elementwise_functor.h 18.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include "paddle/phi/common/complex.h"
18 19 20
#include "paddle/phi/common/float16.h"
#include "paddle/phi/core/enforce.h"
#include "paddle/phi/core/hostdevice.h"
21 22
#if defined(__xpu__)
#include <xpu/runtime.h>
23

C
Chen Weihang 已提交
24
#include "xpu/kernel/math_xpu2.h"  // pow()
25
#endif
26

27
namespace phi {
28 29 30
namespace funcs {

// Define the binary functors used in elementwise ops.
31
// Note: InverseXxxFunctor is needed when calling ElementwiseComputeEx on CPU.
32 33 34 35

// Add
template <typename T>
struct AddFunctor {
36
  inline HOSTDEVICE T operator()(const T a, const T b) const { return a + b; }
37 38 39
};
template <typename T>
struct InverseAddFunctor {
40
  inline HOSTDEVICE T operator()(const T a, const T b) const { return b + a; }
41 42 43 44 45
};

// Subtract
template <typename T>
struct SubtractFunctor {
46
  inline HOSTDEVICE T operator()(const T a, const T b) const { return a - b; }
47 48 49
};
template <typename T>
struct InverseSubtractFunctor {
50
  inline HOSTDEVICE T operator()(const T a, const T b) const { return b - a; }
51 52 53 54 55
};

// Multiply
template <typename T>
struct MultiplyFunctor {
56
  inline HOSTDEVICE T operator()(const T a, const T b) const { return a * b; }
57
};
58 59 60 61 62 63
template <>
struct MultiplyFunctor<bool> {
  inline HOSTDEVICE bool operator()(const bool a, const bool b) const {
    return a && b;
  }
};
64 65
template <typename T>
struct InverseMultiplyFunctor {
66
  inline HOSTDEVICE T operator()(const T a, const T b) const { return b * a; }
67
};
68 69 70 71 72 73
template <>
struct InverseMultiplyFunctor<bool> {
  inline HOSTDEVICE bool operator()(const bool a, const bool b) const {
    return b && a;
  }
};
74

75 76 77 78 79
template <typename T>
struct IsZeroFunctor {
  HOSTDEVICE bool operator()(T x) const { return x == static_cast<T>(0); }
};

80 81 82 83 84 85 86
// Divide
#define DIV_ERROR_INFO                                             \
  "InvalidArgumentError: Integer division by zero encountered in " \
  "(floor) divide. Please check the input value."

template <typename T, typename Enable = void>
struct DivideFunctor {
87
  inline HOSTDEVICE T operator()(const T a, const T b) const { return a / b; }
88 89 90 91 92 93
};

template <typename T>
struct DivideFunctor<
    T,
    typename std::enable_if<std::is_integral<T>::value>::type> {
94
  inline HOSTDEVICE T operator()(const T a, const T b) const {
95 96 97 98 99 100 101 102
    // For int32/int64, need to check whether the divison is zero.
    PADDLE_ENFORCE(b != 0, DIV_ERROR_INFO);
    return a / b;
  }
};

template <typename T, typename Enable = void>
struct InverseDivideFunctor {
103
  inline HOSTDEVICE T operator()(const T a, const T b) const { return b / a; }
104 105
};

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
template <typename T>
using ComplexType = phi::dtype::complex<T>;

template <typename InT, typename OutT>
struct DivGradXYFunctor {
  inline HOSTDEVICE phi::Array<OutT, 2> operator()(const InT a,
                                                   const InT b,
                                                   const InT c) {
    // dx = dout / y
    // dy = - dout * out / y
    phi::Array<OutT, 2> outs;
    outs[0] = a / c;
    outs[1] = -a * b / c;
    return outs;
  }
};

template <typename InT, typename OutT>
struct DivGradXYFunctor<ComplexType<InT>, ComplexType<OutT>> {
  inline HOSTDEVICE phi::Array<ComplexType<OutT>, 2> operator()(
      const ComplexType<InT> a,
      const ComplexType<InT> b,
      const ComplexType<InT> c) {
    phi::Array<ComplexType<OutT>, 2> outs;
    ComplexType<InT> c_conj(c.real, -c.imag);
    ComplexType<InT> out_div_c_conj((b / c).real, -(b / c).imag);
    outs[0] = a / c_conj;
    outs[1] = -a * out_div_c_conj;
    return outs;
  }
};

// Float div grad
template <typename T>
struct DivGradXFunctor {
  inline HOSTDEVICE T operator()(const T a, const T b) const { return a / b; }
};

// ComplexType div grad
template <typename T>
struct DivGradXFunctor<ComplexType<T>> {
  inline HOSTDEVICE ComplexType<T> operator()(const ComplexType<T> a,
                                              const ComplexType<T> b) const {
    ComplexType<T> b_conj(b.real, -b.imag);
    return a / b_conj;
  }
};

// Float mul and div
template <typename T>
struct DivGradYFunctor {
  inline HOSTDEVICE T operator()(const T a, const T b, const T c) const {
    return -a * b / c;
  }
};

// ComplexType mul and div
template <typename T>
struct DivGradYFunctor<ComplexType<T>> {
  inline HOSTDEVICE ComplexType<T> operator()(const ComplexType<T> a,
                                              const ComplexType<T> b,
                                              const ComplexType<T> c) const {
    ComplexType<T> out_div_c_conj((b / c).real, -(b / c).imag);
    return -a * out_div_c_conj;
  }
};
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
// Fmin
template <typename T>
struct FMinFunctor {
  inline HOSTDEVICE T operator()(const T a, const T b) const {
    return std::fmin(a, b);
  }
};

template <>
struct FMinFunctor<dtype::float16> {
  inline HOSTDEVICE dtype::float16 operator()(const dtype::float16 a,
                                              const dtype::float16 b) const {
    float float_a = static_cast<float>(a);
    float float_b = static_cast<float>(b);
    auto result = std::fmin(float_a, float_b);
    return static_cast<dtype::float16>(result);
  }
};

template <>
struct FMinFunctor<int> {
  inline HOSTDEVICE int operator()(const int a, const int b) const {
    float float_a = static_cast<float>(a);
    float float_b = static_cast<float>(b);
    auto result = std::fmin(float_a, float_b);
    return std::lrint(result);
  }
};

template <>
struct FMinFunctor<int64_t> {
  inline HOSTDEVICE int64_t operator()(const int64_t a, const int64_t b) const {
    double double_a = static_cast<double>(a);
    double double_b = static_cast<double>(b);
    auto result = std::fmin(double_a, double_b);
    return std::llrint(result);
  }
};

// Fmax
template <typename T>
struct FMaxFunctor {
  inline HOSTDEVICE T operator()(const T a, const T b) const {
    return std::fmax(a, b);
  }
};

template <>
struct FMaxFunctor<dtype::float16> {
  inline HOSTDEVICE dtype::float16 operator()(const dtype::float16 a,
                                              const dtype::float16 b) const {
    float float_a = static_cast<float>(a);
    float float_b = static_cast<float>(b);
    auto result = std::fmax(float_a, float_b);
    return static_cast<dtype::float16>(result);
  }
};

template <>
struct FMaxFunctor<int> {
  inline HOSTDEVICE int operator()(const int a, const int b) const {
    float float_a = static_cast<float>(a);
    float float_b = static_cast<float>(b);
    auto result = std::fmax(float_a, float_b);
    return std::lrint(result);
  }
};

template <>
struct FMaxFunctor<int64_t> {
  inline HOSTDEVICE int64_t operator()(const int64_t a, const int64_t b) const {
    double double_a = static_cast<double>(a);
    double double_b = static_cast<double>(b);
    auto result = std::fmax(double_a, double_b);
    return std::llrint(result);
  }
};

template <typename T>
struct FMaxGradDx {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
    return dout * static_cast<T>((x >= y) || isnan(y));
  }
};

template <>
struct FMaxGradDx<dtype::float16> {
  HOSTDEVICE dtype::float16 operator()(dtype::float16 x,
                                       dtype::float16 y,
                                       dtype::float16 out,
                                       dtype::float16 dout) const {
    return dout * static_cast<dtype::float16>((x >= y) || dtype::isnan(y));
  }
};

template <>
struct FMaxGradDx<int> {
  HOSTDEVICE int operator()(int x, int y, int out, int dout) const {
    return dout * static_cast<int>((x >= y));
  }
};

template <>
struct FMaxGradDx<int64_t> {
  HOSTDEVICE int64_t operator()(int64_t x,
                                int64_t y,
                                int64_t out,
                                int64_t dout) const {
    return dout * static_cast<int64_t>((x >= y));
  }
};

template <typename T>
struct FMaxGradDy {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
    return dout * static_cast<T>(!((x >= y) || isnan(y)));
  }
};

template <>
struct FMaxGradDy<dtype::float16> {
  HOSTDEVICE dtype::float16 operator()(dtype::float16 x,
                                       dtype::float16 y,
                                       dtype::float16 out,
                                       dtype::float16 dout) const {
    return dout * static_cast<dtype::float16>(!((x >= y) || dtype::isnan(y)));
  }
};

template <>
struct FMaxGradDy<int64_t> {
  HOSTDEVICE int64_t operator()(int64_t x,
                                int64_t y,
                                int64_t out,
                                int64_t dout) const {
    return dout * static_cast<int64_t>(!((x >= y)));
  }
};

template <>
struct FMaxGradDy<int> {
  HOSTDEVICE int operator()(int x, int y, int out, int dout) const {
    return dout * static_cast<int>(!((x >= y)));
  }
};

template <typename T>
struct FMinGradDx {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
    return dout * static_cast<T>((x <= y) || isnan(y));
  }
};

template <>
struct FMinGradDx<dtype::float16> {
  HOSTDEVICE dtype::float16 operator()(dtype::float16 x,
                                       dtype::float16 y,
                                       dtype::float16 out,
                                       dtype::float16 dout) const {
    return dout * static_cast<dtype::float16>((x <= y) || dtype::isnan(y));
  }
};

template <>
struct FMinGradDx<int> {
  HOSTDEVICE int operator()(int x, int y, int out, int dout) const {
    return dout * static_cast<int>((x <= y));
  }
};

template <>
struct FMinGradDx<int64_t> {
  HOSTDEVICE int64_t operator()(int64_t x,
                                int64_t y,
                                int64_t out,
                                int64_t dout) const {
    return dout * static_cast<int64_t>((x <= y));
  }
};

template <typename T>
struct FMinGradDy {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
    return dout * static_cast<T>(!((x <= y) || isnan(y)));
  }
};

template <>
struct FMinGradDy<dtype::float16> {
  HOSTDEVICE dtype::float16 operator()(dtype::float16 x,
                                       dtype::float16 y,
                                       dtype::float16 out,
                                       dtype::float16 dout) const {
    return dout * static_cast<dtype::float16>(!((x <= y) || dtype::isnan(y)));
  }
};

template <>
struct FMinGradDy<int> {
  HOSTDEVICE int operator()(int x, int y, int out, int dout) const {
    return dout * static_cast<int>(!((x <= y)));
  }
};

template <>
struct FMinGradDy<int64_t> {
  HOSTDEVICE int64_t operator()(int64_t x,
                                int64_t y,
                                int64_t out,
                                int64_t dout) const {
    return dout * static_cast<int64_t>(!((x <= y)));
  }
};
385

Y
YuanRisheng 已提交
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
template <typename T>
struct MultiplyGradFunctor {
  inline HOSTDEVICE T operator()(const T a, const T b) const { return a * b; }
};
template <typename T>
struct MultiplyGradFunctor<ComplexType<T>> {
  inline HOSTDEVICE ComplexType<T> operator()(const ComplexType<T> a,
                                              const ComplexType<T> b) const {
    ComplexType<T> b_conj(b.real, -b.imag);
    return a * b_conj;
  }
};

template <typename InT, typename OutT>
struct MultiplyGradXYFunctor {
  inline HOSTDEVICE phi::Array<OutT, 2> operator()(const InT a,
                                                   const InT b,
                                                   const InT c) {
    phi::Array<OutT, 2> outs;
    // dx = dout * y
    outs[0] = a * b;
    // dy = dout * x
    outs[1] = a * c;
    return outs;
  }
};

template <typename InT, typename OutT>
struct MultiplyGradXYFunctor<ComplexType<InT>, ComplexType<OutT>> {
  inline HOSTDEVICE phi::Array<ComplexType<OutT>, 2> operator()(
      const ComplexType<InT> a,
      const ComplexType<InT> b,
      const ComplexType<InT> c) {
    phi::Array<ComplexType<OutT>, 2> outs;
    // dx = dout * y
    ComplexType<InT> b_conj(b.real, -b.imag);
    outs[0] = a * b_conj;
    // dy = dout * x
    ComplexType<InT> c_conj(c.real, -c.imag);
    outs[1] = a * c_conj;
    return outs;
  }
};

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
// Maximum
template <typename T>
struct MaximumFunctor {
  inline HOSTDEVICE T operator()(const T a, const T b) const {
    return a > b ? a : b;
  }
};

template <typename T>
struct MaxGradXFunctor {
  inline HOSTDEVICE T operator()(const T x, const T y, const T dout) const {
    return dout * static_cast<T>(x > y);
  }
};

template <typename T>
struct MaxGradYFunctor {
  inline HOSTDEVICE T operator()(const T x, const T y, const T dout) const {
    return dout * static_cast<T>(x <= y);
  }
};

template <typename InT, typename OutT>
struct MaxGradXYFunctor {
  inline HOSTDEVICE phi::Array<OutT, 2> operator()(const InT x,
                                                   const InT y,
                                                   const InT dout) {
    phi::Array<OutT, 2> outs;
    // dx = dout * (x > y)
    outs[0] = static_cast<OutT>(dout * static_cast<InT>(x > y));
    // dy = dout * (x <= y)
    outs[1] = static_cast<OutT>(dout * static_cast<InT>(x <= y));
    return outs;
  }
};

// Minimum
template <typename T>
struct MinimumFunctor {
  inline HOSTDEVICE T operator()(const T a, const T b) const {
    return a < b ? a : b;
  }
};
template <typename T>
struct MinGradXFunctor {
  inline HOSTDEVICE T operator()(const T x, const T y, const T dout) const {
    return dout * static_cast<T>(x < y);
  }
};
template <typename T>
struct MinGradYFunctor {
  inline HOSTDEVICE T operator()(const T x, const T y, const T dout) const {
    return dout * static_cast<T>(x >= y);
  }
};

template <typename InT, typename OutT>
struct MinGradXYFunctor {
  inline HOSTDEVICE phi::Array<OutT, 2> operator()(const InT x,
                                                   const InT y,
                                                   const InT dout) {
    phi::Array<OutT, 2> outs;
    // dx = dout * (x < y)
    outs[0] = static_cast<OutT>(dout * static_cast<InT>(x < y));
    // dy = dout * (x >= y)
    outs[1] = static_cast<OutT>(dout * static_cast<InT>(x >= y));
    return outs;
  }
};

// Modulo
template <typename T, typename Enable = void>
C
Chen Weihang 已提交
502
struct RemainderFunctor {
503 504 505 506 507 508 509 510 511 512 513
  inline HOSTDEVICE T operator()(const T a, const T b) const {
    T res = a % b;

    // Accoding to #PR26732: in dividen % divsor
    // remainder shall have the same sign as divsor.
    if ((res != 0) && ((b ^ res) < 0)) res += b;
    return res;
  }
};

template <typename T>
C
Chen Weihang 已提交
514
struct RemainderFunctor<
515 516 517 518 519 520 521 522 523 524 525 526
    T,
    typename std::enable_if_t<std::is_floating_point<T>::value>> {
  inline HOSTDEVICE T operator()(const T a, const T b) const {
    T res = fmod(a, b);

    // Accoding to #PR26732: in dividen % divsor
    // remainder shall have the same sign as divsor.
    if ((res != 0) && ((res < 0) != (b < 0))) res += b;
    return res;
  }
};

527 528 529 530 531 532 533 534 535 536 537 538 539
template <>
struct RemainderFunctor<dtype::float16> {
  inline HOSTDEVICE dtype::float16 operator()(const dtype::float16 a,
                                              const dtype::float16 b) const {
    float b_float = static_cast<float>(b);
    float res = fmod(static_cast<float>(a), b_float);
    // Accoding to #PR26732: in dividen % divsor
    // remainder shall have the same sign as divsor.
    if ((res != 0.0f) && ((res < 0.0f) != (b_float < 0.0f))) res += b_float;
    return static_cast<dtype::float16>(res);
  }
};

540
template <typename T, typename Enable = void>
C
Chen Weihang 已提交
541
struct InverseRemainderFunctor {
542 543 544 545 546 547 548 549
  inline HOSTDEVICE T operator()(const T a, const T b) const {
    T res = b % a;
    if ((res != 0) && ((res < 0) != (a < 0))) res += a;
    return res;
  }
};

template <typename T>
C
Chen Weihang 已提交
550
struct InverseRemainderFunctor<
551 552 553 554 555 556 557 558
    T,
    typename std::enable_if_t<std::is_floating_point<T>::value>> {
  inline HOSTDEVICE T operator()(const T a, const T b) const {
    T res = fmod(b, a);
    if ((res != 0) && ((a < 0) != (res < 0))) res += a;
    return res;
  }
};
559

560 561 562
template <typename T>
struct ElementwiseHeavisideFunctor {
  inline HOSTDEVICE T operator()(const T a, const T b) const {
563
    return a == static_cast<T>(0) ? b : static_cast<T>(a > static_cast<T>(0));
564 565 566
  }
};

567 568 569
template <typename T>
struct FloorDivideFunctor {
  inline HOSTDEVICE T operator()(const T a, const T b) const {
570
#ifndef PADDLE_WITH_XPU_KP
571
    PADDLE_ENFORCE(b != 0, DIV_ERROR_INFO);
572
#endif
573
    return static_cast<T>(a / b);
574 575 576 577 578 579
  }
};

template <typename T>
struct InverseFloorDivideFunctor {
  inline HOSTDEVICE T operator()(const T a, const T b) const {
580
#ifndef PADDLE_WITH_XPU_KP
581
    PADDLE_ENFORCE(a != 0, DIV_ERROR_INFO);
582
#endif
583
    return static_cast<T>(b / a);
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
  }
};

template <typename T>
struct ElementwisePowFunctor {
  inline HOSTDEVICE T operator()(const T a, const T b) const {
// TODO(wujionghao): A potential speed improvement is supporting different
// types in C++.
#if defined(__CUDA_ARCH__) || defined(__HIPCC__)
    // On CUDAPlace, std::pow(3, 1) calls pow(float, float), and
    // it will return a float number like 2.99... , which floor to 2
    // when cast to int by default and it is wrong.
    // Use llrint to cast it to the nearest integer, which is 3.
    if (std::is_integral<T>::value) {
      return std::llrint(
          std::pow(static_cast<double>(a), static_cast<double>(b)));
    }
601 602 603
#endif
#ifdef PADDLE_WITH_XPU_KP
    return pow(a, b);
604 605 606 607
#endif
    return std::pow(a, b);
  }
};
608

609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
template <typename T>
struct ElementwiseInversePowFunctor {
  inline HOSTDEVICE T operator()(const T a, const T b) const {
// TODO(wujionghao): A potential speed improvement is supporting different
// types in C++.
#if defined(__CUDA_ARCH__) || defined(__HIPCC__)
    // On CUDAPlace, std::pow(3, 1) calls pow(float, float), and
    // it will return a float number like 2.99... , which floor to 2
    // when cast to int by default and it is wrong.
    // Use llrint to cast it to the nearest integer, which is 3.
    if (std::is_integral<T>::value) {
      return std::llrint(
          std::pow(static_cast<double>(b), static_cast<double>(a)));
    }
#endif
#ifdef PADDLE_WITH_XPU_KP
    return pow(b, a);
#endif
    return std::pow(b, a);
  }
};

631 632 633 634 635 636 637 638 639 640
template <>
struct ElementwisePowFunctor<dtype::float16> {
  inline HOSTDEVICE dtype::float16 operator()(const dtype::float16 a,
                                              const dtype::float16 b) const {
    float f_a = static_cast<float>(a);
    float f_b = static_cast<float>(b);
    return static_cast<dtype::float16>(std::pow(f_a, f_b));
  }
};

641 642 643 644 645 646 647 648 649 650
template <>
struct ElementwiseInversePowFunctor<dtype::float16> {
  inline HOSTDEVICE dtype::float16 operator()(const dtype::float16 a,
                                              const dtype::float16 b) const {
    float f_a = static_cast<float>(a);
    float f_b = static_cast<float>(b);
    return static_cast<dtype::float16>(std::pow(f_b, f_a));
  }
};

651
}  // namespace funcs
652
}  // namespace phi