Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
452c75b8
P
Paddle
项目概览
PaddlePaddle
/
Paddle
接近 2 年 前同步成功
通知
2320
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
452c75b8
编写于
3月 09, 2022
作者:
Y
YuanRisheng
提交者:
GitHub
3月 09, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
move elementwise mul grad (#40252)
上级
0604df9e
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
539 addition
and
401 deletion
+539
-401
paddle/fluid/framework/new_executor/standalone_executor_test.cc
.../fluid/framework/new_executor/standalone_executor_test.cc
+1
-1
paddle/fluid/operators/elementwise/elementwise_functor.h
paddle/fluid/operators/elementwise/elementwise_functor.h
+0
-41
paddle/fluid/operators/elementwise/elementwise_mul_op.cc
paddle/fluid/operators/elementwise/elementwise_mul_op.cc
+0
-49
paddle/fluid/operators/elementwise/elementwise_mul_op.cu
paddle/fluid/operators/elementwise/elementwise_mul_op.cu
+0
-68
paddle/fluid/operators/elementwise/elementwise_mul_op.h
paddle/fluid/operators/elementwise/elementwise_mul_op.h
+0
-238
paddle/phi/kernels/cpu/elementwise_grad_kernel.cc
paddle/phi/kernels/cpu/elementwise_grad_kernel.cc
+57
-4
paddle/phi/kernels/elementwise_grad_kernel.h
paddle/phi/kernels/elementwise_grad_kernel.h
+39
-0
paddle/phi/kernels/funcs/elementwise_functor.h
paddle/phi/kernels/funcs/elementwise_functor.h
+44
-0
paddle/phi/kernels/gpu/elementwise_grad.h
paddle/phi/kernels/gpu/elementwise_grad.h
+37
-0
paddle/phi/kernels/gpu/elementwise_grad_kernel.cu
paddle/phi/kernels/gpu/elementwise_grad_kernel.cu
+54
-0
paddle/phi/kernels/impl/elementwise_grad_kernel_impl.h
paddle/phi/kernels/impl/elementwise_grad_kernel_impl.h
+273
-0
paddle/phi/ops/compat/elementwise_sig.cc
paddle/phi/ops/compat/elementwise_sig.cc
+34
-0
未找到文件。
paddle/fluid/framework/new_executor/standalone_executor_test.cc
浏览文件 @
452c75b8
...
@@ -46,7 +46,7 @@ USE_OP(matmul_grad);
...
@@ -46,7 +46,7 @@ USE_OP(matmul_grad);
USE_OP
(
square
);
USE_OP
(
square
);
USE_OP
(
transpose2_grad
);
USE_OP
(
transpose2_grad
);
USE_OP
(
concat_grad
);
USE_OP
(
concat_grad
);
USE_OP
(
elementwise_mul_grad
);
USE_OP
_ITSELF
(
elementwise_mul_grad
);
USE_OP
(
sigmoid_grad
);
USE_OP
(
sigmoid_grad
);
USE_OP
(
tanh_grad
);
USE_OP
(
tanh_grad
);
USE_OP
(
sum
);
USE_OP
(
sum
);
...
...
paddle/fluid/operators/elementwise/elementwise_functor.h
浏览文件 @
452c75b8
...
@@ -196,47 +196,6 @@ struct MinGradXYFunctor {
...
@@ -196,47 +196,6 @@ struct MinGradXYFunctor {
}
}
};
};
template
<
typename
T
>
struct
MulGradFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
return
a
*
b
;
}
};
template
<
typename
T
>
struct
MulGradFunctor
<
Complex
<
T
>>
{
inline
HOSTDEVICE
Complex
<
T
>
operator
()(
const
Complex
<
T
>
a
,
const
Complex
<
T
>
b
)
const
{
Complex
<
T
>
b_conj
(
b
.
real
,
-
b
.
imag
);
return
a
*
b_conj
;
}
};
template
<
typename
InT
,
typename
OutT
>
struct
MulGradXYFunctor
{
inline
HOSTDEVICE
phi
::
Array
<
OutT
,
2
>
operator
()(
const
InT
a
,
const
InT
b
,
const
InT
c
)
{
phi
::
Array
<
OutT
,
2
>
outs
;
// dx = dout * y
outs
[
0
]
=
a
*
b
;
// dy = dout * x
outs
[
1
]
=
a
*
c
;
return
outs
;
}
};
template
<
typename
InT
,
typename
OutT
>
struct
MulGradXYFunctor
<
Complex
<
InT
>
,
Complex
<
OutT
>>
{
inline
HOSTDEVICE
phi
::
Array
<
Complex
<
OutT
>
,
2
>
operator
()(
const
Complex
<
InT
>
a
,
const
Complex
<
InT
>
b
,
const
Complex
<
InT
>
c
)
{
phi
::
Array
<
Complex
<
OutT
>
,
2
>
outs
;
// dx = dout * y
Complex
<
InT
>
b_conj
(
b
.
real
,
-
b
.
imag
);
outs
[
0
]
=
a
*
b_conj
;
// dy = dout * x
Complex
<
InT
>
c_conj
(
c
.
real
,
-
c
.
imag
);
outs
[
1
]
=
a
*
c_conj
;
return
outs
;
}
};
// Ternary compare
// Ternary compare
template
<
typename
T
>
template
<
typename
T
>
struct
MaxGradXFunctor
{
struct
MaxGradXFunctor
{
...
...
paddle/fluid/operators/elementwise/elementwise_mul_op.cc
浏览文件 @
452c75b8
...
@@ -173,55 +173,6 @@ REGISTER_OP_CPU_KERNEL(
...
@@ -173,55 +173,6 @@ REGISTER_OP_CPU_KERNEL(
paddle
::
platform
::
complex
<
float
>>
,
paddle
::
platform
::
complex
<
float
>>
,
ops
::
ElementwiseMulKernel
<
paddle
::
platform
::
CPUDeviceContext
,
ops
::
ElementwiseMulKernel
<
paddle
::
platform
::
CPUDeviceContext
,
paddle
::
platform
::
complex
<
double
>>
);
paddle
::
platform
::
complex
<
double
>>
);
REGISTER_OP_CPU_KERNEL
(
elementwise_mul_grad
,
ops
::
ElementwiseMulGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
ElementwiseMulGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
ElementwiseMulGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
>
,
ops
::
ElementwiseMulGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
>
,
ops
::
ElementwiseMulGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
bool
>
,
ops
::
ElementwiseMulGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
paddle
::
platform
::
bfloat16
>
,
ops
::
ElementwiseMulGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
paddle
::
platform
::
complex
<
float
>>
,
ops
::
ElementwiseMulGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
paddle
::
platform
::
complex
<
double
>>
);
REGISTER_OP_CPU_KERNEL
(
elementwise_mul_grad_grad
,
ops
::
ElementwiseMulDoubleGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
ElementwiseMulDoubleGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
ElementwiseMulDoubleGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
>
,
ops
::
ElementwiseMulDoubleGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
>
,
ops
::
ElementwiseMulDoubleGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
bool
>
,
ops
::
ElementwiseMulDoubleGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
paddle
::
platform
::
bfloat16
>
,
ops
::
ElementwiseMulDoubleGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
paddle
::
platform
::
complex
<
float
>>
,
ops
::
ElementwiseMulDoubleGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
paddle
::
platform
::
complex
<
double
>>
);
REGISTER_OP_CPU_KERNEL
(
elementwise_mul_triple_grad
,
ops
::
ElementwiseMulTripleGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
ElementwiseMulTripleGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
ElementwiseMulTripleGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
>
,
ops
::
ElementwiseMulTripleGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
>
,
ops
::
ElementwiseMulTripleGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
bool
>
,
ops
::
ElementwiseMulTripleGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
paddle
::
platform
::
bfloat16
>
,
ops
::
ElementwiseMulTripleGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
paddle
::
platform
::
complex
<
float
>>
,
ops
::
ElementwiseMulTripleGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
paddle
::
platform
::
complex
<
double
>>
);
REGISTER_OP_VERSION
(
elementwise_mul
)
REGISTER_OP_VERSION
(
elementwise_mul
)
.
AddCheckpoint
(
.
AddCheckpoint
(
...
...
paddle/fluid/operators/elementwise/elementwise_mul_op.cu
浏览文件 @
452c75b8
...
@@ -63,33 +63,6 @@ class ElementwiseMulKernel<platform::CUDADeviceContext, T>
...
@@ -63,33 +63,6 @@ class ElementwiseMulKernel<platform::CUDADeviceContext, T>
}
}
};
};
template
<
typename
DeviceContext
,
typename
T
>
typename
std
::
enable_if
<
std
::
is_same
<
DeviceContext
,
platform
::
CUDADeviceContext
>::
value
>::
type
ElementwiseMulGrad
(
const
framework
::
ExecutionContext
&
ctx
,
const
framework
::
Tensor
*
x
,
const
framework
::
Tensor
*
y
,
const
framework
::
Tensor
*
out
,
const
framework
::
Tensor
*
dout
,
framework
::
Tensor
*
dx
,
framework
::
Tensor
*
dy
)
{
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
const
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
const
auto
place
=
ctx
.
GetPlace
();
if
(
dx
!=
nullptr
&&
dy
!=
nullptr
)
{
std
::
vector
<
const
framework
::
Tensor
*>
ins
=
{
dout
,
y
,
x
};
GetGradXAndYOut
<
ElementwiseType
::
kTernary
,
T
>
(
dev_ctx
,
place
,
axis
,
ins
,
dout
,
dx
,
dy
,
MulGradXYFunctor
<
T
,
T
>
());
}
else
if
(
dx
!=
nullptr
&&
dy
==
nullptr
)
{
std
::
vector
<
const
framework
::
Tensor
*>
ins
=
{
dout
,
y
};
GetGradXOrYOut
<
ElementwiseType
::
kBinary
,
T
>
(
dev_ctx
,
place
,
axis
,
ins
,
dout
,
dx
,
MulGradFunctor
<
T
>
());
}
else
if
(
dx
==
nullptr
&&
dy
!=
nullptr
)
{
std
::
vector
<
const
framework
::
Tensor
*>
ins
=
{
dout
,
x
};
GetGradXOrYOut
<
ElementwiseType
::
kBinary
,
T
>
(
dev_ctx
,
place
,
axis
,
ins
,
dout
,
dy
,
MulGradFunctor
<
T
>
());
}
}
}
// namespace operators
}
// namespace operators
}
// namespace paddle
}
// namespace paddle
...
@@ -103,44 +76,3 @@ REGISTER_OP_CUDA_KERNEL(
...
@@ -103,44 +76,3 @@ REGISTER_OP_CUDA_KERNEL(
ops
::
ElementwiseMulKernel
<
plat
::
CUDADeviceContext
,
plat
::
bfloat16
>
,
ops
::
ElementwiseMulKernel
<
plat
::
CUDADeviceContext
,
plat
::
bfloat16
>
,
ops
::
ElementwiseMulKernel
<
plat
::
CUDADeviceContext
,
plat
::
complex
<
float
>>
,
ops
::
ElementwiseMulKernel
<
plat
::
CUDADeviceContext
,
plat
::
complex
<
float
>>
,
ops
::
ElementwiseMulKernel
<
plat
::
CUDADeviceContext
,
plat
::
complex
<
double
>>
);
ops
::
ElementwiseMulKernel
<
plat
::
CUDADeviceContext
,
plat
::
complex
<
double
>>
);
REGISTER_OP_CUDA_KERNEL
(
elementwise_mul_grad
,
ops
::
ElementwiseMulGradKernel
<
plat
::
CUDADeviceContext
,
float
>
,
ops
::
ElementwiseMulGradKernel
<
plat
::
CUDADeviceContext
,
double
>
,
ops
::
ElementwiseMulGradKernel
<
plat
::
CUDADeviceContext
,
int
>
,
ops
::
ElementwiseMulGradKernel
<
plat
::
CUDADeviceContext
,
int64_t
>
,
ops
::
ElementwiseMulGradKernel
<
plat
::
CUDADeviceContext
,
bool
>
,
ops
::
ElementwiseMulGradKernel
<
plat
::
CUDADeviceContext
,
plat
::
float16
>
,
ops
::
ElementwiseMulGradKernel
<
plat
::
CUDADeviceContext
,
plat
::
bfloat16
>
,
ops
::
ElementwiseMulGradKernel
<
plat
::
CUDADeviceContext
,
plat
::
complex
<
float
>>
,
ops
::
ElementwiseMulGradKernel
<
plat
::
CUDADeviceContext
,
plat
::
complex
<
double
>>
);
REGISTER_OP_CUDA_KERNEL
(
elementwise_mul_grad_grad
,
ops
::
ElementwiseMulDoubleGradKernel
<
plat
::
CUDADeviceContext
,
float
>
,
ops
::
ElementwiseMulDoubleGradKernel
<
plat
::
CUDADeviceContext
,
double
>
,
ops
::
ElementwiseMulDoubleGradKernel
<
plat
::
CUDADeviceContext
,
int
>
,
ops
::
ElementwiseMulDoubleGradKernel
<
plat
::
CUDADeviceContext
,
int64_t
>
,
ops
::
ElementwiseMulDoubleGradKernel
<
plat
::
CUDADeviceContext
,
bool
>
,
ops
::
ElementwiseMulDoubleGradKernel
<
plat
::
CUDADeviceContext
,
plat
::
float16
>
,
ops
::
ElementwiseMulDoubleGradKernel
<
plat
::
CUDADeviceContext
,
plat
::
bfloat16
>
,
ops
::
ElementwiseMulDoubleGradKernel
<
plat
::
CUDADeviceContext
,
plat
::
complex
<
float
>>
,
ops
::
ElementwiseMulDoubleGradKernel
<
plat
::
CUDADeviceContext
,
plat
::
complex
<
double
>>
);
REGISTER_OP_CUDA_KERNEL
(
elementwise_mul_triple_grad
,
ops
::
ElementwiseMulTripleGradKernel
<
plat
::
CUDADeviceContext
,
float
>
,
ops
::
ElementwiseMulTripleGradKernel
<
plat
::
CUDADeviceContext
,
double
>
,
ops
::
ElementwiseMulTripleGradKernel
<
plat
::
CUDADeviceContext
,
int
>
,
ops
::
ElementwiseMulTripleGradKernel
<
plat
::
CUDADeviceContext
,
int64_t
>
,
ops
::
ElementwiseMulTripleGradKernel
<
plat
::
CUDADeviceContext
,
bool
>
,
ops
::
ElementwiseMulTripleGradKernel
<
plat
::
CUDADeviceContext
,
plat
::
float16
>
,
ops
::
ElementwiseMulTripleGradKernel
<
plat
::
CUDADeviceContext
,
plat
::
bfloat16
>
,
ops
::
ElementwiseMulTripleGradKernel
<
plat
::
CUDADeviceContext
,
plat
::
complex
<
float
>>
,
ops
::
ElementwiseMulTripleGradKernel
<
plat
::
CUDADeviceContext
,
plat
::
complex
<
double
>>
);
paddle/fluid/operators/elementwise/elementwise_mul_op.h
浏览文件 @
452c75b8
...
@@ -137,244 +137,6 @@ class ElementwiseMulKernel : public framework::OpKernel<T> {
...
@@ -137,244 +137,6 @@ class ElementwiseMulKernel : public framework::OpKernel<T> {
}
}
}
}
};
};
template
<
typename
T
>
struct
MulGradDX
{
HOSTDEVICE
T
operator
()(
T
x
,
T
y
,
T
out
,
T
dout
)
const
{
return
dout
*
y
;
}
};
template
<
typename
T
>
struct
MulGradDX
<
paddle
::
platform
::
complex
<
T
>>
{
HOSTDEVICE
paddle
::
platform
::
complex
<
T
>
operator
()(
paddle
::
platform
::
complex
<
T
>
x
,
paddle
::
platform
::
complex
<
T
>
y
,
paddle
::
platform
::
complex
<
T
>
out
,
paddle
::
platform
::
complex
<
T
>
dout
)
const
{
paddle
::
platform
::
complex
<
T
>
y_conj
(
y
.
real
,
-
y
.
imag
);
return
dout
*
y_conj
;
}
};
template
<
typename
T
>
struct
MulGradDY
{
HOSTDEVICE
T
operator
()(
T
x
,
T
y
,
T
out
,
T
dout
)
const
{
return
dout
*
x
;
}
};
template
<
typename
T
>
struct
MulGradDY
<
paddle
::
platform
::
complex
<
T
>>
{
HOSTDEVICE
paddle
::
platform
::
complex
<
T
>
operator
()(
paddle
::
platform
::
complex
<
T
>
x
,
paddle
::
platform
::
complex
<
T
>
y
,
paddle
::
platform
::
complex
<
T
>
out
,
paddle
::
platform
::
complex
<
T
>
dout
)
const
{
paddle
::
platform
::
complex
<
T
>
x_conj
(
x
.
real
,
-
x
.
imag
);
return
dout
*
x_conj
;
}
};
template
<
typename
DeviceContext
,
typename
T
>
typename
std
::
enable_if
<
std
::
is_same
<
DeviceContext
,
platform
::
CPUDeviceContext
>::
value
>::
type
ElementwiseMulGrad
(
const
framework
::
ExecutionContext
&
ctx
,
const
framework
::
Tensor
*
x
,
const
framework
::
Tensor
*
y
,
const
framework
::
Tensor
*
out
,
const
framework
::
Tensor
*
dout
,
framework
::
Tensor
*
dx
,
framework
::
Tensor
*
dy
)
{
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
ElemwiseGradCompute
<
DeviceContext
,
T
,
MulGradDX
<
T
>
,
MulGradDY
<
T
>>
(
ctx
,
*
x
,
*
y
,
*
out
,
*
dout
,
axis
,
dx
,
dy
,
MulGradDX
<
T
>
(),
MulGradDY
<
T
>
());
}
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
template
<
typename
DeviceContext
,
typename
T
>
typename
std
::
enable_if
<
std
::
is_same
<
DeviceContext
,
platform
::
CUDADeviceContext
>::
value
>::
type
ElementwiseMulGrad
(
const
framework
::
ExecutionContext
&
ctx
,
const
framework
::
Tensor
*
x
,
const
framework
::
Tensor
*
y
,
const
framework
::
Tensor
*
out
,
const
framework
::
Tensor
*
dout
,
framework
::
Tensor
*
dx
,
framework
::
Tensor
*
dy
);
#endif
template
<
typename
DeviceContext
,
typename
T
>
class
ElementwiseMulGradKernel
:
public
ElemwiseGradKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
ElemwiseGradKernel
<
T
>::
Compute
(
ctx
);
using
Tensor
=
framework
::
Tensor
;
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
auto
*
dout
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
out
=
dout
;
// out is not necessary
auto
*
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dy
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
ElementwiseMulGrad
<
DeviceContext
,
T
>
(
ctx
,
x
,
y
,
out
,
dout
,
dx
,
dy
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
ElementwiseMulDoubleGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
using
Tensor
=
framework
::
Tensor
;
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
auto
*
dout
=
ctx
.
Input
<
Tensor
>
(
"DOut"
);
auto
*
ddx
=
ctx
.
Input
<
Tensor
>
(
"DDX"
);
auto
*
ddy
=
ctx
.
Input
<
Tensor
>
(
"DDY"
);
auto
*
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dy
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
*
ddout
=
ctx
.
Output
<
Tensor
>
(
"DDOut"
);
if
(
ddout
)
ddout
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
Tensor
ddx_safe
,
ddy_safe
;
GetDoubleGradSafeTensor
<
DeviceContext
,
T
>
(
ctx
,
x
,
ddx
,
&
ddx_safe
);
GetDoubleGradSafeTensor
<
DeviceContext
,
T
>
(
ctx
,
y
,
ddy
,
&
ddy_safe
);
// dx = dout * ddy
// dy = dout * ddx
// ddout = ddx * y + x * ddy
// change computation sequence to save memory, so ddout can inplace ddx and
// dx can be used as 'tmp' tensor
// (1) dx = x * ddy
// (2) dy = dout * ddx
// (3) ddout = ddx * y
// (4) ddout = ddout + dx
// (5) dx = dout * ddy
if
(
ddout
)
{
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
auto
&
place
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
// size(ddout) > size(ddx), ddout can't use memory of ddx using inplace
if
(
ddout
->
numel
()
>
ddx
->
numel
())
{
ElemwiseGradCompute
<
DeviceContext
,
T
,
MulGradDX
<
T
>
,
MulGradDY
<
T
>>
(
ctx
,
ddx_safe
,
ddy_safe
,
*
dout
,
*
dout
,
axis
,
dx
,
dy
,
MulGradDX
<
T
>
(),
MulGradDY
<
T
>
());
Tensor
ddout_tmp
;
ddout_tmp
.
mutable_data
<
T
>
(
ddout
->
dims
(),
ctx
.
GetPlace
());
default_elementwise_mul
<
DeviceContext
,
T
>
(
ctx
,
y
,
&
ddx_safe
,
ddout
);
default_elementwise_mul
<
DeviceContext
,
T
>
(
ctx
,
&
ddy_safe
,
x
,
&
ddout_tmp
);
auto
ddout_t
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
ddout
);
auto
ddout_tmp_t
=
framework
::
EigenVector
<
T
>::
Flatten
(
ddout_tmp
);
ddout_t
.
device
(
place
)
=
ddout_t
+
ddout_tmp_t
;
}
else
{
// use dx to save memory, other than alloc tmp tensor
Tensor
*
ddout_tmp
=
dx
;
default_elementwise_mul
<
DeviceContext
,
T
>
(
ctx
,
x
,
&
ddy_safe
,
ddout_tmp
);
// NOTE: in the following ElemwiseGradCompute, for the
// first output tensor is nullptr, the branch to calculate first
// output tensor will not be activated, DivGradDx function will not
// be called and can be ignored, the first branch has little effect
// on running speed.
ElemwiseGradCompute
<
DeviceContext
,
T
,
MulGradDX
<
T
>
,
MulGradDY
<
T
>>
(
ctx
,
ddx_safe
,
ddy_safe
,
*
dout
,
*
dout
,
axis
,
nullptr
,
dy
,
MulGradDX
<
T
>
(),
MulGradDY
<
T
>
());
default_elementwise_mul
<
DeviceContext
,
T
>
(
ctx
,
&
ddx_safe
,
y
,
ddout
);
auto
ddout_t
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
ddout
);
auto
ddout_tmp_t
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
ddout_tmp
);
ddout_t
.
device
(
place
)
=
ddout_t
+
ddout_tmp_t
;
default_elementwise_mul
<
DeviceContext
,
T
>
(
ctx
,
dout
,
&
ddy_safe
,
dx
);
}
}
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
ElementwiseMulTripleGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
using
Tensor
=
framework
::
Tensor
;
// get input
auto
*
x
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Y"
);
auto
*
dout
=
ctx
.
Input
<
framework
::
Tensor
>
(
"DOut"
);
auto
*
ddx
=
ctx
.
Input
<
framework
::
Tensor
>
(
"DDX"
);
auto
*
ddy
=
ctx
.
Input
<
framework
::
Tensor
>
(
"DDY"
);
auto
*
d_dx
=
ctx
.
Input
<
framework
::
Tensor
>
(
"D_DX"
);
auto
*
d_dy
=
ctx
.
Input
<
framework
::
Tensor
>
(
"D_DY"
);
auto
*
d_ddout
=
ctx
.
Input
<
framework
::
Tensor
>
(
"D_DDOut"
);
// get output
auto
*
out_d_x
=
ctx
.
Output
<
framework
::
Tensor
>
(
"D_X"
);
auto
*
out_d_y
=
ctx
.
Output
<
framework
::
Tensor
>
(
"D_Y"
);
auto
*
out_d_dout
=
ctx
.
Output
<
framework
::
Tensor
>
(
"D_DOut"
);
auto
*
out_d_ddx
=
ctx
.
Output
<
framework
::
Tensor
>
(
"D_DDX"
);
auto
*
out_d_ddy
=
ctx
.
Output
<
framework
::
Tensor
>
(
"D_DDY"
);
if
(
out_d_x
)
out_d_x
->
mutable_data
<
T
>
(
x
->
dims
(),
ctx
.
GetPlace
());
if
(
out_d_y
)
out_d_y
->
mutable_data
<
T
>
(
y
->
dims
(),
ctx
.
GetPlace
());
if
(
out_d_dout
)
out_d_dout
->
mutable_data
<
T
>
(
dout
->
dims
(),
ctx
.
GetPlace
());
if
(
out_d_ddx
)
out_d_ddx
->
mutable_data
<
T
>
(
x
->
dims
(),
ctx
.
GetPlace
());
if
(
out_d_ddy
)
out_d_ddy
->
mutable_data
<
T
>
(
y
->
dims
(),
ctx
.
GetPlace
());
auto
&
place
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
Tensor
ddx_safe
,
ddy_safe
;
GetDoubleGradSafeTensor
<
DeviceContext
,
T
>
(
ctx
,
x
,
ddx
,
&
ddx_safe
);
GetDoubleGradSafeTensor
<
DeviceContext
,
T
>
(
ctx
,
y
,
ddy
,
&
ddy_safe
);
if
(
d_ddout
)
{
if
(
out_d_x
)
{
// out_d_x = ddy * d_ddout
default_elementwise_mul
<
DeviceContext
,
T
>
(
ctx
,
&
ddy_safe
,
d_ddout
,
out_d_x
);
}
if
(
out_d_y
)
{
// out_d_y = ddx * d_ddout
default_elementwise_mul
<
DeviceContext
,
T
>
(
ctx
,
&
ddx_safe
,
d_ddout
,
out_d_y
);
}
}
if
(
out_d_dout
)
{
// get out_d_dout
// out_d_dout = ddy * d_dx + d_dy * ddx
Tensor
out_d_dout_tmp
;
out_d_dout_tmp
.
mutable_data
<
T
>
(
dout
->
dims
(),
ctx
.
GetPlace
());
default_elementwise_mul
<
DeviceContext
,
T
>
(
ctx
,
d_dy
,
&
ddx_safe
,
out_d_dout
);
default_elementwise_mul
<
DeviceContext
,
T
>
(
ctx
,
&
ddy_safe
,
d_dx
,
&
out_d_dout_tmp
);
auto
out_d_dout_t
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
out_d_dout
);
auto
out_d_dout_tmp_t
=
framework
::
EigenVector
<
T
>::
Flatten
(
out_d_dout_tmp
);
out_d_dout_t
.
device
(
place
)
=
out_d_dout_t
+
out_d_dout_tmp_t
;
}
if
(
out_d_ddx
)
{
// get out_d_ddx
// out_d_ddx = dout * d_dy + y * d_ddout
Tensor
out_d_ddx_tmp
;
out_d_ddx_tmp
.
mutable_data
<
T
>
(
ddx
->
dims
(),
ctx
.
GetPlace
());
default_elementwise_mul
<
DeviceContext
,
T
>
(
ctx
,
dout
,
d_dy
,
out_d_ddx
);
default_elementwise_mul
<
DeviceContext
,
T
>
(
ctx
,
y
,
d_ddout
,
&
out_d_ddx_tmp
);
auto
out_d_ddx_t
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
out_d_ddx
);
auto
out_d_ddx_tmp_t
=
framework
::
EigenVector
<
T
>::
Flatten
(
out_d_ddx_tmp
);
out_d_ddx_t
.
device
(
place
)
=
out_d_ddx_t
+
out_d_ddx_tmp_t
;
}
if
(
out_d_ddy
)
{
// get out_d_ddy
// out_d_ddy = dout * d_dx + x * d_ddout
Tensor
out_d_ddy_tmp
;
out_d_ddy_tmp
.
mutable_data
<
T
>
(
ddy
->
dims
(),
ctx
.
GetPlace
());
default_elementwise_mul
<
DeviceContext
,
T
>
(
ctx
,
dout
,
d_dx
,
out_d_ddy
);
default_elementwise_mul
<
DeviceContext
,
T
>
(
ctx
,
x
,
d_ddout
,
&
out_d_ddy_tmp
);
auto
out_d_ddy_t
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
out_d_ddy
);
auto
out_d_ddy_tmp_t
=
framework
::
EigenVector
<
T
>::
Flatten
(
out_d_ddy_tmp
);
out_d_ddy_t
.
device
(
place
)
=
out_d_ddy_t
+
out_d_ddy_tmp_t
;
}
}
};
}
// namespace operators
}
// namespace operators
}
// namespace paddle
}
// namespace paddle
paddle/phi/kernels/cpu/elementwise_grad_kernel.cc
浏览文件 @
452c75b8
...
@@ -121,6 +121,20 @@ void DivideGradKernel(const Context& dev_ctx,
...
@@ -121,6 +121,20 @@ void DivideGradKernel(const Context& dev_ctx,
dev_ctx
,
x
,
y
,
out
,
dout
,
axis
,
dx
,
dy
,
DivGradDX
<
T
>
(),
DivGradDY
<
T
>
());
dev_ctx
,
x
,
y
,
out
,
dout
,
axis
,
dx
,
dy
,
DivGradDX
<
T
>
(),
DivGradDY
<
T
>
());
}
}
template
<
typename
T
,
typename
Context
>
void
MultiplyGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
const
DenseTensor
&
dout
,
int
axis
,
DenseTensor
*
dx
,
DenseTensor
*
dy
)
{
funcs
::
ElementwiseGradPreProcess
(
dout
,
dx
);
auto
*
out
=
&
dout
;
// out is not necessary
phi
::
funcs
::
ElemwiseGradCompute
<
Context
,
T
,
MulGradDX
<
T
>
,
MulGradDY
<
T
>>
(
dev_ctx
,
x
,
y
,
*
out
,
dout
,
axis
,
dx
,
dy
,
MulGradDX
<
T
>
(),
MulGradDY
<
T
>
());
}
}
// namespace phi
}
// namespace phi
PD_REGISTER_KERNEL
(
add_grad
,
PD_REGISTER_KERNEL
(
add_grad
,
...
@@ -193,8 +207,8 @@ PD_REGISTER_KERNEL(divide_grad,
...
@@ -193,8 +207,8 @@ PD_REGISTER_KERNEL(divide_grad,
double
,
double
,
int
,
int
,
int64_t
,
int64_t
,
p
addle
::
platform
::
complex
<
float
>
,
p
hi
::
dtype
::
complex
<
float
>
,
p
addle
::
platform
::
complex
<
double
>
)
{}
p
hi
::
dtype
::
complex
<
double
>
)
{}
PD_REGISTER_KERNEL
(
divide_double_grad
,
PD_REGISTER_KERNEL
(
divide_double_grad
,
CPU
,
CPU
,
...
@@ -204,5 +218,44 @@ PD_REGISTER_KERNEL(divide_double_grad,
...
@@ -204,5 +218,44 @@ PD_REGISTER_KERNEL(divide_double_grad,
double
,
double
,
int
,
int
,
int64_t
,
int64_t
,
paddle
::
platform
::
complex
<
float
>
,
phi
::
dtype
::
complex
<
float
>
,
paddle
::
platform
::
complex
<
double
>
)
{}
phi
::
dtype
::
complex
<
double
>
)
{}
PD_REGISTER_KERNEL
(
multiply_grad
,
CPU
,
ALL_LAYOUT
,
phi
::
MultiplyGradKernel
,
float
,
double
,
int
,
int64_t
,
bool
,
phi
::
dtype
::
bfloat16
,
phi
::
dtype
::
complex
<
float
>
,
phi
::
dtype
::
complex
<
double
>
)
{}
PD_REGISTER_KERNEL
(
multiply_double_grad
,
CPU
,
ALL_LAYOUT
,
phi
::
MultiplyDoubleGradKernel
,
float
,
double
,
int
,
int64_t
,
bool
,
phi
::
dtype
::
bfloat16
,
phi
::
dtype
::
complex
<
float
>
,
phi
::
dtype
::
complex
<
double
>
)
{}
PD_REGISTER_KERNEL
(
multiply_triple_grad
,
CPU
,
ALL_LAYOUT
,
phi
::
MultiplyTripleGradKernel
,
float
,
double
,
int
,
int64_t
,
bool
,
phi
::
dtype
::
bfloat16
,
phi
::
dtype
::
complex
<
float
>
,
phi
::
dtype
::
complex
<
double
>
)
{}
paddle/phi/kernels/elementwise_grad_kernel.h
浏览文件 @
452c75b8
...
@@ -85,4 +85,43 @@ void DivideDoubleGradKernel(const Context& dev_ctx,
...
@@ -85,4 +85,43 @@ void DivideDoubleGradKernel(const Context& dev_ctx,
DenseTensor
*
dy
,
DenseTensor
*
dy
,
DenseTensor
*
dout
,
DenseTensor
*
dout
,
DenseTensor
*
ddout
);
DenseTensor
*
ddout
);
template
<
typename
T
,
typename
Context
>
void
MultiplyGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
const
DenseTensor
&
dout
,
int
axis
,
DenseTensor
*
dx
,
DenseTensor
*
dy
);
template
<
typename
T
,
typename
Context
>
void
MultiplyDoubleGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
const
DenseTensor
&
dout
,
paddle
::
optional
<
const
DenseTensor
&>
ddx
,
paddle
::
optional
<
const
DenseTensor
&>
ddy
,
int
axis
,
DenseTensor
*
dx
,
DenseTensor
*
dy
,
DenseTensor
*
ddout
);
template
<
typename
T
,
typename
Context
>
void
MultiplyTripleGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
const
DenseTensor
&
dout
,
paddle
::
optional
<
const
DenseTensor
&>
ddx
,
paddle
::
optional
<
const
DenseTensor
&>
ddy
,
const
DenseTensor
&
d_dx
,
const
DenseTensor
&
d_dy
,
paddle
::
optional
<
const
DenseTensor
&>
d_ddout
,
int
axis
,
DenseTensor
*
d_x
,
DenseTensor
*
d_y
,
DenseTensor
*
d_dout
,
DenseTensor
*
d_ddx
,
DenseTensor
*
d_ddy
);
}
// namespace phi
}
// namespace phi
paddle/phi/kernels/funcs/elementwise_functor.h
浏览文件 @
452c75b8
...
@@ -160,5 +160,49 @@ struct DivGradYFunctor<ComplexType<T>> {
...
@@ -160,5 +160,49 @@ struct DivGradYFunctor<ComplexType<T>> {
}
}
};
};
template
<
typename
T
>
struct
MultiplyGradFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
return
a
*
b
;
}
};
template
<
typename
T
>
struct
MultiplyGradFunctor
<
ComplexType
<
T
>>
{
inline
HOSTDEVICE
ComplexType
<
T
>
operator
()(
const
ComplexType
<
T
>
a
,
const
ComplexType
<
T
>
b
)
const
{
ComplexType
<
T
>
b_conj
(
b
.
real
,
-
b
.
imag
);
return
a
*
b_conj
;
}
};
template
<
typename
InT
,
typename
OutT
>
struct
MultiplyGradXYFunctor
{
inline
HOSTDEVICE
phi
::
Array
<
OutT
,
2
>
operator
()(
const
InT
a
,
const
InT
b
,
const
InT
c
)
{
phi
::
Array
<
OutT
,
2
>
outs
;
// dx = dout * y
outs
[
0
]
=
a
*
b
;
// dy = dout * x
outs
[
1
]
=
a
*
c
;
return
outs
;
}
};
template
<
typename
InT
,
typename
OutT
>
struct
MultiplyGradXYFunctor
<
ComplexType
<
InT
>
,
ComplexType
<
OutT
>>
{
inline
HOSTDEVICE
phi
::
Array
<
ComplexType
<
OutT
>
,
2
>
operator
()(
const
ComplexType
<
InT
>
a
,
const
ComplexType
<
InT
>
b
,
const
ComplexType
<
InT
>
c
)
{
phi
::
Array
<
ComplexType
<
OutT
>
,
2
>
outs
;
// dx = dout * y
ComplexType
<
InT
>
b_conj
(
b
.
real
,
-
b
.
imag
);
outs
[
0
]
=
a
*
b_conj
;
// dy = dout * x
ComplexType
<
InT
>
c_conj
(
c
.
real
,
-
c
.
imag
);
outs
[
1
]
=
a
*
c_conj
;
return
outs
;
}
};
}
// namespace funcs
}
// namespace funcs
}
// namespace phi
}
// namespace phi
paddle/phi/kernels/gpu/elementwise_grad.h
浏览文件 @
452c75b8
...
@@ -360,4 +360,41 @@ void ElementwiseDivGrad(const GPUContext &dev_ctx,
...
@@ -360,4 +360,41 @@ void ElementwiseDivGrad(const GPUContext &dev_ctx,
}
}
}
}
/*
******************************
Mul Grad
******************************
*/
template
<
typename
T
>
void
ElementwiseMulGrad
(
const
GPUContext
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
const
DenseTensor
&
dout
,
DenseTensor
*
dx
,
DenseTensor
*
dy
,
int
axis
)
{
const
auto
place
=
dev_ctx
.
GetPlace
();
if
(
dx
!=
nullptr
&&
dy
!=
nullptr
)
{
std
::
vector
<
const
DenseTensor
*>
ins
=
{
&
dout
,
&
y
,
&
x
};
GetGradXAndYOut
<
ElementwiseType
::
kTernary
,
T
>
(
dev_ctx
,
place
,
axis
,
ins
,
dout
,
dx
,
dy
,
funcs
::
MultiplyGradXYFunctor
<
T
,
T
>
());
}
else
if
(
dx
!=
nullptr
&&
dy
==
nullptr
)
{
std
::
vector
<
const
DenseTensor
*>
ins
=
{
&
dout
,
&
y
};
GetGradXOrYOut
<
ElementwiseType
::
kBinary
,
T
>
(
dev_ctx
,
place
,
axis
,
ins
,
dout
,
dx
,
funcs
::
MultiplyGradFunctor
<
T
>
());
}
else
if
(
dx
==
nullptr
&&
dy
!=
nullptr
)
{
std
::
vector
<
const
DenseTensor
*>
ins
=
{
&
dout
,
&
x
};
GetGradXOrYOut
<
ElementwiseType
::
kBinary
,
T
>
(
dev_ctx
,
place
,
axis
,
ins
,
dout
,
dy
,
funcs
::
MultiplyGradFunctor
<
T
>
());
}
}
}
// namespace phi
}
// namespace phi
paddle/phi/kernels/gpu/elementwise_grad_kernel.cu
浏览文件 @
452c75b8
...
@@ -136,6 +136,18 @@ void DivideGradKernel(const Context& dev_ctx,
...
@@ -136,6 +136,18 @@ void DivideGradKernel(const Context& dev_ctx,
}
}
}
}
template
<
typename
T
,
typename
Context
>
void
MultiplyGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
const
DenseTensor
&
dout
,
int
axis
,
DenseTensor
*
dx
,
DenseTensor
*
dy
)
{
funcs
::
ElementwiseGradPreProcess
(
dout
,
dx
);
ElementwiseMulGrad
<
T
>
(
dev_ctx
,
x
,
y
,
dout
,
dx
,
dy
,
axis
);
}
}
// namespace phi
}
// namespace phi
PD_REGISTER_KERNEL
(
add_grad
,
PD_REGISTER_KERNEL
(
add_grad
,
...
@@ -228,3 +240,45 @@ PD_REGISTER_KERNEL(divide_double_grad,
...
@@ -228,3 +240,45 @@ PD_REGISTER_KERNEL(divide_double_grad,
int64_t
,
int64_t
,
phi
::
dtype
::
complex
<
float
>
,
phi
::
dtype
::
complex
<
float
>
,
phi
::
dtype
::
complex
<
double
>
)
{}
phi
::
dtype
::
complex
<
double
>
)
{}
PD_REGISTER_KERNEL
(
multiply_grad
,
GPU
,
ALL_LAYOUT
,
phi
::
MultiplyGradKernel
,
float
,
phi
::
dtype
::
float16
,
double
,
int
,
int64_t
,
bool
,
phi
::
dtype
::
bfloat16
,
phi
::
dtype
::
complex
<
float
>
,
phi
::
dtype
::
complex
<
double
>
)
{}
PD_REGISTER_KERNEL
(
multiply_double_grad
,
GPU
,
ALL_LAYOUT
,
phi
::
MultiplyDoubleGradKernel
,
float
,
phi
::
dtype
::
float16
,
double
,
int
,
int64_t
,
bool
,
phi
::
dtype
::
bfloat16
,
phi
::
dtype
::
complex
<
float
>
,
phi
::
dtype
::
complex
<
double
>
)
{}
PD_REGISTER_KERNEL
(
multiply_triple_grad
,
GPU
,
ALL_LAYOUT
,
phi
::
MultiplyTripleGradKernel
,
float
,
phi
::
dtype
::
float16
,
double
,
int
,
int64_t
,
bool
,
phi
::
dtype
::
bfloat16
,
phi
::
dtype
::
complex
<
float
>
,
phi
::
dtype
::
complex
<
double
>
)
{}
paddle/phi/kernels/impl/elementwise_grad_kernel_impl.h
浏览文件 @
452c75b8
...
@@ -259,4 +259,277 @@ void DivideDoubleGradKernel(const Context& dev_ctx,
...
@@ -259,4 +259,277 @@ void DivideDoubleGradKernel(const Context& dev_ctx,
}
}
}
}
template
<
typename
T
>
struct
MulGradDX
{
HOSTDEVICE
T
operator
()(
T
x
,
T
y
,
T
out
,
T
dout
)
const
{
return
dout
*
y
;
}
};
template
<
typename
T
>
struct
MulGradDX
<
phi
::
dtype
::
complex
<
T
>>
{
HOSTDEVICE
phi
::
dtype
::
complex
<
T
>
operator
()(
phi
::
dtype
::
complex
<
T
>
x
,
phi
::
dtype
::
complex
<
T
>
y
,
phi
::
dtype
::
complex
<
T
>
out
,
phi
::
dtype
::
complex
<
T
>
dout
)
const
{
phi
::
dtype
::
complex
<
T
>
y_conj
(
y
.
real
,
-
y
.
imag
);
return
dout
*
y_conj
;
}
};
/*
******************************
Multiply Grad
******************************
*/
template
<
typename
T
>
struct
MulGradDY
{
HOSTDEVICE
T
operator
()(
T
x
,
T
y
,
T
out
,
T
dout
)
const
{
return
dout
*
x
;
}
};
template
<
typename
T
>
struct
MulGradDY
<
phi
::
dtype
::
complex
<
T
>>
{
HOSTDEVICE
phi
::
dtype
::
complex
<
T
>
operator
()(
phi
::
dtype
::
complex
<
T
>
x
,
phi
::
dtype
::
complex
<
T
>
y
,
phi
::
dtype
::
complex
<
T
>
out
,
phi
::
dtype
::
complex
<
T
>
dout
)
const
{
phi
::
dtype
::
complex
<
T
>
x_conj
(
x
.
real
,
-
x
.
imag
);
return
dout
*
x_conj
;
}
};
template
<
typename
T
,
typename
Context
>
void
MultiplyDoubleGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
const
DenseTensor
&
dout
,
paddle
::
optional
<
const
DenseTensor
&>
ddx
,
paddle
::
optional
<
const
DenseTensor
&>
ddy
,
int
axis
,
DenseTensor
*
dx
,
DenseTensor
*
dy
,
DenseTensor
*
ddout
)
{
if
(
ddout
)
dev_ctx
.
template
Alloc
<
T
>(
ddout
);
DenseTensor
ddx_safe
,
ddy_safe
;
funcs
::
GetDoubleGradSafeTensor
<
Context
,
T
>
(
dev_ctx
,
x
,
ddx
.
get_ptr
(),
&
ddx_safe
);
funcs
::
GetDoubleGradSafeTensor
<
Context
,
T
>
(
dev_ctx
,
y
,
ddy
.
get_ptr
(),
&
ddy_safe
);
// dx = dout * ddy
// dy = dout * ddx
// ddout = ddx * y + x * ddy
// change computation sequence to save memory, so ddout can inplace ddx and
// dx can be used as 'tmp' tensor
// (1) dx = x * ddy
// (2) dy = dout * ddx
// (3) ddout = ddx * y
// (4) ddout = ddout + dx
// (5) dx = dout * ddy
if
(
ddout
)
{
auto
&
place
=
*
dev_ctx
.
eigen_device
();
// size(ddout) > size(ddx), ddout can't use memory of ddx using inplace
if
(
ddout
->
numel
()
>
ddx
.
get_ptr
()
->
numel
())
{
phi
::
funcs
::
ElemwiseGradCompute
<
Context
,
T
,
MulGradDX
<
T
>
,
MulGradDY
<
T
>>
(
dev_ctx
,
ddx_safe
,
ddy_safe
,
dout
,
dout
,
axis
,
dx
,
dy
,
MulGradDX
<
T
>
(),
MulGradDY
<
T
>
());
DenseTensor
ddout_tmp
;
ddout_tmp
.
Resize
(
ddout
->
dims
());
dev_ctx
.
template
Alloc
<
T
>(
&
ddout_tmp
);
funcs
::
DefaultElementwiseOperator
<
Context
,
T
,
funcs
::
MultiplyFunctor
<
T
>
,
funcs
::
InverseMultiplyFunctor
<
T
>>
(
dev_ctx
,
y
,
ddx_safe
,
ddout
,
axis
);
funcs
::
DefaultElementwiseOperator
<
Context
,
T
,
funcs
::
MultiplyFunctor
<
T
>
,
funcs
::
InverseMultiplyFunctor
<
T
>>
(
dev_ctx
,
ddy_safe
,
x
,
&
ddout_tmp
,
axis
);
auto
ddout_t
=
phi
::
EigenVector
<
T
>::
Flatten
(
*
ddout
);
auto
ddout_tmp_t
=
phi
::
EigenVector
<
T
>::
Flatten
(
ddout_tmp
);
ddout_t
.
device
(
place
)
=
ddout_t
+
ddout_tmp_t
;
}
else
{
// use dx to save memory, other than alloc tmp tensor
DenseTensor
*
ddout_tmp
=
dx
;
funcs
::
DefaultElementwiseOperator
<
Context
,
T
,
funcs
::
MultiplyFunctor
<
T
>
,
funcs
::
InverseMultiplyFunctor
<
T
>>
(
dev_ctx
,
x
,
ddy_safe
,
ddout_tmp
,
axis
);
// NOTE: in the following ElemwiseGradCompute, for the
// first output tensor is nullptr, the branch to calculate first
// output tensor will not be activated, DivGradDx function will not
// be called and can be ignored, the first branch has little effect
// on running speed.
phi
::
funcs
::
ElemwiseGradCompute
<
Context
,
T
,
MulGradDX
<
T
>
,
MulGradDY
<
T
>>
(
dev_ctx
,
ddx_safe
,
ddy_safe
,
dout
,
dout
,
axis
,
nullptr
,
dy
,
MulGradDX
<
T
>
(),
MulGradDY
<
T
>
());
funcs
::
DefaultElementwiseOperator
<
Context
,
T
,
funcs
::
MultiplyFunctor
<
T
>
,
funcs
::
InverseMultiplyFunctor
<
T
>>
(
dev_ctx
,
ddx_safe
,
y
,
ddout
,
axis
);
auto
ddout_t
=
phi
::
EigenVector
<
T
>::
Flatten
(
*
ddout
);
auto
ddout_tmp_t
=
phi
::
EigenVector
<
T
>::
Flatten
(
*
ddout_tmp
);
ddout_t
.
device
(
place
)
=
ddout_t
+
ddout_tmp_t
;
funcs
::
DefaultElementwiseOperator
<
Context
,
T
,
funcs
::
MultiplyFunctor
<
T
>
,
funcs
::
InverseMultiplyFunctor
<
T
>>
(
dev_ctx
,
dout
,
ddy_safe
,
dx
,
axis
);
}
}
}
template
<
typename
T
,
typename
Context
>
void
MultiplyTripleGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
const
DenseTensor
&
dout
,
paddle
::
optional
<
const
DenseTensor
&>
ddx
,
paddle
::
optional
<
const
DenseTensor
&>
ddy
,
const
DenseTensor
&
d_dx
,
const
DenseTensor
&
d_dy
,
paddle
::
optional
<
const
DenseTensor
&>
d_ddout
,
int
axis
,
DenseTensor
*
d_x
,
DenseTensor
*
d_y
,
DenseTensor
*
d_dout
,
DenseTensor
*
d_ddx
,
DenseTensor
*
d_ddy
)
{
if
(
d_x
)
{
d_x
->
Resize
(
x
.
dims
());
dev_ctx
.
template
Alloc
<
T
>(
d_x
);
}
if
(
d_y
)
{
d_y
->
Resize
(
y
.
dims
());
dev_ctx
.
template
Alloc
<
T
>(
d_y
);
}
if
(
d_dout
)
{
d_dout
->
Resize
(
dout
.
dims
());
dev_ctx
.
template
Alloc
<
T
>(
d_dout
);
}
if
(
d_ddx
)
{
d_ddx
->
Resize
(
x
.
dims
());
dev_ctx
.
template
Alloc
<
T
>(
d_ddx
);
}
if
(
d_ddy
)
{
d_ddy
->
Resize
(
y
.
dims
());
dev_ctx
.
template
Alloc
<
T
>(
d_ddy
);
}
auto
&
place
=
*
dev_ctx
.
eigen_device
();
DenseTensor
ddx_safe
,
ddy_safe
;
funcs
::
GetDoubleGradSafeTensor
<
Context
,
T
>
(
dev_ctx
,
x
,
ddx
.
get_ptr
(),
&
ddx_safe
);
funcs
::
GetDoubleGradSafeTensor
<
Context
,
T
>
(
dev_ctx
,
y
,
ddy
.
get_ptr
(),
&
ddy_safe
);
if
(
d_ddout
.
get_ptr
())
{
if
(
d_x
)
{
// d_x = ddy * d_ddout
funcs
::
DefaultElementwiseOperator
<
Context
,
T
,
funcs
::
MultiplyFunctor
<
T
>
,
funcs
::
InverseMultiplyFunctor
<
T
>>
(
dev_ctx
,
ddy_safe
,
*
(
d_ddout
.
get_ptr
()),
d_x
,
axis
);
}
if
(
d_y
)
{
// d_y = ddx * d_ddout
funcs
::
DefaultElementwiseOperator
<
Context
,
T
,
funcs
::
MultiplyFunctor
<
T
>
,
funcs
::
InverseMultiplyFunctor
<
T
>>
(
dev_ctx
,
ddx_safe
,
*
(
d_ddout
.
get_ptr
()),
d_y
,
axis
);
}
}
if
(
d_dout
)
{
// get d_dout
// d_dout = ddy * d_dx + d_dy * ddx
DenseTensor
d_dout_tmp
;
d_dout_tmp
.
Resize
(
dout
.
dims
());
dev_ctx
.
template
Alloc
<
T
>(
&
d_dout_tmp
);
funcs
::
DefaultElementwiseOperator
<
Context
,
T
,
funcs
::
MultiplyFunctor
<
T
>
,
funcs
::
InverseMultiplyFunctor
<
T
>>
(
dev_ctx
,
d_dy
,
ddx_safe
,
d_dout
,
axis
);
funcs
::
DefaultElementwiseOperator
<
Context
,
T
,
funcs
::
MultiplyFunctor
<
T
>
,
funcs
::
InverseMultiplyFunctor
<
T
>>
(
dev_ctx
,
ddy_safe
,
d_dx
,
&
d_dout_tmp
,
axis
);
auto
d_dout_t
=
phi
::
EigenVector
<
T
>::
Flatten
(
*
d_dout
);
auto
d_dout_tmp_t
=
phi
::
EigenVector
<
T
>::
Flatten
(
d_dout_tmp
);
d_dout_t
.
device
(
place
)
=
d_dout_t
+
d_dout_tmp_t
;
}
if
(
d_ddx
)
{
// get d_ddx
// d_ddx = dout * d_dy + y * d_ddout
DenseTensor
d_ddx_tmp
;
d_ddx_tmp
.
Resize
(
ddx
->
dims
());
dev_ctx
.
template
Alloc
<
T
>(
&
d_ddx_tmp
);
funcs
::
DefaultElementwiseOperator
<
Context
,
T
,
funcs
::
MultiplyFunctor
<
T
>
,
funcs
::
InverseMultiplyFunctor
<
T
>>
(
dev_ctx
,
dout
,
d_dy
,
d_ddx
,
axis
);
funcs
::
DefaultElementwiseOperator
<
Context
,
T
,
funcs
::
MultiplyFunctor
<
T
>
,
funcs
::
InverseMultiplyFunctor
<
T
>>
(
dev_ctx
,
y
,
*
(
d_ddout
.
get_ptr
()),
&
d_ddx_tmp
,
axis
);
auto
d_ddx_t
=
phi
::
EigenVector
<
T
>::
Flatten
(
*
d_ddx
);
auto
d_ddx_tmp_t
=
phi
::
EigenVector
<
T
>::
Flatten
(
d_ddx_tmp
);
d_ddx_t
.
device
(
place
)
=
d_ddx_t
+
d_ddx_tmp_t
;
}
if
(
d_ddy
)
{
// get d_ddy
// d_ddy = dout * d_dx + x * d_ddout
DenseTensor
d_ddy_tmp
;
d_ddy_tmp
.
Resize
(
ddy
->
dims
());
dev_ctx
.
template
Alloc
<
T
>(
&
d_ddy_tmp
);
funcs
::
DefaultElementwiseOperator
<
Context
,
T
,
funcs
::
MultiplyFunctor
<
T
>
,
funcs
::
InverseMultiplyFunctor
<
T
>>
(
dev_ctx
,
dout
,
d_dx
,
d_ddy
,
axis
);
funcs
::
DefaultElementwiseOperator
<
Context
,
T
,
funcs
::
MultiplyFunctor
<
T
>
,
funcs
::
InverseMultiplyFunctor
<
T
>>
(
dev_ctx
,
x
,
*
(
d_ddout
.
get_ptr
()),
&
d_ddy_tmp
,
axis
);
auto
d_ddy_t
=
phi
::
EigenVector
<
T
>::
Flatten
(
*
d_ddy
);
auto
d_ddy_tmp_t
=
phi
::
EigenVector
<
T
>::
Flatten
(
d_ddy_tmp
);
d_ddy_t
.
device
(
place
)
=
d_ddy_t
+
d_ddy_tmp_t
;
}
}
}
// namespace phi
}
// namespace phi
paddle/phi/ops/compat/elementwise_sig.cc
浏览文件 @
452c75b8
...
@@ -122,6 +122,31 @@ KernelSignature ElementwiseDivDoubleGradOpArgumentMapping(
...
@@ -122,6 +122,31 @@ KernelSignature ElementwiseDivDoubleGradOpArgumentMapping(
{
GradVarName
(
"Y"
),
"DOut"
,
"DDOut"
});
{
GradVarName
(
"Y"
),
"DOut"
,
"DDOut"
});
}
}
KernelSignature
ElementwiseMulGradOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"multiply_grad"
,
{
"X"
,
"Y"
,
GradVarName
(
"Out"
)},
{
"axis"
},
{
GradVarName
(
"X"
),
GradVarName
(
"Y"
)});
}
KernelSignature
ElementwiseMulDoubleGradOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"multiply_double_grad"
,
{
"X"
,
"Y"
,
"DOut"
,
"DDX"
,
"DDY"
},
{
"axis"
},
{
GradVarName
(
"X"
),
GradVarName
(
"Y"
),
"DDOut"
});
}
KernelSignature
ElementwiseMulTripleGradOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"multiply_triple_grad"
,
{
"X"
,
"Y"
,
"DOut"
,
"DDX"
,
"DDY"
,
"D_DX"
,
"D_DY"
,
"D_DDOut"
},
{
"axis"
},
{
"D_X"
,
"D_Y"
,
"D_DOut"
,
"D_DDX"
,
"D_DDY"
});
}
}
// namespace phi
}
// namespace phi
PD_REGISTER_BASE_KERNEL_NAME
(
elementwise_add
,
add
);
PD_REGISTER_BASE_KERNEL_NAME
(
elementwise_add
,
add
);
...
@@ -135,6 +160,9 @@ PD_REGISTER_BASE_KERNEL_NAME(elementwise_sub_grad, subtract_grad);
...
@@ -135,6 +160,9 @@ PD_REGISTER_BASE_KERNEL_NAME(elementwise_sub_grad, subtract_grad);
PD_REGISTER_BASE_KERNEL_NAME
(
elementwise_sub_grad_grad
,
subtract_double_grad
);
PD_REGISTER_BASE_KERNEL_NAME
(
elementwise_sub_grad_grad
,
subtract_double_grad
);
PD_REGISTER_BASE_KERNEL_NAME
(
elementwise_div_grad
,
divide_grad
);
PD_REGISTER_BASE_KERNEL_NAME
(
elementwise_div_grad
,
divide_grad
);
PD_REGISTER_BASE_KERNEL_NAME
(
elementwise_div_grad_grad
,
divide_double_grad
);
PD_REGISTER_BASE_KERNEL_NAME
(
elementwise_div_grad_grad
,
divide_double_grad
);
PD_REGISTER_BASE_KERNEL_NAME
(
elementwise_mul_grad
,
multiply_grad
);
PD_REGISTER_BASE_KERNEL_NAME
(
elementwise_mul_grad_grad
,
multiply_double_grad
);
PD_REGISTER_BASE_KERNEL_NAME
(
elementwise_mul_triple_grad
,
multiply_triple_grad
);
PD_REGISTER_ARG_MAPPING_FN
(
elementwise_add
,
PD_REGISTER_ARG_MAPPING_FN
(
elementwise_add
,
phi
::
ElementwiseAddOpArgumentMapping
);
phi
::
ElementwiseAddOpArgumentMapping
);
...
@@ -158,3 +186,9 @@ PD_REGISTER_ARG_MAPPING_FN(elementwise_div_grad,
...
@@ -158,3 +186,9 @@ PD_REGISTER_ARG_MAPPING_FN(elementwise_div_grad,
phi
::
ElementwiseDivGradOpArgumentMapping
);
phi
::
ElementwiseDivGradOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
elementwise_div_grad_grad
,
PD_REGISTER_ARG_MAPPING_FN
(
elementwise_div_grad_grad
,
phi
::
ElementwiseDivDoubleGradOpArgumentMapping
);
phi
::
ElementwiseDivDoubleGradOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
elementwise_mul_grad
,
phi
::
ElementwiseMulGradOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
elementwise_mul_grad_grad
,
phi
::
ElementwiseMulDoubleGradOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
elementwise_mul_triple_grad
,
phi
::
ElementwiseMulTripleGradOpArgumentMapping
);
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录