test_profiler.py 8.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import unittest
18
import os
19
import tempfile
20
import numpy as np
21
import paddle.utils as utils
22 23 24 25
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
import paddle.fluid.layers as layers
import paddle.fluid.core as core
26
from paddle.fluid import compiler, Program, program_guard
27
import paddle.fluid.proto.profiler.profiler_pb2 as profiler_pb2
D
dangqingqing 已提交
28 29


30
class TestProfiler(unittest.TestCase):
31

32 33 34 35
    @classmethod
    def setUpClass(cls):
        os.environ['CPU_NUM'] = str(4)

36
    def build_program(self, compile_program=True):
37 38 39 40
        startup_program = fluid.Program()
        main_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            image = fluid.layers.data(name='x', shape=[784], dtype='float32')
X
Xin Pan 已提交
41 42
            hidden1 = fluid.layers.fc(input=image, size=64, act='relu')
            i = layers.zeros(shape=[1], dtype='int64')
43 44 45
            counter = fluid.layers.zeros(shape=[1],
                                         dtype='int64',
                                         force_cpu=True)
X
Xin Pan 已提交
46 47 48 49 50 51 52 53 54 55 56 57
            until = layers.fill_constant([1], dtype='int64', value=10)
            data_arr = layers.array_write(hidden1, i)
            cond = fluid.layers.less_than(x=counter, y=until)
            while_op = fluid.layers.While(cond=cond)
            with while_op.block():
                hidden_n = fluid.layers.fc(input=hidden1, size=64, act='relu')
                layers.array_write(hidden_n, i, data_arr)
                fluid.layers.increment(x=counter, value=1, in_place=True)
                layers.less_than(x=counter, y=until, cond=cond)

            hidden_n = layers.array_read(data_arr, i)
            hidden2 = fluid.layers.fc(input=hidden_n, size=64, act='relu')
58 59 60
            predict = fluid.layers.fc(input=hidden2, size=10, act='softmax')
            label = fluid.layers.data(name='y', shape=[1], dtype='int64')
            cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
61
            avg_cost = fluid.layers.mean(cost)
F
fengjiayi 已提交
62
            batch_size = fluid.layers.create_tensor(dtype='int64')
63 64 65
            batch_acc = fluid.layers.accuracy(input=predict,
                                              label=label,
                                              total=batch_size)
66

67
        optimizer = fluid.optimizer.Momentum(learning_rate=0.001, momentum=0.9)
68 69
        opts = optimizer.minimize(avg_cost, startup_program=startup_program)

70
        if compile_program:
71 72 73 74
            # TODO(luotao): profiler tool may have bug with multi-thread parallel executor.
            # https://github.com/PaddlePaddle/Paddle/pull/25200#issuecomment-650483092
            exec_strategy = fluid.ExecutionStrategy()
            exec_strategy.num_threads = 1
75
            train_program = fluid.compiler.CompiledProgram(
76 77
                main_program).with_data_parallel(loss_name=avg_cost.name,
                                                 exec_strategy=exec_strategy)
78 79 80 81 82 83 84 85 86 87
        else:
            train_program = main_program
        return train_program, startup_program, avg_cost, batch_size, batch_acc

    def get_profile_path(self):
        profile_path = os.path.join(tempfile.gettempdir(), "profile")
        open(profile_path, "w").write("")
        return profile_path

    def check_profile_result(self, profile_path):
88
        data = open(profile_path, 'rb').read()
89 90 91 92 93 94 95 96 97 98 99 100
        if (len(data) > 0):
            profile_pb = profiler_pb2.Profile()
            profile_pb.ParseFromString(data)
            self.assertGreater(len(profile_pb.events), 0)
            for event in profile_pb.events:
                if event.type == profiler_pb2.Event.GPUKernel:
                    if not event.detail_info and not event.name.startswith(
                            "MEM"):
                        raise Exception(
                            "Kernel %s missing event. Has this kernel been recorded by RecordEvent?"
                            % event.name)
                elif event.type == profiler_pb2.Event.CPU and (
101 102
                        event.name.startswith("Driver API")
                        or event.name.startswith("Runtime API")):
103
                    print("Warning: unregister", event.name)
104

T
Tao Luo 已提交
105
    def run_iter(self, exe, main_program, fetch_list):
106 107 108
        x = np.random.random((32, 784)).astype("float32")
        y = np.random.randint(0, 10, (32, 1)).astype("int64")
        outs = exe.run(main_program,
109 110 111 112
                       feed={
                           'x': x,
                           'y': y
                       },
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
                       fetch_list=fetch_list)

    def net_profiler(self,
                     exe,
                     state,
                     tracer_option,
                     batch_range=None,
                     use_parallel_executor=False,
                     use_new_api=False):
        main_program, startup_program, avg_cost, batch_size, batch_acc = self.build_program(
            compile_program=use_parallel_executor)
        exe.run(startup_program)

        profile_path = self.get_profile_path()
        if not use_new_api:
            with profiler.profiler(state, 'total', profile_path, tracer_option):
                for iter in range(10):
                    if iter == 2:
                        profiler.reset_profiler()
                    self.run_iter(exe, main_program,
T
Tao Luo 已提交
133
                                  [avg_cost, batch_acc, batch_size])
134
        else:
135 136 137 138 139 140 141 142 143
            options = utils.ProfilerOptions(
                options={
                    'state': state,
                    'sorted_key': 'total',
                    'tracer_level': tracer_option,
                    'batch_range':
                    [0, 10] if batch_range is None else batch_range,
                    'profile_path': profile_path
                })
144 145 146
            with utils.Profiler(enabled=True, options=options) as prof:
                for iter in range(10):
                    self.run_iter(exe, main_program,
T
Tao Luo 已提交
147
                                  [avg_cost, batch_acc, batch_size])
148 149 150
                    utils.get_profiler().record_step()
                    if batch_range is None and iter == 2:
                        utils.get_profiler().reset()
151 152 153
        # TODO(luotao): check why nccl kernel in profile result.
        # https://github.com/PaddlePaddle/Paddle/pull/25200#issuecomment-650483092
        # self.check_profile_result(profile_path)
154

D
dangqingqing 已提交
155
    def test_cpu_profiler(self):
156 157
        exe = fluid.Executor(fluid.CPUPlace())
        for use_new_api in [False, True]:
158 159 160 161 162
            self.net_profiler(exe,
                              'CPU',
                              "Default",
                              batch_range=[5, 10],
                              use_new_api=use_new_api)
163

164 165
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "profiler is enabled only with GPU")
D
dangqingqing 已提交
166
    def test_cuda_profiler(self):
167 168
        exe = fluid.Executor(fluid.CUDAPlace(0))
        for use_new_api in [False, True]:
169 170 171 172 173
            self.net_profiler(exe,
                              'GPU',
                              "OpDetail",
                              batch_range=[0, 10],
                              use_new_api=use_new_api)
174

175 176
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "profiler is enabled only with GPU")
177
    def test_all_profiler(self):
178 179
        exe = fluid.Executor(fluid.CUDAPlace(0))
        for use_new_api in [False, True]:
180 181 182 183 184
            self.net_profiler(exe,
                              'All',
                              "AllOpDetail",
                              batch_range=None,
                              use_new_api=use_new_api)
185 186 187


class TestProfilerAPIError(unittest.TestCase):
188

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
    def test_errors(self):
        options = utils.ProfilerOptions()
        self.assertTrue(options['profile_path'] is None)
        self.assertTrue(options['timeline_path'] is None)

        options = options.with_state('All')
        self.assertTrue(options['state'] == 'All')
        try:
            print(options['test'])
        except ValueError:
            pass

        global_profiler = utils.get_profiler()
        with utils.Profiler(enabled=True) as prof:
            self.assertTrue(utils.get_profiler() == prof)
            self.assertTrue(global_profiler != prof)
205

D
dangqingqing 已提交
206

207 208
if __name__ == '__main__':
    unittest.main()