fake_quantize_op.cc 34.4 KB
Newer Older
视言's avatar
视言 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fake_quantize_op.h"
16

17
#include <algorithm>
视言's avatar
视言 已提交
18
#include <string>
19

20
#include "paddle/fluid/framework/eigen.h"
21
#include "paddle/fluid/framework/op_version_registry.h"
22
#include "paddle/fluid/platform/transform.h"
W
wuyefeilin 已提交
23
#include "paddle/phi/kernels/impl/clip_kernel_impl.h"
视言's avatar
视言 已提交
24 25 26 27

namespace paddle {
namespace operators {

28 29 30 31 32
template <typename T>
struct Compare {
 public:
  bool operator()(const T a, const T b) { return (std::abs(a) < std::abs(b)); }
};
33 34 35 36 37

template <typename T>
struct FindAbsMaxFunctor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& ctx, const T* in,
                  const int num, T* out) {
38
    *out = std::abs(*(std::max_element(in + 0, in + num, Compare<T>())));
39 40 41 42 43
  }
};

template struct FindAbsMaxFunctor<platform::CPUDeviceContext, float>;

44 45
template <typename T>
struct FindChannelAbsMaxFunctor<platform::CPUDeviceContext, T> {
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
  void operator()(const platform::CPUDeviceContext& ctx,
                  const framework::Tensor& in_tensor, const int quant_axis,
                  T* out_abs_max) {
    // At present, channelwise quantization supports conv2d, depthwise_conv2d
    // conv2d_transpose and mul
    PADDLE_ENFORCE_EQ(
        quant_axis == 0 || quant_axis == 1, true,
        platform::errors::InvalidArgument("'quant_axis' should be 0 or 1, but "
                                          "the received is %d",
                                          quant_axis));
    auto* in_data = in_tensor.data<T>();
    auto in_dims = in_tensor.dims();
    const int64_t channel = in_dims[quant_axis];
    if (quant_axis == 0) {
      const int64_t channel_size = in_tensor.numel() / channel;
      for (int64_t i = 0; i < channel; i++) {
        auto* start = in_data + i * channel_size;
        auto* end = in_data + (i + 1) * channel_size;
        out_abs_max[i] =
            std::abs(*(std::max_element(start, end, Compare<T>())));
      }
    } else if (quant_axis == 1) {
      for (int64_t i = 0; i < channel; i++) {
        out_abs_max[i] = 0;
      }
      const int64_t step_i = in_tensor.numel() / in_dims[0];
      const int64_t step_j = in_tensor.numel() / (in_dims[0] * in_dims[1]);
      for (int64_t i = 0; i < in_dims[0]; i++) {
        for (int64_t j = 0; j < in_dims[1]; j++) {
          auto* start = in_data + i * step_i + j * step_j;
          auto* end = in_data + i * step_i + (j + 1) * step_j;
          T abs_max = std::abs(*(std::max_element(start, end, Compare<T>())));
          out_abs_max[j] = std::max(out_abs_max[j], abs_max);
        }
      }
81 82 83 84 85 86
    }
  }
};

template struct FindChannelAbsMaxFunctor<platform::CPUDeviceContext, float>;

87 88 89 90 91 92
template <typename T>
struct ClipAndFakeQuantFunctor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& ctx,
                  const framework::Tensor& in, const framework::Tensor& scale,
                  const int bin_cnt, framework::Tensor* out) {
    T s = scale.data<T>()[0];
93
    T inv_s = inverse(s);
94 95
    platform::Transform<platform::CPUDeviceContext> trans;
    trans(ctx, in.data<T>(), in.data<T>() + in.numel(),
W
wuyefeilin 已提交
96
          out->mutable_data<T>(ctx.GetPlace()), phi::ClipFunctor<T>(-s, s));
97
    auto out_e = framework::EigenVector<T>::Flatten(*out);
98
    out_e.device(*ctx.eigen_device()) = (bin_cnt * inv_s * out_e).round();
99 100 101 102 103
  }
};

template struct ClipAndFakeQuantFunctor<platform::CPUDeviceContext, float>;

104 105 106 107 108 109
template <typename T>
struct ClipAndFakeQuantDequantFunctor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& ctx,
                  const framework::Tensor& in, const framework::Tensor& scale,
                  const int bin_cnt, framework::Tensor* out) {
    T s = scale.data<T>()[0];
110 111
    T inv_s = inverse(s);

112 113
    platform::Transform<platform::CPUDeviceContext> trans;
    trans(ctx, in.data<T>(), in.data<T>() + in.numel(),
W
wuyefeilin 已提交
114
          out->mutable_data<T>(ctx.GetPlace()), phi::ClipFunctor<T>(-s, s));
115 116
    auto out_e = framework::EigenVector<T>::Flatten(*out);
    out_e.device(*ctx.eigen_device()) =
117
        (bin_cnt * inv_s * out_e).round() * s / static_cast<T>(bin_cnt);
118 119 120 121 122
  }
};
template struct ClipAndFakeQuantDequantFunctor<platform::CPUDeviceContext,
                                               float>;

123 124 125 126
template <typename T>
struct ChannelClipAndFakeQuantFunctor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& ctx,
                  const framework::Tensor& in, const framework::Tensor& scale,
127
                  const int bin_cnt, const int quant_axis,
128
                  framework::Tensor* out) {
129 130 131 132 133 134 135
    // At present, channelwise quantization supports conv2d, depthwise_conv2d
    // conv2d_transpose and mul
    PADDLE_ENFORCE_EQ(
        quant_axis == 0 || quant_axis == 1, true,
        platform::errors::InvalidArgument("'quant_axis' should be 0 or 1, but "
                                          "the received is %d",
                                          quant_axis));
136 137 138
    auto* scale_data = scale.data<T>();
    auto* in_data = in.data<T>();
    auto* out_data = out->mutable_data<T>(ctx.GetPlace());
139 140
    auto in_dims = in.dims();
    const int64_t channel = in_dims[quant_axis];
141
    platform::Transform<platform::CPUDeviceContext> trans;
142 143 144 145 146 147 148
    if (quant_axis == 0) {
      const int64_t channel_size = in.numel() / channel;
      for (int64_t i = 0; i < channel; i++) {
        T s = scale_data[i];
        auto* start = in_data + i * channel_size;
        auto* end = in_data + (i + 1) * channel_size;
        trans(ctx, start, end, out_data + i * channel_size,
W
wuyefeilin 已提交
149
              phi::ClipFunctor<T>(-s, s));
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
      }
      for (int64_t i = 0; i < channel; i++) {
        T s = scale_data[i];
        T inv_s = inverse(s);
        framework::Tensor one_channel_out = out->Slice(i, i + 1);
        auto out_e = framework::EigenVector<T>::Flatten(one_channel_out);
        out_e.device(*ctx.eigen_device()) = (bin_cnt * inv_s * out_e).round();
      }
    } else if (quant_axis == 1) {
      const int64_t step_i = in.numel() / in_dims[0];
      const int64_t step_j = in.numel() / (in_dims[0] * in_dims[1]);
      for (int i = 0; i < in_dims[0]; i++) {
        for (int j = 0; j < in_dims[1]; j++) {
          T s = scale_data[j];
          T inv_s = inverse(s);
          auto* start = in_data + i * step_i + j * step_j;
          auto* end = in_data + i * step_i + (j + 1) * step_j;
          auto* cur_out_data = out_data + i * step_i + j * step_j;
W
wuyefeilin 已提交
168
          trans(ctx, start, end, cur_out_data, phi::ClipFunctor<T>(-s, s));
169 170 171 172 173
          for (int k = 0; k < step_j; k++) {
            cur_out_data[k] = std::round(bin_cnt * inv_s * cur_out_data[k]);
          }
        }
      }
174 175 176 177 178 179
    }
  }
};

template struct ChannelClipAndFakeQuantFunctor<platform::CPUDeviceContext,
                                               float>;
H
huangxu96 已提交
180 181 182 183 184 185 186 187 188 189 190
template <typename T>
struct ChannelClipFakeQuantDequantFunctor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& ctx,
                  const framework::Tensor& in, const framework::Tensor& scale,
                  const int bin_cnt, const int quant_axis,
                  framework::Tensor* out) {
    PADDLE_ENFORCE_EQ(
        quant_axis == 0 || quant_axis == 1, true,
        platform::errors::InvalidArgument("'quant_axis' should be 0 or 1, but "
                                          "the received is %d",
                                          quant_axis));
191

H
huangxu96 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204
    auto* scale_data = scale.data<T>();
    auto* in_data = in.data<T>();
    auto* out_data = out->mutable_data<T>(ctx.GetPlace());
    auto in_dims = in.dims();
    const int64_t channel = in_dims[quant_axis];
    platform::Transform<platform::CPUDeviceContext> trans;
    if (quant_axis == 0) {
      const int64_t channel_size = in.numel() / channel;
      for (int i = 0; i < channel; i++) {
        T s = scale_data[i];
        auto* start = in_data + i * channel_size;
        auto* end = in_data + (i + 1) * channel_size;
        trans(ctx, start, end, out_data + i * channel_size,
W
wuyefeilin 已提交
205
              phi::ClipFunctor<T>(-s, s));
H
huangxu96 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
      }
      for (int i = 0; i < channel; i++) {
        T s = scale_data[i];
        T inv_s = inverse(s);
        framework::Tensor one_channel_out = out->Slice(i, i + 1);
        auto out_e = framework::EigenVector<T>::Flatten(one_channel_out);
        out_e.device(*ctx.eigen_device()) =
            (bin_cnt * inv_s * out_e).round() * s / static_cast<T>(bin_cnt);
      }
    } else if (quant_axis == 1) {
      const int64_t step_i = in.numel() / in_dims[0];
      const int64_t step_j = in.numel() / (in_dims[0] * in_dims[1]);
      for (int i = 0; i < in_dims[0]; i++) {
        for (int j = 0; j < in_dims[1]; j++) {
          T s = scale_data[j];
          T inv_s = inverse(s);
          auto* start = in_data + i * step_i + j * step_j;
          auto* end = in_data + i * step_i + (j + 1) * step_j;
          auto* cur_out_data = out_data + i * step_i + j * step_j;
W
wuyefeilin 已提交
225
          trans(ctx, start, end, cur_out_data, phi::ClipFunctor<T>(-s, s));
H
huangxu96 已提交
226 227 228 229 230 231 232 233 234 235 236 237
          for (int k = 0; k < step_j; k++) {
            cur_out_data[k] = std::round(bin_cnt * inv_s * cur_out_data[k]) *
                              s / static_cast<T>(bin_cnt);
          }
        }
      }
    }
  }
};

template struct ChannelClipFakeQuantDequantFunctor<platform::CPUDeviceContext,
                                                   float>;
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
template <typename T>
struct FindRangeAbsMaxFunctor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& ctx,
                  const framework::Tensor& cur_scale,
                  const framework::Tensor& last_scale,
                  const framework::Tensor& iter, const int window_size,
                  framework::Tensor* scales_arr, framework::Tensor* out_scale) {
    T* scale_arr = scales_arr->mutable_data<T>(ctx.GetPlace());
    int64_t it = iter.data<int64_t>()[0];
    int idx = it % window_size;
    T removed = scale_arr[idx];
    T cur = cur_scale.data<T>()[0];
    scale_arr[idx] = cur;

    T max = last_scale.data<T>()[0];
    if (max < cur) {
      max = cur;
    } else if (fabs(removed - max) < 1e-6) {
      int size = (it > window_size) ? window_size : it;
      FindAbsMaxFunctor<platform::CPUDeviceContext, T>()(ctx, scale_arr, size,
                                                         &max);
    }
    out_scale->mutable_data<T>(ctx.GetPlace())[0] = max;
  }
};

template struct FindRangeAbsMaxFunctor<platform::CPUDeviceContext, float>;

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
template <typename T>
struct FindMovingAverageAbsMaxFunctor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& ctx,
                  const framework::Tensor& in_accum,
                  const framework::Tensor& in_state, const T* cur_scale,
                  const float rate, framework::Tensor* out_state,
                  framework::Tensor* out_accum, framework::Tensor* out_scale) {
    T accum = in_accum.data<T>()[0];
    T state = in_state.data<T>()[0];
    T scale = cur_scale[0];

    state = rate * state + 1;
    accum = rate * accum + scale;
    scale = accum / state;

    out_state->mutable_data<T>(ctx.GetPlace())[0] = state;
    out_accum->mutable_data<T>(ctx.GetPlace())[0] = accum;
    out_scale->mutable_data<T>(ctx.GetPlace())[0] = scale;
  }
};

template struct FindMovingAverageAbsMaxFunctor<platform::CPUDeviceContext,
                                               float>;

290
class FakeQuantOrWithDequantAbsMaxOp : public framework::OperatorWithKernel {
视言's avatar
视言 已提交
291
 public:
292 293 294 295
  FakeQuantOrWithDequantAbsMaxOp(const std::string& type,
                                 const framework::VariableNameMap& inputs,
                                 const framework::VariableNameMap& outputs,
                                 const framework::AttributeMap& attrs)
视言's avatar
视言 已提交
296 297
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

298
  void InferShape(framework::InferShapeContext* ctx) const override {
299 300
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X",
                   "FakeQuantOrWithDequantAbsMaxOp");
301
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out",
302
                   "FakeQuantOrWithDequantAbsMaxOp");
303
    OP_INOUT_CHECK(ctx->HasOutput("OutScale"), "Output", "OutScale",
304
                   "FakeQuantOrWithDequantAbsMaxOp");
视言's avatar
视言 已提交
305
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
306
    ctx->SetOutputDim("OutScale", {1});
视言's avatar
视言 已提交
307 308
    ctx->ShareLoD("X", /*->*/ "Out");
  }
309 310 311 312

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
313 314 315
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
316
  }
视言's avatar
视言 已提交
317 318
};

319 320
class FakeQuantOrWithDequantAbsMaxOpMaker
    : public framework::OpProtoAndCheckerMaker {
视言's avatar
视言 已提交
321 322
 public:
  void Make() override {
323 324 325 326 327
    AddInput("X", "(Tensor) Input is float data type.");
    AddOutput("Out",
              "(Tensor) Output of quantized low level tensor, "
              "but also saved as float data type.");
    AddOutput("OutScale", "(Tensor) Current scale");
视言's avatar
视言 已提交
328 329
    AddAttr<int>("bit_length", "(int, default 8)")
        .SetDefault(8)
330
        .AddCustomChecker([](const int& bit_length) {
331 332 333 334 335
          PADDLE_ENFORCE_EQ(bit_length >= 1 && bit_length <= 16, true,
                            platform::errors::InvalidArgument(
                                "'bit_length' should be between 1 and 16, but "
                                "the received is %d",
                                bit_length));
视言's avatar
视言 已提交
336 337
        });
    AddComment(R"DOC(
338
This is a Base Op which supports FakeQuantAbsMaxOpMaker and FakeQuantDequantAbsMaxOpMaker.
339
FakeQuantAbsMaxOp operator is used in the dynamic quantization.
视言's avatar
视言 已提交
340

341
$$scale = max(abs(X))$$
342 343
$$range = 2^{bit_length - 1} - 1$$
$$Out = round(X/scale * range)$$
视言's avatar
视言 已提交
344

345
FakeQuantDequantAbsMaxOp operator does the abs_max quantization and then dequantization.
346 347 348 349 350

$$scale = max(abs(X))$$
$$range = 2^{bit\_length - 1} - 1$$
$$Out = round(X/scale * range) * scale / range$$

351 352 353
)DOC");
  }
};
视言's avatar
视言 已提交
354

Z
Zhen Wang 已提交
355 356 357 358 359
class FakeChannelWiseQuantizeAbsMaxOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
360 361 362 363 364 365
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X",
                   "FakeChannelWiseQuantizeAbsMax");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out",
                   "FakeChannelWiseQuantizeAbsMax");
    OP_INOUT_CHECK(ctx->HasOutput("OutScale"), "Output", "OutScale",
                   "FakeChannelWiseQuantizeAbsMax");
366
    int quant_axis = ctx->Attrs().Get<int>("quant_axis");
Z
Zhen Wang 已提交
367
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
368
    ctx->SetOutputDim("OutScale", {ctx->GetInputDim("X")[quant_axis]});
Z
Zhen Wang 已提交
369 370 371 372 373 374
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
375 376
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
Z
Zhen Wang 已提交
377 378 379 380 381 382 383 384 385 386 387
  }
};

class FakeChannelWiseQuantizeAbsMaxOpMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) Input is float data type.");
    AddOutput("Out",
              "(Tensor) Output of quantized low level tensor, "
              "but also saved as float data type.");
388
    AddOutput("OutScale", "(Tensor) Current channel wise scale");
389 390 391 392 393 394 395 396 397 398 399 400
    AddAttr<int>("quant_axis",
                 "(int, default 0) The axis for quantization. "
                 "For conv2d, depthwise_conv2d, conv2d_transpose "
                 "and mul, the quant_axis is equal to the cout axis.")
        .SetDefault(0)
        .AddCustomChecker([](const int& quant_axis) {
          PADDLE_ENFORCE_EQ(quant_axis == 0 || quant_axis == 1, true,
                            platform::errors::InvalidArgument(
                                "'quant_axis' should be 0 or 1, but "
                                "the received is %d",
                                quant_axis));
        });
Z
Zhen Wang 已提交
401 402 403
    AddAttr<int>("bit_length", "(int, default 8)")
        .SetDefault(8)
        .AddCustomChecker([](const int& bit_length) {
404 405 406 407 408
          PADDLE_ENFORCE_EQ(bit_length >= 1 && bit_length <= 16, true,
                            platform::errors::InvalidArgument(
                                "'bit_length' should be between 1 and 16, but "
                                "the received is %d",
                                bit_length));
Z
Zhen Wang 已提交
409
        });
410 411 412 413
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
Z
Zhen Wang 已提交
414 415 416 417 418
    AddComment(R"DOC(
The scale of FakeChannelWiseQuantize operator is a vector.
In detail, each channel of the input X has a scale value.

$$scale_c = max(abs(X_c))$$
Z
Zhen Wang 已提交
419 420
$$range = 2^{bit\_length - 1} - 1$$
$$Out_c = round(\frac{X_c * range} {scale_c})$$
Z
Zhen Wang 已提交
421
In above three formulas, the range value of c is as follow:
Z
Zhen Wang 已提交
422
$$0 \leq c \lt \ the\ channel\ number\ of\ X$$
Z
Zhen Wang 已提交
423 424 425 426
)DOC");
  }
};

H
huangxu96 已提交
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
class FakeChannelWiseQuantizeDequantizeAbsMaxOp
    : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X",
                   "FakeChannelWiseQuantizeDequantizeAbsMax");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out",
                   "FakeChannelWiseQuantizeDequantizeAbsMax");
    OP_INOUT_CHECK(ctx->HasOutput("OutScale"), "Output", "OutScale",
                   "FakeChannelWiseQuantizeDequantizeAbsMax");
    int quant_axis = ctx->Attrs().Get<int>("quant_axis");
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
    ctx->SetOutputDim("OutScale", {ctx->GetInputDim("X")[quant_axis]});
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
  }
};

class FakeChannelWiseQuantizeDequantizeAbsMaxOpMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) Input is float data type.");
    AddOutput("Out",
              "(Tensor) Output of quantized and dequantized low level tensor, "
              "saved as float data type.");
    AddOutput("OutScale", "(Tensor) Current channel wise scale");
    AddAttr<int>("quant_axis",
                 "(int, default 0) The axis for quantization. "
                 "For conv2d, depthwise_conv2d, conv2d_transpose "
                 "and mul, the quant_axis is equal to the cout axis.")
        .SetDefault(0)
        .AddCustomChecker([](const int& quant_axis) {
          PADDLE_ENFORCE_EQ(quant_axis == 0 || quant_axis == 1, true,
                            platform::errors::InvalidArgument(
                                "'quant_axis' should be 0 or 1, but "
                                "the received is %d",
                                quant_axis));
        });
    AddAttr<int>("bit_length", "(int, default 8)")
        .SetDefault(8)
        .AddCustomChecker([](const int& bit_length) {
          PADDLE_ENFORCE_EQ(bit_length >= 1 && bit_length <= 16, true,
                            platform::errors::InvalidArgument(
                                "'bit_length' should be between 1 and 16, but "
                                "the received is %d",
                                bit_length));
        });
    AddComment(R"DOC(
The scale of FakeChannelWiseQuantize operator is a vector.
In detail, each channel of the input X has a scale value.

$$scale_c = max(abs(X_c))$$
$$range = 2^{bit\_length - 1} - 1$$
$$Out_c = round(\frac{X_c * range} {scale_c}) * \frac{scale_c} {range}$$
In above three formulas, the range value of c is as follow:
$$0 \leq c \lt \ the\ channel\ number\ of\ X$$
)DOC");
  }
};

496 497 498 499 500 501 502
class FakeQuantizeRangeAbsMaxOp : public framework::OperatorWithKernel {
 public:
  FakeQuantizeRangeAbsMaxOp(const std::string& type,
                            const framework::VariableNameMap& inputs,
                            const framework::VariableNameMap& outputs,
                            const framework::AttributeMap& attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}
视言's avatar
视言 已提交
503

504
  void InferShape(framework::InferShapeContext* ctx) const override {
505 506 507 508 509
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "FakeQuantizeRangeAbsMax");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out",
                   "FakeQuantizeRangeAbsMax");
    OP_INOUT_CHECK(ctx->HasOutput("OutScale"), "Output", "OutScale",
                   "FakeQuantizeRangeAbsMax");
510 511 512 513 514 515 516 517
    if (ctx->HasOutput("OutScales")) {
      int window_size = ctx->Attrs().Get<int>("window_size");
      ctx->SetOutputDim("OutScales", {window_size});
    }
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
    ctx->SetOutputDim("OutScale", {1});
    ctx->ShareLoD("X", /*->*/ "Out");
  }
视言's avatar
视言 已提交
518

519 520 521
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
522 523 524
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
525 526
  }
};
视言's avatar
视言 已提交
527

528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
class FakeQuantizeRangeAbsMaxOpMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) Input is float data type.");
    AddInput("InScale", "Last scale.");
    AddInput("Iter", "Global step iteration.").AsDispensable();
    AddOutput("Out", "(Tensor) Output of quantized low level tensor.");
    AddOutput("OutScale", " Current scale");
    AddOutput("OutScales", "(Tensor) scale buffer.").AsDispensable();
    AddAttr<int>("window_size", "(int, default 10000) window range size.")
        .SetDefault(10000);
    AddAttr<int>("bit_length", "(int, default 8), quantization bit number.")
        .SetDefault(8)
        .AddCustomChecker([](const int& bit_length) {
543 544 545 546 547
          PADDLE_ENFORCE_EQ(bit_length >= 1 && bit_length <= 16, true,
                            platform::errors::InvalidArgument(
                                "'bit_length' should be between 1 and 16, but "
                                "the received is %d",
                                bit_length));
548
        });
549 550 551 552
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
553 554
    AddComment(R"DOC(
FakeQuantize operator is used in static quantization.
视言's avatar
视言 已提交
555

556
$$scale = max(max(abs(x)), history_abs_max)$$
557 558
$$range = 2^{bit_length - 1} - 1$$
$$Out = round(X/scale * range)$$
视言's avatar
视言 已提交
559 560 561 562 563

)DOC");
  }
};

564 565
class FakeQuantOrWithDequantMovingAverageAbsMaxOp
    : public framework::OperatorWithKernel {
566
 public:
567 568 569 570
  FakeQuantOrWithDequantMovingAverageAbsMaxOp(
      const std::string& type, const framework::VariableNameMap& inputs,
      const framework::VariableNameMap& outputs,
      const framework::AttributeMap& attrs)
571 572 573
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext* ctx) const override {
574 575 576 577 578 579
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X",
                   "FakeQuantOrWithDequantMovingAverageAbsMax");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out",
                   "FakeQuantOrWithDequantMovingAverageAbsMax");
    OP_INOUT_CHECK(ctx->HasOutput("OutScale"), "Output", "OutScale",
                   "FakeQuantOrWithDequantMovingAverageAbsMax");
580 581 582 583 584 585 586 587 588 589 590 591 592 593
    if (ctx->HasOutput("OutState")) {
      ctx->SetOutputDim("OutState", {1});
    }
    if (ctx->HasOutput("OutAccum")) {
      ctx->SetOutputDim("OutAccum", {1});
    }
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
    ctx->SetOutputDim("OutScale", {1});
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
594 595 596
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
597 598 599
  }
};

600
class FakeQuantOrWithDequantMovingAverageAbsMaxOpMaker
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
    : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) Input is float data type.");
    AddInput("InScale", "Last scale.");
    AddInput("InAccum", "Last accum.").AsDispensable();
    AddInput("InState", "Last state.").AsDispensable();
    AddOutput("Out", "(Tensor) Output of quantized low level tensor.");
    AddOutput("OutScale", " Current scale");
    AddOutput("OutState", "(Tensor) state buffer.").AsDispensable();
    AddOutput("OutAccum", "(Tensor) accum buffer.").AsDispensable();
    AddAttr<float>("moving_rate", "(float, default 0.9) moving rate.")
        .SetDefault(0.9);
    AddAttr<int>("bit_length", "(int, default 8), quantization bit number.")
        .SetDefault(8)
        .AddCustomChecker([](const int& bit_length) {
617 618 619 620 621
          PADDLE_ENFORCE_EQ(bit_length >= 1 && bit_length <= 16, true,
                            platform::errors::InvalidArgument(
                                "'bit_length' should be between 1 and 16, but "
                                "the received is %d",
                                bit_length));
622 623 624 625 626 627
        });
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
    AddComment(R"DOC(
628
This is a Base Op which supports FakeQuantMovingAverageAbsMaxOp and FakeQuantDequantMovingAverageAbsMaxOp.
629
FakeQuantMovingAverageAbsMaxOp operator is used in the static quantization.
630

Z
Zhen Wang 已提交
631 632
$$scale = (moving\_rate*accum+max(abs(x)))/(moving\_rate*state+1)$$
$$range = 2^{bit\_length - 1} - 1$$
633 634
$$Out = round(X/scale * range)$$

635
FakeQuantDequantMovingAverageAbsMaxOp operator does the moving_average_abs_max quant and then dequant.
636 637 638 639 640

$$scale = (moving\_rate*accum+max(abs(x)))/(moving\_rate*state+1)$$
$$range = 2^{bit\_length - 1} - 1$$
$$Out = round(X/scale * range) * scale / range$$

641 642 643 644
)DOC");
  }
};

Z
Zhen Wang 已提交
645 646 647 648 649
class MovingAverageAbsMaxScaleOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
650 651 652 653
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X",
                   "MovingAverageAbsMaxScale");
    OP_INOUT_CHECK(ctx->HasOutput("OutScale"), "Output", "OutScale",
                   "MovingAverageAbsMaxScale");
654

Z
Zhen Wang 已提交
655 656 657 658 659 660
    if (ctx->HasOutput("OutState")) {
      ctx->SetOutputDim("OutState", {1});
    }
    if (ctx->HasOutput("OutAccum")) {
      ctx->SetOutputDim("OutAccum", {1});
    }
661 662 663 664 665
    if (ctx->HasOutput("Out")) {
      ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
      ctx->SetOutputDim("OutScale", {1});
      ctx->ShareLoD("X", /*->*/ "Out");
    }
Z
Zhen Wang 已提交
666 667 668 669 670
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
671 672
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
Z
Zhen Wang 已提交
673 674 675 676 677 678 679 680 681 682
  }
};

class MovingAverageAbsMaxScaleOpMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) Input is float data type.");
    AddInput("InAccum", "Last accum.").AsDispensable();
    AddInput("InState", "Last state.").AsDispensable();
683 684 685
    AddOutput("Out",
              "(Tensor) Output tensor is just equivalent to the input tensor.")
        .AsDispensable();
Z
Zhen Wang 已提交
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
    AddOutput("OutScale", " Current scale");
    AddOutput("OutState", "(Tensor) state buffer.").AsDispensable();
    AddOutput("OutAccum", "(Tensor) accum buffer.").AsDispensable();
    AddAttr<float>("moving_rate", "(float, default 0.9) moving rate.")
        .SetDefault(0.9);
    AddAttr<bool>("is_test",
                  "(bool, default false) Set true for inference only and false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
    AddComment(R"DOC(
MovingAverageAbsMaxScale operator is only used for calculating the quantization scale.
And it will not quantize the input tensor.

$$scale = (moving\_rate*accum+max(abs(x)))/(moving\_rate*state+1)$$
$$Out = X$$

)DOC");
  }
};

706
class StrightThroughEstimatorGradOp : public framework::OperatorWithKernel {
707 708 709 710 711
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    auto out_grad_name = framework::GradVarName("Out");
712
    auto x_grad_name = framework::GradVarName("X");
713
    OP_INOUT_CHECK(ctx->HasInput(out_grad_name), "Input", out_grad_name,
714
                   "StrightThroughEstimatorGradOp");
715
    OP_INOUT_CHECK(ctx->HasOutput(x_grad_name), "Output", x_grad_name,
716
                   "StrightThroughEstimatorGradOp");
717 718 719 720 721 722 723 724 725 726 727 728 729

    ctx->SetOutputDim(x_grad_name, ctx->GetInputDim(out_grad_name));
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
};

template <typename T>
730
class StrightThroughEstimatorMaker : public framework::SingleGradOpMaker<T> {
731 732 733 734 735
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> grad_op) const override {
736
    grad_op->SetType("stright_throuth_estimator_grad");
737 738 739 740 741 742
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

视言's avatar
视言 已提交
743 744 745 746
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
747 748
using CPU = paddle::platform::CPUDeviceContext;

H
hong 已提交
749
REGISTER_OPERATOR(
750 751
    fake_quantize_abs_max, ops::FakeQuantOrWithDequantAbsMaxOp,
    ops::FakeQuantOrWithDequantAbsMaxOpMaker,
H
hong 已提交
752 753
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
754 755
REGISTER_OP_CPU_KERNEL(fake_quantize_abs_max,
                       ops::FakeQuantizeAbsMaxKernel<CPU, float>);
视言's avatar
视言 已提交
756

757 758 759 760 761
REGISTER_OPERATOR(
    fake_quantize_dequantize_abs_max, ops::FakeQuantOrWithDequantAbsMaxOp,
    ops::FakeQuantOrWithDequantAbsMaxOpMaker,
    ops::StrightThroughEstimatorMaker<paddle::framework::OpDesc>,
    ops::StrightThroughEstimatorMaker<paddle::imperative::OpBase>);
762 763 764
REGISTER_OP_CPU_KERNEL(fake_quantize_dequantize_abs_max,
                       ops::FakeQuantizeDequantizeAbsMaxKernel<CPU, float>);

H
hong 已提交
765 766 767 768 769
REGISTER_OPERATOR(
    fake_quantize_range_abs_max, ops::FakeQuantizeRangeAbsMaxOp,
    ops::FakeQuantizeRangeAbsMaxOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
770 771
REGISTER_OP_CPU_KERNEL(fake_quantize_range_abs_max,
                       ops::FakeQuantizeRangeAbsMaxKernel<CPU, float>);
Z
Zhen Wang 已提交
772

H
hong 已提交
773 774 775 776 777 778
REGISTER_OPERATOR(
    fake_quantize_moving_average_abs_max,
    ops::FakeQuantOrWithDequantMovingAverageAbsMaxOp,
    ops::FakeQuantOrWithDequantMovingAverageAbsMaxOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
779 780
REGISTER_OP_CPU_KERNEL(fake_quantize_moving_average_abs_max,
                       ops::FakeQuantizeMovingAverageAbsMaxKernel<CPU, float>);
781

782 783 784 785 786 787
REGISTER_OPERATOR(
    fake_quantize_dequantize_moving_average_abs_max,
    ops::FakeQuantOrWithDequantMovingAverageAbsMaxOp,
    ops::FakeQuantOrWithDequantMovingAverageAbsMaxOpMaker,
    ops::StrightThroughEstimatorMaker<paddle::framework::OpDesc>,
    ops::StrightThroughEstimatorMaker<paddle::imperative::OpBase>);
788 789 790 791
REGISTER_OP_CPU_KERNEL(
    fake_quantize_dequantize_moving_average_abs_max,
    ops::FakeQuantizeDequantizeMovingAverageAbsMaxKernel<CPU, float>);

H
hong 已提交
792 793 794 795 796
REGISTER_OPERATOR(
    fake_channel_wise_quantize_abs_max, ops::FakeChannelWiseQuantizeAbsMaxOp,
    ops::FakeChannelWiseQuantizeAbsMaxOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
Z
Zhen Wang 已提交
797 798
REGISTER_OP_CPU_KERNEL(fake_channel_wise_quantize_abs_max,
                       ops::FakeChannelWiseQuantizeAbsMaxKernel<CPU, float>);
Z
Zhen Wang 已提交
799

H
hong 已提交
800 801 802
REGISTER_OPERATOR(
    moving_average_abs_max_scale, ops::MovingAverageAbsMaxScaleOp,
    ops::MovingAverageAbsMaxScaleOpMaker,
803 804
    ops::StrightThroughEstimatorMaker<paddle::framework::OpDesc>,
    ops::StrightThroughEstimatorMaker<paddle::imperative::OpBase>);
Z
Zhen Wang 已提交
805 806
REGISTER_OP_CPU_KERNEL(moving_average_abs_max_scale,
                       ops::MovingAverageAbsMaxScaleKernel<CPU, float>);
807

808 809 810 811
REGISTER_OPERATOR(stright_throuth_estimator_grad,
                  ops::StrightThroughEstimatorGradOp);
REGISTER_OP_CPU_KERNEL(stright_throuth_estimator_grad,
                       ops::StrightThroughEstimatorGradKernel<CPU, float>);
H
huangxu96 已提交
812

813 814 815 816 817 818
REGISTER_OPERATOR(
    fake_channel_wise_quantize_dequantize_abs_max,
    ops::FakeChannelWiseQuantizeDequantizeAbsMaxOp,
    ops::FakeChannelWiseQuantizeDequantizeAbsMaxOpMaker,
    ops::StrightThroughEstimatorMaker<paddle::framework::OpDesc>,
    ops::StrightThroughEstimatorMaker<paddle::imperative::OpBase>);
H
huangxu96 已提交
819 820 821
REGISTER_OP_CPU_KERNEL(
    fake_channel_wise_quantize_dequantize_abs_max,
    ops::FakeChannelWiseQuantizeDequantizeAbsMaxKernel<CPU, float>);
822 823 824 825 826 827 828

REGISTER_OP_VERSION(fake_channel_wise_quantize_abs_max)
    .AddCheckpoint(
        R"ROC(add new attributes [quant_axis] for applying per-channel "
        "quantization to conv2d_tranpose and mul ops.)ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "quant_axis", "The axis for quantization.", 0));
829 830 831 832 833 834 835
REGISTER_OP_VERSION(moving_average_abs_max_scale)
    .AddCheckpoint(
        R"ROC(Incompatible upgrade of output [Out])ROC",
        paddle::framework::compatible::OpVersionDesc().DeleteOutput(
            "Out",
            "Delete output in order to make the inference model not "
            "save moving_average_abs_max_scale operator. This will "
836
            "make the quantitative model be correctly applied in inference."))
837 838 839 840
    .AddCheckpoint(R"ROC(Incompatible upgrade of output [Out])ROC",
                   paddle::framework::compatible::OpVersionDesc().NewOutput(
                       "Out",
                       "In order to support dygraph qat, add output again."));