dtype)
372 373
            },
            'Params': {
374 375 376 377 378 379 380
                self.input_names['Params'][0]: np.random.random(
                    (784, 10)
                ).astype(self.dtype),
                self.input_names['Params'][1]: np.random.random(
                    (32, 10)
                ).astype(self.dtype),
            },
381 382 383 384 385 386 387 388 389 390
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad()

    def build_model(self):
        # 1. simple model
391
        img = paddle.static.data(
392 393 394 395
            name=self.input_names['X'][0],
            shape=[None, 1, 28, 28],
            dtype='float32',
        )
396 397 398
        weight_attr = fluid.ParamAttr(
            name=self.input_names['Params'][0],
            learning_rate=0.5,
399
            initializer=paddle.nn.initializer.Assign(
400 401 402 403
                self.inputs['Params'][self.input_names['Params'][0]]
            ),
            trainable=True,
        )
404 405 406
        bias_attr = fluid.ParamAttr(
            name=self.input_names['Params'][1],
            learning_rate=0.5,
407
            initializer=paddle.nn.initializer.Assign(
408 409 410 411
                self.inputs['Params'][self.input_names['Params'][1]]
            ),
            trainable=True,
        )
C
Charles-hit 已提交
412 413
        pred = paddle.static.nn.fc(
            x=img,
414
            size=10,
C
Charles-hit 已提交
415
            weight_attr=weight_attr,
416
            bias_attr=bias_attr,
C
Charles-hit 已提交
417
            activation='relu',
418
        )
419 420 421 422 423 424 425 426 427 428 429 430 431
        # 2. get forward op num
        fwd_op_num = fluid.default_main_program().global_block().desc.op_size()
        # 3. append backward
        grads = fluid.backward.gradients(targets=[pred], inputs=[img])

        return fwd_op_num


class TestRunProgramOpWithEmbedding(RunProgramOpTest):
    def setUp(self):
        self.op_type = "run_program"
        self.dtype = np.float32
        self.input_names = {'X': ['x'], 'Params': ['emb_weight']}
432
        self.output_names = {'Out': ['sum_0.tmp_0']}
433 434

        self.inputs = {
435
            'X': {'x': np.array([[1, 3, 0, 4, 7]]).astype("int64")},
436 437
            'Params': {
                'emb_weight': np.random.random(size=(10, 16)).astype("float32")
438
            },
439 440 441 442 443 444
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
445
        # NOTE: fecth not support SelectedRows, catnot compare
446 447 448 449 450
        # sparse gradients with staic mode, only run dygraph
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
451
            # TODO: RunProgramOp is not recommended for use in static graph mode now
452 453 454 455
            self.calc_dygraph_grad(place)

    def build_model(self):
        # 1. simple model
G
GGBond8488 已提交
456 457
        x = paddle.static.data(
            name=self.input_names['X'][0], shape=[-1, 5], dtype='int64'
458
        )
459
        emb = paddle.static.nn.embedding(
460 461 462 463 464
            input=x,
            size=[10, 16],
            param_attr=fluid.ParamAttr(
                name="emb_weight",
                learning_rate=10,
465
                initializer=paddle.nn.initializer.Assign(
466 467 468 469 470
                    self.inputs['Params'][self.input_names['Params'][0]]
                ),
            ),
            is_sparse=True,
        )
471
        y = paddle.sum(emb, axis=-1)
472 473 474 475 476 477 478 479
        # 2. get forward op num
        fwd_op_num = fluid.default_main_program().global_block().desc.op_size()
        # 3. append backward
        grads = fluid.backward.gradients(targets=[y], inputs=[x])

        return fwd_op_num


480 481
class Net(paddle.nn.Layer):
    def __init__(self):
482
        super().__init__()
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
        self.fc1 = paddle.nn.Linear(10, 10)
        self.fc2 = paddle.nn.Linear(10, 1)

    def forward(self, x):
        out = self.fc1(x)
        out.stop_gradient = True
        out = self.fc2(out)
        return out


class TestParametersWithStopGradient(unittest.TestCase):
    def setUp(self):
        self.seed = 2021
        self.iter = 5

    def train(self, to_static):
        # prepare env
        paddle.seed(self.seed)

        net = Net()
        if to_static:
            net = paddle.jit.to_static(net)
        sgd = paddle.optimizer.SGD(0.01, parameters=net.parameters())

        for i in range(self.iter):
            x = paddle.rand([4, 10])
            out = net(x)
            loss = paddle.mean(out)

            loss.backward()
            sgd.minimize(loss)
            net.clear_gradients()

        return loss

    def test_stop_gradient(self):
        paddle.disable_static()

        dy_loss = self.train(to_static=False)
        st_loss = self.train(to_static=True)
        self.assertEqual(dy_loss[0], st_loss[0])

        paddle.enable_static()


528 529
if __name__ == "__main__":
    unittest.main()