Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
ac933235
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ac933235
编写于
1月 17, 2022
作者:
Z
Zhang Ting
提交者:
GitHub
1月 17, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[part 5]change type of function args (#38889)
上级
73742d36
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
58 addition
and
98 deletion
+58
-98
paddle/fluid/operators/elementwise/elementwise_functor.h
paddle/fluid/operators/elementwise/elementwise_functor.h
+28
-30
paddle/fluid/operators/elementwise/elementwise_mod_op.cu
paddle/fluid/operators/elementwise/elementwise_mod_op.cu
+1
-26
paddle/fluid/operators/elementwise/elementwise_mod_op.h
paddle/fluid/operators/elementwise/elementwise_mod_op.h
+19
-12
paddle/fluid/operators/elementwise/elementwise_pow_op.cu
paddle/fluid/operators/elementwise/elementwise_pow_op.cu
+1
-21
paddle/pten/kernels/funcs/elementwise_functor.h
paddle/pten/kernels/funcs/elementwise_functor.h
+9
-9
未找到文件。
paddle/fluid/operators/elementwise/elementwise_functor.h
浏览文件 @
ac933235
...
...
@@ -54,7 +54,7 @@ using InverseDivFunctor = pten::funcs::InverseDivideFunctor<T>;
// Floor Divide
template
<
typename
T
>
struct
FloorDivFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
&
a
,
const
T
&
b
)
const
{
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
PADDLE_ENFORCE
(
b
!=
0
,
DIV_ERROR_INFO
);
return
static_cast
<
T
>
(
std
::
trunc
(
a
/
b
));
}
...
...
@@ -62,7 +62,7 @@ struct FloorDivFunctor {
template
<
typename
T
>
struct
InverseFloorDivFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
&
a
,
const
T
&
b
)
const
{
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
PADDLE_ENFORCE
(
a
!=
0
,
DIV_ERROR_INFO
);
return
static_cast
<
T
>
(
std
::
trunc
(
b
/
a
));
}
...
...
@@ -73,7 +73,7 @@ struct InverseFloorDivFunctor {
// Maximum
template
<
typename
T
>
struct
MaxFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
&
a
,
const
T
&
b
)
const
{
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
return
a
>
b
?
a
:
b
;
}
};
...
...
@@ -81,7 +81,7 @@ struct MaxFunctor {
// Minmum
template
<
typename
T
>
struct
MinFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
&
a
,
const
T
&
b
)
const
{
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
return
a
<
b
?
a
:
b
;
}
};
...
...
@@ -119,14 +119,14 @@ struct DivGradXYFunctor<Complex<InT>, Complex<OutT>> {
// Float div grad
template
<
typename
T
>
struct
DivGradXFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
&
a
,
const
T
&
b
)
const
{
return
a
/
b
;
}
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
return
a
/
b
;
}
};
// Complex div grad
template
<
typename
T
>
struct
DivGradXFunctor
<
Complex
<
T
>>
{
inline
HOSTDEVICE
Complex
<
T
>
operator
()(
const
Complex
<
T
>
&
a
,
const
Complex
<
T
>
&
b
)
const
{
inline
HOSTDEVICE
Complex
<
T
>
operator
()(
const
Complex
<
T
>
a
,
const
Complex
<
T
>
b
)
const
{
Complex
<
T
>
b_conj
(
b
.
real
,
-
b
.
imag
);
return
a
/
b_conj
;
}
...
...
@@ -135,7 +135,7 @@ struct DivGradXFunctor<Complex<T>> {
// Float mul and div
template
<
typename
T
>
struct
DivGradYFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
&
a
,
const
T
&
b
,
const
T
&
c
)
const
{
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
,
const
T
c
)
const
{
return
-
a
*
b
/
c
;
}
};
...
...
@@ -143,9 +143,9 @@ struct DivGradYFunctor {
// Complex mul and div
template
<
typename
T
>
struct
DivGradYFunctor
<
Complex
<
T
>>
{
inline
HOSTDEVICE
Complex
<
T
>
operator
()(
const
Complex
<
T
>
&
a
,
const
Complex
<
T
>
&
b
,
const
Complex
<
T
>
&
c
)
const
{
inline
HOSTDEVICE
Complex
<
T
>
operator
()(
const
Complex
<
T
>
a
,
const
Complex
<
T
>
b
,
const
Complex
<
T
>
c
)
const
{
Complex
<
T
>
out_div_c_conj
((
b
/
c
).
real
,
-
(
b
/
c
).
imag
);
return
-
a
*
out_div_c_conj
;
}
...
...
@@ -154,7 +154,7 @@ struct DivGradYFunctor<Complex<T>> {
// Fmax
template
<
typename
T
>
struct
FMaxFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
&
a
,
const
T
&
b
)
const
{
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
return
std
::
fmax
(
a
,
b
);
}
};
...
...
@@ -162,8 +162,8 @@ struct FMaxFunctor {
template
<
>
struct
FMaxFunctor
<
paddle
::
platform
::
float16
>
{
inline
HOSTDEVICE
paddle
::
platform
::
float16
operator
()(
const
paddle
::
platform
::
float16
&
a
,
const
paddle
::
platform
::
float16
&
b
)
const
{
const
paddle
::
platform
::
float16
a
,
const
paddle
::
platform
::
float16
b
)
const
{
float
float_a
=
static_cast
<
float
>
(
a
);
float
float_b
=
static_cast
<
float
>
(
b
);
auto
result
=
std
::
fmax
(
float_a
,
float_b
);
...
...
@@ -173,7 +173,7 @@ struct FMaxFunctor<paddle::platform::float16> {
template
<
>
struct
FMaxFunctor
<
int
>
{
inline
HOSTDEVICE
int
operator
()(
const
int
&
a
,
const
int
&
b
)
const
{
inline
HOSTDEVICE
int
operator
()(
const
int
a
,
const
int
b
)
const
{
float
float_a
=
static_cast
<
float
>
(
a
);
float
float_b
=
static_cast
<
float
>
(
b
);
auto
result
=
std
::
fmax
(
float_a
,
float_b
);
...
...
@@ -183,8 +183,7 @@ struct FMaxFunctor<int> {
template
<
>
struct
FMaxFunctor
<
int64_t
>
{
inline
HOSTDEVICE
int64_t
operator
()(
const
int64_t
&
a
,
const
int64_t
&
b
)
const
{
inline
HOSTDEVICE
int64_t
operator
()(
const
int64_t
a
,
const
int64_t
b
)
const
{
double
double_a
=
static_cast
<
double
>
(
a
);
double
double_b
=
static_cast
<
double
>
(
b
);
auto
result
=
std
::
fmax
(
double_a
,
double_b
);
...
...
@@ -195,7 +194,7 @@ struct FMaxFunctor<int64_t> {
// Fmin
template
<
typename
T
>
struct
FMinFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
&
a
,
const
T
&
b
)
const
{
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
return
std
::
fmin
(
a
,
b
);
}
};
...
...
@@ -203,8 +202,8 @@ struct FMinFunctor {
template
<
>
struct
FMinFunctor
<
paddle
::
platform
::
float16
>
{
inline
HOSTDEVICE
paddle
::
platform
::
float16
operator
()(
const
paddle
::
platform
::
float16
&
a
,
const
paddle
::
platform
::
float16
&
b
)
const
{
const
paddle
::
platform
::
float16
a
,
const
paddle
::
platform
::
float16
b
)
const
{
float
float_a
=
static_cast
<
float
>
(
a
);
float
float_b
=
static_cast
<
float
>
(
b
);
auto
result
=
std
::
fmin
(
float_a
,
float_b
);
...
...
@@ -214,7 +213,7 @@ struct FMinFunctor<paddle::platform::float16> {
template
<
>
struct
FMinFunctor
<
int
>
{
inline
HOSTDEVICE
int
operator
()(
const
int
&
a
,
const
int
&
b
)
const
{
inline
HOSTDEVICE
int
operator
()(
const
int
a
,
const
int
b
)
const
{
float
float_a
=
static_cast
<
float
>
(
a
);
float
float_b
=
static_cast
<
float
>
(
b
);
auto
result
=
std
::
fmin
(
float_a
,
float_b
);
...
...
@@ -224,8 +223,7 @@ struct FMinFunctor<int> {
template
<
>
struct
FMinFunctor
<
int64_t
>
{
inline
HOSTDEVICE
int64_t
operator
()(
const
int64_t
&
a
,
const
int64_t
&
b
)
const
{
inline
HOSTDEVICE
int64_t
operator
()(
const
int64_t
a
,
const
int64_t
b
)
const
{
double
double_a
=
static_cast
<
double
>
(
a
);
double
double_b
=
static_cast
<
double
>
(
b
);
auto
result
=
std
::
fmin
(
double_a
,
double_b
);
...
...
@@ -261,12 +259,12 @@ struct MinGradXYFunctor {
template
<
typename
T
>
struct
MulGradFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
&
a
,
const
T
&
b
)
const
{
return
a
*
b
;
}
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
return
a
*
b
;
}
};
template
<
typename
T
>
struct
MulGradFunctor
<
Complex
<
T
>>
{
inline
HOSTDEVICE
Complex
<
T
>
operator
()(
const
Complex
<
T
>
&
a
,
const
Complex
<
T
>
&
b
)
const
{
inline
HOSTDEVICE
Complex
<
T
>
operator
()(
const
Complex
<
T
>
a
,
const
Complex
<
T
>
b
)
const
{
Complex
<
T
>
b_conj
(
b
.
real
,
-
b
.
imag
);
return
a
*
b_conj
;
}
...
...
@@ -274,9 +272,9 @@ struct MulGradFunctor<Complex<T>> {
template
<
typename
InT
,
typename
OutT
>
struct
MulGradXYFunctor
{
inline
HOSTDEVICE
paddle
::
framework
::
Array
<
OutT
,
2
>
operator
()(
const
InT
&
a
,
const
InT
&
b
,
const
InT
&
c
)
{
inline
HOSTDEVICE
paddle
::
framework
::
Array
<
OutT
,
2
>
operator
()(
const
InT
a
,
const
InT
b
,
const
InT
c
)
{
paddle
::
framework
::
Array
<
OutT
,
2
>
outs
;
// dx = dout * y
outs
[
0
]
=
a
*
b
;
...
...
@@ -289,7 +287,7 @@ struct MulGradXYFunctor {
template
<
typename
InT
,
typename
OutT
>
struct
MulGradXYFunctor
<
Complex
<
InT
>
,
Complex
<
OutT
>>
{
inline
HOSTDEVICE
paddle
::
framework
::
Array
<
Complex
<
OutT
>
,
2
>
operator
()(
const
Complex
<
InT
>
&
a
,
const
Complex
<
InT
>&
b
,
const
Complex
<
InT
>&
c
)
{
const
Complex
<
InT
>
a
,
const
Complex
<
InT
>
b
,
const
Complex
<
InT
>
c
)
{
paddle
::
framework
::
Array
<
Complex
<
OutT
>
,
2
>
outs
;
// dx = dout * y
Complex
<
InT
>
b_conj
(
b
.
real
,
-
b
.
imag
);
...
...
paddle/fluid/operators/elementwise/elementwise_mod_op.cu
浏览文件 @
ac933235
...
...
@@ -20,31 +20,6 @@ namespace plat = paddle::platform;
namespace
paddle
{
namespace
operators
{
template
<
typename
T
,
typename
Enable
=
void
>
struct
CudaModFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
*
args
)
const
{
T
res
=
args
[
0
]
%
args
[
1
];
// Accoding to #PR26732: in dividen % divsor
// remainder shall have the same sign as divsor.
if
((
res
!=
0
)
&&
((
args
[
1
]
^
res
)
<
0
))
res
+=
args
[
1
];
return
res
;
}
};
template
<
typename
T
>
struct
CudaModFunctor
<
T
,
typename
std
::
enable_if_t
<
std
::
is_floating_point
<
T
>::
value
>>
{
inline
HOSTDEVICE
T
operator
()(
const
T
*
args
)
const
{
T
res
=
fmod
(
args
[
0
],
args
[
1
]);
// Accoding to #PR26732: in dividen % divsor
// remainder shall have the same sign as divsor.
if
((
res
!=
0
)
&&
((
res
<
0
)
!=
(
args
[
1
]
<
0
)))
res
+=
args
[
1
];
return
res
;
}
};
template
<
typename
T
>
class
ElementwiseModKernel
<
platform
::
CUDADeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
...
...
@@ -56,7 +31,7 @@ class ElementwiseModKernel<platform::CUDADeviceContext, T>
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
int
axis
=
PackTensorsIntoVector
<
T
>
(
ctx
,
&
ins
,
&
outs
);
LaunchElementwiseCudaKernel
<
ElementwiseType
::
kBinary
,
T
,
T
>
(
cuda_ctx
,
ins
,
&
outs
,
axis
,
Cuda
ModFunctor
<
T
>
());
cuda_ctx
,
ins
,
&
outs
,
axis
,
ModFunctor
<
T
>
());
}
};
...
...
paddle/fluid/operators/elementwise/elementwise_mod_op.h
浏览文件 @
ac933235
...
...
@@ -19,29 +19,36 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
template
<
typename
T
,
typename
Enable
=
void
>
struct
ModFunctor
{
inline
HOSTDEVICE
T
operator
()(
T
a
,
T
b
)
const
{
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
T
res
=
a
%
b
;
if
((
res
!=
0
)
&&
((
res
<
0
)
!=
(
b
<
0
)))
res
+=
b
;
// Accoding to #PR26732: in dividen % divsor
// remainder shall have the same sign as divsor.
if
((
res
!=
0
)
&&
((
b
^
res
)
<
0
))
res
+=
b
;
return
res
;
}
};
template
<
typename
T
>
struct
InverseModFunctor
{
inline
HOSTDEVICE
T
operator
()(
T
a
,
T
b
)
const
{
T
res
=
b
%
a
;
if
((
res
!=
0
)
&&
((
res
<
0
)
!=
(
a
<
0
)))
res
+=
a
;
struct
ModFunctor
<
T
,
typename
std
::
enable_if_t
<
std
::
is_floating_point
<
T
>::
value
>>
{
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
T
res
=
fmod
(
a
,
b
);
// Accoding to #PR26732: in dividen % divsor
// remainder shall have the same sign as divsor.
if
((
res
!=
0
)
&&
((
res
<
0
)
!=
(
b
<
0
)))
res
+=
b
;
return
res
;
}
};
template
<
typename
T
>
struct
ModFunctorFP
{
struct
InverseModFunctor
{
inline
HOSTDEVICE
T
operator
()(
T
a
,
T
b
)
const
{
T
res
=
fmod
(
a
,
b
)
;
if
((
res
!=
0
)
&&
((
b
<
0
)
!=
(
res
<
0
)))
res
+=
b
;
T
res
=
b
%
a
;
if
((
res
!=
0
)
&&
((
res
<
0
)
!=
(
a
<
0
)))
res
+=
a
;
return
res
;
}
};
...
...
@@ -79,8 +86,8 @@ void elementwise_mod_fp(const framework::ExecutionContext &ctx,
auto
x_dims
=
x
->
dims
();
auto
y_dims
=
y
->
dims
();
if
(
x_dims
.
size
()
>=
y_dims
.
size
())
{
ElementwiseComputeEx
<
ModFunctor
FP
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
x
,
y
,
axis
,
ModFunctorFP
<
T
>
(),
z
);
ElementwiseComputeEx
<
ModFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
x
,
y
,
axis
,
ModFunctor
<
T
>
(),
z
);
}
else
{
ElementwiseComputeEx
<
InverseModFunctorFP
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
x
,
y
,
axis
,
InverseModFunctorFP
<
T
>
(),
z
);
...
...
paddle/fluid/operators/elementwise/elementwise_pow_op.cu
浏览文件 @
ac933235
...
...
@@ -16,26 +16,6 @@ namespace ops = paddle::operators;
namespace
paddle
{
namespace
operators
{
template
<
typename
T
,
typename
Enable
=
void
>
struct
CudaPowFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
args
[])
const
{
return
std
::
pow
(
args
[
0
],
args
[
1
]);
}
};
template
<
typename
T
>
struct
CudaPowFunctor
<
T
,
typename
std
::
enable_if
<
std
::
is_integral
<
T
>::
value
>::
type
>
{
// On CUDAPlace, std::pow(3, 1) calls pow(float, float), and
// it will return a float number like 2.99... , which floor to 2
// when cast to int by default and it is wrong.
// Use llrint to cast it to the nearest integer, which is 3.
inline
HOSTDEVICE
T
operator
()(
const
T
args
[])
const
{
return
std
::
llrint
(
std
::
pow
(
static_cast
<
double
>
(
args
[
0
]),
static_cast
<
double
>
(
args
[
1
])));
}
};
template
<
typename
T
>
class
ElementwisePowKernel
<
platform
::
CUDADeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
...
...
@@ -48,7 +28,7 @@ class ElementwisePowKernel<platform::CUDADeviceContext, T>
int
axis
=
PackTensorsIntoVector
<
T
>
(
ctx
,
&
ins
,
&
outs
);
LaunchElementwiseCudaKernel
<
ElementwiseType
::
kBinary
,
T
,
T
>
(
cuda_ctx
,
ins
,
&
outs
,
axis
,
Cuda
PowFunctor
<
T
>
());
cuda_ctx
,
ins
,
&
outs
,
axis
,
PowFunctor
<
T
>
());
}
};
...
...
paddle/pten/kernels/funcs/elementwise_functor.h
浏览文件 @
ac933235
...
...
@@ -26,31 +26,31 @@ namespace funcs {
// Add
template
<
typename
T
>
struct
AddFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
&
a
,
const
T
&
b
)
const
{
return
a
+
b
;
}
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
return
a
+
b
;
}
};
template
<
typename
T
>
struct
InverseAddFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
&
a
,
const
T
&
b
)
const
{
return
b
+
a
;
}
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
return
b
+
a
;
}
};
// Subtract
template
<
typename
T
>
struct
SubtractFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
&
a
,
const
T
&
b
)
const
{
return
a
-
b
;
}
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
return
a
-
b
;
}
};
template
<
typename
T
>
struct
InverseSubtractFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
&
a
,
const
T
&
b
)
const
{
return
b
-
a
;
}
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
return
b
-
a
;
}
};
// Multiply
template
<
typename
T
>
struct
MultiplyFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
&
a
,
const
T
&
b
)
const
{
return
a
*
b
;
}
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
return
a
*
b
;
}
};
template
<
typename
T
>
struct
InverseMultiplyFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
&
a
,
const
T
&
b
)
const
{
return
b
*
a
;
}
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
return
b
*
a
;
}
};
// Divide
...
...
@@ -60,14 +60,14 @@ struct InverseMultiplyFunctor {
template
<
typename
T
,
typename
Enable
=
void
>
struct
DivideFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
&
a
,
const
T
&
b
)
const
{
return
a
/
b
;
}
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
return
a
/
b
;
}
};
template
<
typename
T
>
struct
DivideFunctor
<
T
,
typename
std
::
enable_if
<
std
::
is_integral
<
T
>::
value
>::
type
>
{
inline
HOSTDEVICE
T
operator
()(
const
T
&
a
,
const
T
&
b
)
const
{
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
// For int32/int64, need to check whether the divison is zero.
PADDLE_ENFORCE
(
b
!=
0
,
DIV_ERROR_INFO
);
return
a
/
b
;
...
...
@@ -76,7 +76,7 @@ struct DivideFunctor<
template
<
typename
T
,
typename
Enable
=
void
>
struct
InverseDivideFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
&
a
,
const
T
&
b
)
const
{
return
b
/
a
;
}
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
return
b
/
a
;
}
};
}
// namespace funcs
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录