layers.py 77.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
Xin Pan 已提交
15
import collections
16
import copy
17
import inspect
18 19 20 21 22
import re
import warnings
import weakref

import numpy as np
23

24
import paddle
25
from paddle import profiler
26 27 28 29
from paddle.fluid import core, framework, unique_name
from paddle.fluid.core import VarDesc
from paddle.fluid.dygraph import no_grad
from paddle.fluid.dygraph.base import (
30
    _convert_into_variable,
31 32
    in_declarative_mode,
    program_desc_tracing_guard,
33
)
34
from paddle.fluid.dygraph_utils import _append_activation_in_dygraph
35
from paddle.fluid.executor import Executor, global_scope
36 37
from paddle.fluid.framework import Parameter, Program
from paddle.fluid.framework import _current_expected_place as _get_device
38
from paddle.fluid.framework import (
39
    _global_flags,
40
    convert_np_dtype_to_dtype_,
41
    default_main_program,
42 43
    in_dygraph_mode,
)
44 45 46
from paddle.fluid.layer_helper_base import LayerHelperBase
from paddle.fluid.param_attr import ParamAttr
from paddle.profiler.utils import in_profiler_mode
47
from paddle.utils import deprecated
48

49
__all__ = []
50

51 52 53 54
_first_cap_re = re.compile('(.)([A-Z][a-z]+)')
_all_cap_re = re.compile('([a-z])([A-Z])')


55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
def record_program_ops_pre_hook(layer, inputs):
    """
    A pre-hook to mark op numbers before enter layer.forward.
    """
    if not in_dygraph_mode():
        if layer._op_recorder.start < 0:
            layer._op_recorder.start = len(
                default_main_program().current_block().ops
            )
            layer._op_recorder.is_valid = True
        else:
            layer._op_recorder.is_valid = False
            warnings.warn(
                "{} has recorded the op information before. Please check whether you call this layer twice.".format(
                    layer._full_name
                )
            )

    return None


def set_op_customized_attrs_post_hook(layer, inputs, outputs):
    """
    A post-hook to append customized attributes into all operators generated in current layer.
    """
    if not in_dygraph_mode() and layer._op_recorder.is_valid:

        start = layer._op_recorder.start
        end = len(default_main_program().current_block().ops)
        assert start >= 0 and end >= start
        ops = default_main_program().current_block().ops[start:end]

        layer._op_recorder.end = end
        layer._op_recorder.ops = ops

        for op in ops:
            for attr_name, val in layer._customized_attrs.items():
                op._set_attr(attr_name, val)

        # remove pre-hook and post-hook
        for hook_helper in layer._op_recorder.hooks:
            hook_helper.remove()

    return None


101 102 103 104 105 106
def _scope_dist2single(dist_scope):
    mapping = {
        "row_parallel_linear": "linear",
        "column_parallel_linear": "linear",
        "vocab_parallel_embedding": "embedding",
        # "parallel_cross_entropy": "cross_entropy", while mp_layer has parallel_cross_entropy,
S
Shuangchi He 已提交
107
        # but there is no parameters so the mapping of parallel_cross_entropy is not necessary.
108 109 110 111
    }
    return mapping.get(dist_scope, dist_scope)


112 113 114 115
def _convert_camel_to_snake(name):
    s1 = _first_cap_re.sub(r'\1_\2', name)
    return _all_cap_re.sub(r'\1_\2', s1).lower()

116

117 118 119 120 121 122 123 124 125 126 127
def _addindent(string, indent):
    s1 = string.split('\n')
    if len(s1) == 1:
        return string
    s2 = []
    for idx, line in enumerate(s1):
        if idx > 0:
            s2.append(str((indent * ' ') + line))
    return s1[0] + '\n' + '\n'.join(s2)


128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
class LayerObjectHelper(LayerHelperBase):
    def __init__(self, name):
        super().__init__(name, layer_type=name)

    def append_op(
        self,
        type=None,
        inputs=None,
        outputs=None,
        attrs=None,
        stop_gradient=None,
    ):
        """append an operator for this layer object.

           Args:
               type: operator type
               inputs: input variable of the operator
               dtype: data type of this parameter
               is_bias: if this is a bias parameter
               default_initializer: set the default initializer for this parameter

        Returns created parameter Variable.
        """
        return self.main_program.current_block().append_op(
            type=type,
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
            stop_gradient=stop_gradient,
        )

    def _multiple_input(self, inputs_in):
        inputs = inputs_in
        ret = []
        if isinstance(inputs, (list, tuple)):
            for inp in inputs:
                ret.append(self.to_variable(inp))
        else:
            ret.append(self.to_variable(inputs))
        return ret

    # TODO: make it public when we need it
    def _input(self, inputs_in):
        inputs = self._multiple_input(inputs_in)
        if len(inputs) != 1:
173
            raise f"{self.layer_type} layer only takes one input in"
174 175 176 177 178 179 180 181
        return inputs[0]

    def _multiple_param_attr(self, length, param_attr_in=None):
        param_attr = param_attr_in
        if isinstance(param_attr, ParamAttr):
            param_attr = [param_attr]

        if len(param_attr) != 1 and len(param_attr) != length:
182
            raise ValueError(f"parameter number mismatch in {self.name}")
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
        elif len(param_attr) == 1 and length != 1:
            tmp = [None] * length
            for i in range(length):
                tmp[i] = copy.deepcopy(param_attr[0])
            param_attr = tmp
        return param_attr

    def iter_inputs_and_params(self, inputs_in, param_attr_in=None):
        """Access all inputs and params one by one

           Args:
               inputs_in: inputs to be iter
               param_attr_in: param_attr to be iter

        Returns input, param_attr
        """
        param_attr_in = ParamAttr._to_attr(param_attr_in)
        if isinstance(param_attr_in, bool):
201
            raise ValueError(f'Param_attr should not be False in {self.name}')
202 203 204
        inputs = inputs_in if (inputs_in is not None) else []
        inputs = self._multiple_input(inputs)
        param_attrs = self._multiple_param_attr(len(inputs), param_attr_in)
205
        yield from zip(inputs, param_attrs)
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237

    def input_dtype(self, inputs_in):
        """Get input data type

           Args:
               inputs_in: inputs wanted know the data type

        Returns dtype of the input
        """
        inputs_in = inputs_in if (inputs_in is not None) else []
        inputs = self._multiple_input(inputs_in)
        dtype = None
        for each in inputs:
            if dtype is None:
                dtype = each.dtype
            elif dtype != each.dtype:
                raise ValueError(
                    "Data Type mismatch: %d to %d in %s"
                    % (dtype, each.dtype, self.name)
                )
        return dtype

    def get_parameter(self, name):
        """Get parameter specifically

           Args:
               name: parameter's name

        Returns target parameter
        """
        param = self.main_program.global_block().var(name)
        if not isinstance(param, Parameter):
238
            raise ValueError(f"no Parameter name {name} found in {self.name}")
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
        return param

    # TODO: this should not be called anymore after all activation func move to Layers
    def append_activation(self, input_var, act=None, use_cudnn=None):
        """Append activation

            Args:
                input_var: the input variable. The len(input_var.shape) is
                larger or equal than 2.
                act: activation type
                use_cudnn: if use cudnn

        Return the Variable of after append activation
        """
        act = act
        if act is None:
            return input_var
        if isinstance(act, str):
            act = {'type': act}
        else:
            raise TypeError(
                str(act) + " should be unicode or str in %s ", self.name
            )

        if (use_cudnn is not None) and use_cudnn:
            act['use_cudnn'] = use_cudnn
        use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
        if (use_mkldnn is not None) and use_mkldnn:
            act['use_mkldnn'] = use_mkldnn
        act_type = act.pop('type')
        if in_dygraph_mode():
            res = _append_activation_in_dygraph(
                input_var, act_type, use_cudnn, use_mkldnn
            )
            return res
        else:
            tmp = self.create_variable_for_type_inference(dtype=input_var.dtype)
            self.append_op(
                type=act_type,
                inputs={"X": [input_var]},
                outputs={"Out": [tmp]},
                attrs=act,
            )
            return tmp

    def is_instance(self, param, cls):
        """Check if the input parameter is instance of input class

            Args:
                param: parameter to be check
                cls: class of the parameter

        Return result of the check (True or False)
        """
        param = param
        if not isinstance(param, cls):
            raise TypeError(
                "The input {0} parameter of method {1} must be {2}, in layer {3}",
                param,
                self.layer_type,
                cls.__name__,
                self.name,
            )


class LayerOpsRecoder:
    """
    Record generated operators information in nn.Layer.
    """

    def __init__(self, start=-1, end=-1, ops=None, is_valid=False, hooks=None):
        self.start = start
        self.end = end
        self.ops = ops
        self.is_valid = is_valid
        self.hooks = hooks


317
class HookRemoveHelper:
318
    """A HookRemoveHelper that can be used to remove hook."""
319 320 321 322 323 324 325 326 327 328 329 330 331 332

    next_hook_id = 0

    def __init__(self, hooks):
        self._hooks_ref = weakref.ref(hooks)
        self._hook_id = HookRemoveHelper.next_hook_id
        HookRemoveHelper.next_hook_id += 1

    def remove(self):
        hooks = self._hooks_ref()
        if hooks is not None and self._hook_id in hooks:
            del hooks[self._hook_id]


333
class Layer:
334 335
    """
    Dynamic graph Layer based on OOD, includes the parameters of the layer, the structure of the forward graph and so on.
X
Xin Pan 已提交
336

337
    Parameters:
338 339
        name_scope (str, optional): prefix name used by the layer to name parameters.
            If prefix is "my_layer", parameter name in MyLayer
340 341 342
            can be "my_layer_0.w_n", where "w" is the parameter
            base name and "n" is an unique suffix auto-generated.
            If None, prefix name will be snake cased class name. Default: None.
343
        dtype(str, optional): data type of this parameter.
344 345
                If set str, it can be "bool",  "float16", "float32", "float64",
                "int8", "int16", "int32", "int64", "uint8" or "uint16".
346
                Default: "float32"
347

348 349
    Returns:
        None
350 351 352 353 354 355 356

    Examples:
        .. code-block:: python

            import paddle
            class MyLayer(paddle.nn.Layer):
                def __init__(self):
357
                    super().__init__()
358 359 360 361 362 363 364 365 366 367 368 369
                    self._linear = paddle.nn.Linear(1, 1)
                    self._dropout = paddle.nn.Dropout(p=0.5)
                def forward(self, input):
                    temp = self._linear(input)
                    temp = self._dropout(temp)
                    return temp
            x = paddle.randn([10, 1], 'float32')
            mylayer = MyLayer()
            mylayer.eval()  # set mylayer._dropout to eval mode
            out = mylayer(x)
            mylayer.train()  # set mylayer._dropout to train mode
            out = mylayer(x)
X
Xin Pan 已提交
370
    """
X
Xin Pan 已提交
371

372
    def __init__(self, name_scope=None, dtype="float32"):
373
        self.training = True
374
        if name_scope is None:
375
            name_scope = _convert_camel_to_snake(self.__class__.__name__)
376
            name_scope = _scope_dist2single(name_scope)
377
        self._full_name = unique_name.generate(name_scope)
378
        self._helper = LayerObjectHelper(self._full_name)
X
Xin Pan 已提交
379
        self._built = False
M
minqiyang 已提交
380
        self._dtype = dtype
姜永久 已提交
381
        self._init_in_dynamic_mode = in_dygraph_mode()
382

X
Xin Pan 已提交
383
        self._parameters = collections.OrderedDict()
384 385 386
        # Buffers the variable (not parameter) created in layer
        self._buffers = collections.OrderedDict()
        self._non_persistable_buffer_names_set = set()
X
Xin Pan 已提交
387
        self._sub_layers = collections.OrderedDict()
L
lujun 已提交
388
        self._loaddict_holder = collections.OrderedDict()
389

390 391 392 393
        # Record generated op_descs in this layer
        self._op_recorder = LayerOpsRecoder(ops=[], hooks=[])
        self._customized_attrs = {}

394 395 396
        self._forward_pre_hooks = collections.OrderedDict()
        self._forward_post_hooks = collections.OrderedDict()

397 398 399
        self._casted_by_pure_fp16 = False

        self._state_dict_hooks = collections.OrderedDict()
400 401
        # Records orignal functions after @to_static to support to rollback
        self._original_funcs = collections.OrderedDict()
402

M
minqiyang 已提交
403
    def train(self):
404
        """
U
ustiniankw 已提交
405

406 407 408 409 410
        Sets this Layer and all its sublayers to training mode.
        This only effects certain modules like `Dropout` and `BatchNorm`.

        Returns:
            None
411

U
ustiniankw 已提交
412
        Examples:
413 414 415 416 417 418
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
419
                        super().__init__()
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
                        self._linear = paddle.nn.Linear(1, 1)
                        self._dropout = paddle.nn.Dropout(p=0.5)

                    def forward(self, input):
                        temp = self._linear(input)
                        temp = self._dropout(temp)
                        return temp

                x = paddle.randn([10, 1], 'float32')
                mylayer = MyLayer()
                mylayer.eval()  # set mylayer._dropout to eval mode
                out = mylayer(x)
                mylayer.train()  # set mylayer._dropout to train mode
                out = mylayer(x)

435
        """
436 437 438
        # global setting in dygraph
        # NOTE(chenweihang): nn.Layer also can be used in static mode,
        # but _dygraph_tracer() can not be called in static mode
姜永久 已提交
439
        if in_dygraph_mode():
440
            framework._dygraph_tracer().train_mode()
441 442 443
        # Layer-level setting
        self.training = True
        for layer in self.sublayers():
444
            layer.training = True
M
minqiyang 已提交
445 446

    def eval(self):
447 448 449 450 451 452
        """
        Sets this Layer and all its sublayers to evaluation mode.
        This only effects certain modules like `Dropout` and `BatchNorm`.

        Returns:
            None
453 454 455 456 457 458 459 460

        Example::
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
461
                        super().__init__()
462 463 464 465 466 467 468 469 470 471 472 473 474 475
                        self._linear = paddle.nn.Linear(1, 1)
                        self._dropout = paddle.nn.Dropout(p=0.5)

                    def forward(self, input):
                        temp = self._linear(input)
                        temp = self._dropout(temp)
                        return temp

                x = paddle.randn([10, 1], 'float32')
                mylayer = MyLayer()
                mylayer.eval()  # set mylayer._dropout to eval mode
                out = mylayer(x)
                print(out)

476
        """
477 478 479
        # global setting in dygraph
        # NOTE(chenweihang): nn.Layer also can be used in static mode,
        # but _dygraph_tracer() can not be called in static mode
姜永久 已提交
480
        if in_dygraph_mode():
481
            framework._dygraph_tracer().eval_mode()
482 483 484
        # Layer-level setting
        self.training = False
        for layer in self.sublayers():
485
            layer.training = False
M
minqiyang 已提交
486

L
LielinJiang 已提交
487 488
    def apply(self, fn):
        """
U
ustiniankw 已提交
489

L
LielinJiang 已提交
490 491 492 493 494 495 496
        Applies ``fn`` recursively to every sublayer (as returned by ``.sublayers()``)
        as well as self. Typical use includes initializing the parameters of a model.

        Parameters:
            fn (function): a function to be applied to each sublayer

        Returns:
U
ustiniankw 已提交
497
            Layer, self
L
LielinJiang 已提交
498 499 500 501 502 503

        Example::
            .. code-block:: python

              import paddle
              import paddle.nn as nn
504

L
LielinJiang 已提交
505 506 507 508 509
              net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))

              def init_weights(layer):
                  if type(layer) == nn.Linear:
                      print('before init weight:', layer.weight.numpy())
510
                      new_weight = paddle.full(shape=layer.weight.shape, dtype=layer.weight.dtype, fill_value=0.9)
L
LielinJiang 已提交
511 512 513 514 515 516
                      layer.weight.set_value(new_weight)
                      print('after init weight:', layer.weight.numpy())

              net.apply(init_weights)

              print(net.state_dict())
U
ustiniankw 已提交
517

L
LielinJiang 已提交
518
        """
519
        for layer in self.children():
L
LielinJiang 已提交
520 521 522 523 524 525
            layer.apply(fn)

        fn(self)

        return self

X
Xin Pan 已提交
526
    def full_name(self):
U
ustiniankw 已提交
527 528 529
        """

        Full name for this layer, composed by name_scope + "/" + MyLayer.__class__.__name__
X
Xin Pan 已提交
530

531
        Returns:
U
ustiniankw 已提交
532
            str, full name of this layer.
533 534 535 536 537 538 539 540

        Example::
            .. code-block:: python

                import paddle

                class LinearNet(paddle.nn.Layer):
                    def __init__(self):
541
                        super().__init__(name_scope = "demo_linear_net")
542 543 544 545 546 547 548 549
                        self._linear = paddle.nn.Linear(1, 1)

                    def forward(self, x):
                        return self._linear(x)

                linear_net = LinearNet()
                print(linear_net.full_name())   # demo_linear_net_0

X
Xin Pan 已提交
550 551 552
        """
        return self._full_name

553
    def register_forward_post_hook(self, hook):
U
ustiniankw 已提交
554 555 556
        """

        Register a forward post-hook for Layer. The hook will be called after `forward` function has been computed.
557 558 559

        It should have the following form, `input` and `output` of the `hook` is `input` and `output` of the `Layer` respectively.
        User can use forward post-hook to change the output of the Layer or perform information statistics tasks on the Layer.
560

561 562 563 564 565 566
        hook(Layer, input, output) -> None or modified output

        Parameters:
            hook(function): a function registered as a forward post-hook

        Returns:
U
ustiniankw 已提交
567
            HookRemoveHelper, a HookRemoveHelper object that can be used to remove the added hook by calling `hook_remove_helper.remove()` .
568 569 570 571

        Examples:
            .. code-block:: python

572 573 574 575 576 577
                import paddle
                import numpy as np

                # the forward_post_hook change the output of the layer: output = output * 2
                def forward_post_hook(layer, input, output):
                    # user can use layer, input and output for information statistis tasks
578

579 580
                    # change the output
                    return output * 2
581

582
                linear = paddle.nn.Linear(13, 5)
583

584 585
                # register the hook
                forward_post_hook_handle = linear.register_forward_post_hook(forward_post_hook)
586

587 588
                value1 = np.arange(26).reshape(2, 13).astype("float32")
                in1 = paddle.to_tensor(value1)
589

590
                out0 = linear(in1)
591

592 593 594 595 596 597 598
                # remove the hook
                forward_post_hook_handle.remove()

                out1 = linear(in1)

                # hook change the linear's output to output * 2, so out0 is equal to out1 * 2.
                assert (out0.numpy() == (out1.numpy()) * 2).any()
U
ustiniankw 已提交
599

600 601 602 603 604 605
        """
        hook_remove_helper = HookRemoveHelper(self._forward_post_hooks)
        self._forward_post_hooks[hook_remove_helper._hook_id] = hook
        return hook_remove_helper

    def register_forward_pre_hook(self, hook):
U
ustiniankw 已提交
606 607 608
        """

        Register a forward pre-hook for Layer. The hook will be called before `forward` function has been computed.
609

610
        It should have the following form, `input` of the `hook` is `input` of the `Layer`,
611
        hook can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if
612 613 614 615 616 617 618 619 620
        a single value is returned(unless that value is already a tuple).
        User can use forward pre-hook to change the input of the Layer or perform information statistics tasks on the Layer.

        hook(Layer, input) -> None or modified input

        Parameters:
            hook(function): a function registered as a forward pre-hook

        Returns:
U
ustiniankw 已提交
621
            HookRemoveHelper, a HookRemoveHelper object that can be used to remove the added hook by calling `hook_remove_helper.remove()` .
622 623 624 625

        Examples:
            .. code-block:: python

626 627
                import paddle
                import numpy as np
628

629
                # the forward_pre_hook change the input of the layer: input = input * 2
630 631
                def forward_pre_hook(layer, input):
                    # user can use layer and input for information statistis tasks
632

633 634 635
                    # change the input
                    input_return = (input[0] * 2)
                    return input_return
636

637
                linear = paddle.nn.Linear(13, 5)
638

639 640
                # register the hook
                forward_pre_hook_handle = linear.register_forward_pre_hook(forward_pre_hook)
641

642 643 644
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                in0 = paddle.to_tensor(value0)
                out0 = linear(in0)
645

646 647
                # remove the hook
                forward_pre_hook_handle.remove()
648

649 650 651
                value1 = value0 * 2
                in1 = paddle.to_tensor(value1)
                out1 = linear(in1)
652

653 654
                # hook change the linear's input to input * 2, so out0 is equal to out1.
                assert (out0.numpy() == out1.numpy()).any()
655 656 657 658 659
        """
        hook_remove_helper = HookRemoveHelper(self._forward_pre_hooks)
        self._forward_pre_hooks[hook_remove_helper._hook_id] = hook
        return hook_remove_helper

660 661 662 663 664 665 666 667
    def create_parameter(
        self,
        shape,
        attr=None,
        dtype=None,
        is_bias=False,
        default_initializer=None,
    ):
668
        """Create parameters for this layer.
669

670
        Parameters:
671
            shape(list): Shape of the parameter.
672 673
            attr(ParamAttr, optional): Parameter attribute of weight. Please refer to :ref:`api_paddle_ParamAttr`. Default: None.
            dtype(str, optional): Data type of this parameter.
674
                If set str, it can be "bool",  "float16", "float32", "float64",
675 676
                "int8", "int16", "int32", "int64", "uint8" or "uint16". Default: "float32".
            is_bias(bool, optional): if this is a bias parameter. Default: False.
677
            default_initializer(Initializer, optional): the default initializer for this parameter.
678
                If set None, default initializer will be set to paddle.nn.initializer.Xavier and paddle.nn.initializer.Constant
679
                for non-bias and bias parameter, respectively. Default: None.
680

681
        Returns:
682 683 684 685 686 687 688 689 690
            :Tensor, created parameter.

        Examples:
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
691
                        super().__init__()
692 693 694 695 696 697 698 699 700 701 702
                        self._linear = paddle.nn.Linear(1, 1)
                        w_tmp = self.create_parameter([1,1])
                        self.add_parameter("w_tmp", w_tmp)

                    def forward(self, input):
                        return self._linear(input)

                mylayer = MyLayer()
                for name, param in mylayer.named_parameters():
                    print(name, param)      # will print w_tmp,_linear.weight,_linear.bias

703
        """
H
hong 已提交
704
        temp_attr = copy.deepcopy(attr)
705
        if isinstance(temp_attr, str) and temp_attr == "":
H
hong 已提交
706
            temp_attr = None
707 708 709 710 711 712 713 714 715
        return self._helper.create_parameter(
            temp_attr, shape, dtype, is_bias, default_initializer
        )

    @deprecated(
        since="2.0.0",
        update_to="paddle.nn.Layer.create_tensor",
        reason="New api in create_tensor, easier to use.",
    )
716
    def create_variable(self, name=None, persistable=None, dtype=None):
W
wanghuancoder 已提交
717 718 719
        """

        Create Tensor for this layer.
720

721
        Parameters:
W
wanghuancoder 已提交
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
            name(str, optional): name of the tensor. Please refer to :ref:`api_guide_Name` . Default: None

            persistable(bool, optional): if set this tensor persistable. Default: False

            dtype(str, optional): data type of this parameter. If set str, it can be "bool", "float16", "float32", "float64","int8", "int16", "int32", "int64", "uint8" or "uint16". If set None, it will be "float32". Default: None

        Returns:
            Tensor, created Tensor.

        Examples:
            .. code-block:: python

                import paddle

                class MyLinear(paddle.nn.Layer):
                    def __init__(self,
                                in_features,
                                out_features):
740
                        super().__init__()
W
wanghuancoder 已提交
741
                        self.linear = paddle.nn.Linear( 10, 10)
742

W
wanghuancoder 已提交
743
                        self.back_var = self.create_variable(name = "linear_tmp_0", dtype=self._dtype)
744

W
wanghuancoder 已提交
745 746 747
                    def forward(self, input):
                        out = self.linear(input)
                        paddle.assign( out, self.back_var)
748

W
wanghuancoder 已提交
749 750 751 752 753 754
                        return out

        """
        if name is not None:
            var_name = ".".join([self._full_name, name])
        else:
755 756 757
            var_name = unique_name.generate(
                ".".join([self._full_name, "_generated_var"])
            )
W
wanghuancoder 已提交
758 759 760 761 762

        return self._helper.main_program.current_block().create_var(
            name=var_name,
            persistable=persistable,
            dtype=dtype,
763 764
            type=core.VarDesc.VarType.LOD_TENSOR,
        )
W
wanghuancoder 已提交
765 766 767 768 769 770 771 772 773 774

    # TODO: Add more parameter list when we need them
    def create_tensor(self, name=None, persistable=None, dtype=None):
        """

        Create Tensor for this layer.

        Parameters:
            name(str, optional): name of the tensor. Please refer to :ref:`api_guide_Name` . Default: None
            persistable(bool, optional): if set this tensor persistable. Default: False
775
            dtype(str, optional): data type of this parameter.
776 777
                If set str, it can be "bool",  "float16", "float32", "float64",
                "int8", "int16", "int32", "int64", "uint8" or "uint16".
778
                If set None, it will be "float32". Default: None
779

780
        Returns:
W
wanghuancoder 已提交
781
            Tensor, created Tensor.
782 783 784 785 786 787 788 789 790 791

        Examples:
            .. code-block:: python

                import paddle

                class MyLinear(paddle.nn.Layer):
                    def __init__(self,
                                in_features,
                                out_features):
792
                        super().__init__()
793
                        self.linear = paddle.nn.Linear( 10, 10)
794

W
wanghuancoder 已提交
795
                        self.back_var = self.create_tensor(name = "linear_tmp_0", dtype=self._dtype)
796

797 798 799
                    def forward(self, input):
                        out = self.linear(input)
                        paddle.assign( out, self.back_var)
800

801 802
                        return out

803 804 805 806
        """
        if name is not None:
            var_name = ".".join([self._full_name, name])
        else:
807 808 809
            var_name = unique_name.generate(
                ".".join([self._full_name, "_generated_var"])
            )
810 811

        return self._helper.main_program.current_block().create_var(
812 813 814
            name=var_name,
            persistable=persistable,
            dtype=dtype,
815 816
            type=core.VarDesc.VarType.LOD_TENSOR,
        )
817

X
polish  
Xin Pan 已提交
818
    def parameters(self, include_sublayers=True):
U
ustiniankw 已提交
819 820 821
        """

        Returns a list of all Parameters from current layer and its sub-layers.
X
Xin Pan 已提交
822

823
        Returns:
U
ustiniankw 已提交
824
            list of Tensor, a list of Parameters.
825 826 827 828

        Examples:
            .. code-block:: python

U
ustiniankw 已提交
829
                import paddle
830

U
ustiniankw 已提交
831 832
                linear = paddle.nn.Linear(1,1)
                print(linear.parameters())  # print linear_0.w_0 and linear_0.b_0
833

X
Xin Pan 已提交
834
        """
835
        ret = [
836 837 838 839
            param
            for _, param in self.named_parameters(
                include_sublayers=include_sublayers
            )
840
        ]
X
polish  
Xin Pan 已提交
841
        return ret
X
Xin Pan 已提交
842

843
    def children(self):
U
ustiniankw 已提交
844 845 846
        """

        Returns an iterator over immediate children layers.
847 848 849 850 851 852 853

        Yields:
            Layer: a child layer

        Examples:
            .. code-block:: python

854
                import paddle
855

856 857 858 859 860
                linear1 = paddle.nn.Linear(10, 3)
                linear2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = paddle.nn.Sequential(linear1, linear2)

                layer_list = list(model.children())
861

862
                print(layer_list)   # [<paddle.nn.layer.common.Linear object at 0x7f7b8113f830>, <paddle.nn.layer.common.Linear object at 0x7f7b8113f950>]
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877

        """
        for _, layer in self.named_children():
            yield layer

    def named_children(self):
        """Returns an iterator over immediate children layers, yielding both
        the name of the layer as well as the layer itself.

        Yields:
            (string, Layer): Tuple containing a name and child layer

        Examples:
            .. code-block:: python

878
                import paddle
879

880 881 882 883 884 885 886
                linear1 = paddle.nn.Linear(10, 3)
                linear2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = paddle.nn.Sequential(linear1, linear2)
                for prefix, layer in model.named_children():
                    print(prefix, layer)
                    # ('0', <paddle.nn.layer.common.Linear object at 0x7fb61ed85830>)
                    # ('1', <paddle.nn.layer.common.Linear object at 0x7fb61ed85950>)
887 888 889 890 891 892 893 894

        """
        memo = set()
        for name, layer in self._sub_layers.items():
            if layer is not None and layer not in memo:
                memo.add(layer)
                yield name, layer

J
Jiabin Yang 已提交
895
    def sublayers(self, include_self=False):
U
ustiniankw 已提交
896 897 898
        """

        Returns a list of sub layers.
X
Xin Pan 已提交
899

900
        Parameters:
J
Jiabin Yang 已提交
901
            include_self(bool, optional): Whether return self as sublayers. Default: False
X
Xin Pan 已提交
902

903
        Returns:
U
ustiniankw 已提交
904
            list of Layer, a list of sub layers.
905 906 907 908 909 910 911 912

        Examples:
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
913
                        super().__init__()
914 915 916 917 918 919 920 921 922 923 924
                        self._linear = paddle.nn.Linear(1, 1)
                        self._dropout = paddle.nn.Dropout(p=0.5)

                    def forward(self, input):
                        temp = self._linear(input)
                        temp = self._dropout(temp)
                        return temp

                mylayer = MyLayer()
                print(mylayer.sublayers())  # [<paddle.nn.layer.common.Linear object at 0x7f44b58977d0>, <paddle.nn.layer.common.Dropout object at 0x7f44b58978f0>]

X
Xin Pan 已提交
925
        """
926 927
        ret = [
            layer
J
Jiabin Yang 已提交
928
            for _, layer in self.named_sublayers(include_self=include_self)
929
        ]
X
Xin Pan 已提交
930 931
        return ret

932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
    def named_parameters(self, prefix='', include_sublayers=True):
        """
        Returns an iterator over all parameters in the Layer, yielding tuple of name and parameter.

        Parameters:
            prefix(str, optional): Prefix to prepend to all parameter names. Default: ''.
            include_sublayers(bool, optional): Whether include the parameters of sublayers.
                If True, also include the named parameters from sublayers. Default: True.

        Yields:
            (string, Parameter): Tuple of name and Parameter

        Examples:
            .. code-block:: python

947
                import paddle
948

949 950 951 952 953
                fc1 = paddle.nn.Linear(10, 3)
                fc2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = paddle.nn.Sequential(fc1, fc2)
                for name, param in model.named_parameters():
                    print(name, param)
954 955 956

        """
        params_set = set()
957 958 959 960 961
        named_sublayers = (
            self.named_sublayers(prefix=prefix, include_self=True)
            if include_sublayers
            else zip([prefix], [self])
        )
962 963 964 965 966 967 968 969 970
        for layer_prefix, sublayer in named_sublayers:
            params = sublayer._parameters.items()
            for key, param in params:
                if param is None or param in params_set:
                    continue
                params_set.add(param)
                name = layer_prefix + ('.' if layer_prefix else '') + key
                yield name, param

J
Jiabin Yang 已提交
971
    def named_sublayers(self, prefix='', include_self=False, layers_set=None):
972 973 974 975 976 977 978
        """
        Returns an iterator over all sublayers in the Layer, yielding tuple of name and sublayer.
        The duplicate sublayer will only be yielded once.

        Parameters:
            prefix(str, optional): Prefix to prepend to all parameter names. Default: ''.
            include_self(bool, optional): Whether include the Layer itself. Default: False.
979
            layers_set(set, optional): The set to record duplicate sublayers. Default: None.
980 981 982 983 984 985 986

        Yields:
            (string, Layer): Tuple of name and Layer

        Examples:
            .. code-block:: python

987
                import paddle
988

989 990 991 992 993
                fc1 = paddle.nn.Linear(10, 3)
                fc2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = paddle.nn.Sequential(fc1, fc2)
                for prefix, layer in model.named_sublayers():
                    print(prefix, layer)
994 995 996 997 998 999 1000

        """
        if layers_set is None:
            layers_set = set()
        if include_self and self not in layers_set:
            layers_set.add(self)
            yield prefix, self
J
Jiabin Yang 已提交
1001 1002 1003 1004
        for key, layer in self._sub_layers.items():
            if layer is None:
                continue
            layer_prefix = prefix + ('.' if prefix else '') + key
1005 1006 1007
            for p, l in layer.named_sublayers(
                prefix=layer_prefix, include_self=True, layers_set=layers_set
            ):
J
Jiabin Yang 已提交
1008
                yield p, l
1009

1010
    def register_buffer(self, name, tensor, persistable=True):
1011
        """
1012
        Registers a tensor as buffer into the layer.
1013

1014
        `buffer` is a non-trainable tensor and will not be updated by optimizer,
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
        but is necessary for evaluation and inference. For example, the mean and variance in BatchNorm layers.
        The registered buffer is persistable by default, and will be saved into
        `state_dict` alongside parameters. If set persistable=False, it registers
        a non-persistable buffer, so that it will not be a part of `state_dict` .

        Buffers can be accessed as attributes using given names.

        Parameters:
            name (string): name of the buffer. The buffer can be accessed
                from this layer using the given name
1025
            tensor (Tensor): the tensor to be registered as buffer.
1026 1027 1028 1029 1030
            persistable (bool): whether the buffer is part of this layer's
                state_dict.

        Returns:
            None
1031

1032 1033 1034 1035
        Examples:
            .. code-block:: python

                import numpy as np
1036
                import paddle
1037

1038 1039 1040 1041 1042 1043 1044
                linear = paddle.nn.Linear(10, 3)
                value = np.array([0]).astype("float32")
                buffer = paddle.to_tensor(value)
                linear.register_buffer("buf_name", buffer, persistable=True)

                # get the buffer by attribute.
                print(linear.buf_name)
1045 1046 1047 1048

        """

        if '_buffers' not in self.__dict__:
1049
            raise ValueError("super().__init__() should be called first")
1050
        elif not isinstance(name, str):
1051
            raise TypeError(
1052 1053 1054 1055
                "The name of buffer should be a string, but received {}.".format(
                    type(name).__name__
                )
            )
1056
        elif '.' in name:
1057 1058 1059
            raise KeyError(
                "The name of buffer can not contain `.`, "
                "because when you access the newly added buffer in the "
1060 1061
                "form of `self.**.**`, it will cause AttributeError."
            )
1062 1063 1064
        elif name == '':
            raise KeyError("The name of buffer can not be empty.")
        elif hasattr(self, name) and name not in self._buffers:
1065
            raise KeyError(f"attribute '{name}' already exists.")
W
wanghuancoder 已提交
1066
        elif tensor is not None and not (type(tensor) == core.eager.Tensor):
1067
            raise TypeError(
1068 1069 1070 1071
                "The registered buffer should be a Paddle.Tensor, but received {}.".format(
                    type(tensor).__name__
                )
            )
1072
        else:
1073
            self._buffers[name] = tensor
1074 1075 1076 1077 1078 1079 1080
            if persistable:
                self._non_persistable_buffer_names_set.discard(name)
            else:
                self._non_persistable_buffer_names_set.add(name)

    def buffers(self, include_sublayers=True):
        """
U
ustiniankw 已提交
1081

1082 1083 1084 1085 1086 1087
        Returns a list of all buffers from current layer and its sub-layers.

        Parameters:
            include_sublayers(bool, optional): Whether include the buffers of sublayers. If True, also include the buffers from sublayers. Default: True

        Returns:
U
ustiniankw 已提交
1088
            list of Tensor, a list of buffers.
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102

        Examples:
            .. code-block:: python

                import numpy as np
                import paddle

                linear = paddle.nn.Linear(10, 3)
                value = np.array([0]).astype("float32")
                buffer = paddle.to_tensor(value)
                linear.register_buffer("buf_name", buffer, persistable=True)

                print(linear.buffers())     # == print([linear.buf_name])

1103 1104
        """
        ret = [
1105 1106 1107 1108
            buffer
            for _, buffer in self.named_buffers(
                include_sublayers=include_sublayers
            )
1109 1110 1111 1112 1113
        ]
        return ret

    def named_buffers(self, prefix='', include_sublayers=True):
        """
1114
        Returns an iterator over all buffers in the Layer, yielding tuple of name and Tensor.
1115 1116 1117 1118 1119 1120 1121

        Parameters:
            prefix(str, optional): Prefix to prepend to all buffer names. Default: ''.
            include_sublayers(bool, optional): Whether include the buffers of sublayers.
                If True, also include the named buffers from sublayers. Default: True.

        Yields:
1122
            (string, Tensor): Tuple of name and tensor
1123 1124 1125 1126 1127

        Examples:
            .. code-block:: python

                import numpy as np
1128
                import paddle
1129

1130 1131 1132 1133
                fc1 = paddle.nn.Linear(10, 3)
                buffer1 = paddle.to_tensor(np.array([0]).astype("float32"))
                # register a tensor as buffer by specific `persistable`
                fc1.register_buffer("buf_name_1", buffer1, persistable=True)
1134

1135 1136 1137 1138 1139
                fc2 = paddle.nn.Linear(3, 10)
                buffer2 = paddle.to_tensor(np.array([1]).astype("float32"))
                # register a buffer by assigning an attribute with Tensor.
                # The `persistable` can only be False by this way.
                fc2.buf_name_2 = buffer2
1140

1141
                model = paddle.nn.Sequential(fc1, fc2)
1142

1143 1144 1145
                # get all named buffers
                for name, buffer in model.named_buffers():
                    print(name, buffer)
1146 1147 1148

        """
        buffers_set = set()
1149 1150 1151 1152 1153
        named_sublayers = (
            self.named_sublayers(prefix=prefix, include_self=True)
            if include_sublayers
            else zip([prefix], [self])
        )
1154 1155 1156 1157 1158 1159 1160 1161 1162
        for layer_prefix, sublayer in named_sublayers:
            buffers = sublayer._buffers.items()
            for key, buffer in buffers:
                if buffer is None or buffer in buffers_set:
                    continue
                buffers_set.add(buffer)
                name = layer_prefix + ('.' if layer_prefix else '') + key
                yield name, buffer

X
Xin Pan 已提交
1163
    def clear_gradients(self):
1164 1165
        """
        Clear the gradients of all parameters for this layer.
1166

1167 1168
        Returns:
            None
1169

1170 1171 1172
        Examples:
            .. code-block:: python

1173
                import paddle
1174 1175
                import numpy as np

1176 1177 1178 1179 1180 1181 1182 1183 1184
                value = np.arange(26).reshape(2, 13).astype("float32")
                a = paddle.to_tensor(value)
                linear = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01,
                                            parameters=linear.parameters())
                out = linear(a)
                out.backward()
                adam.step()
                linear.clear_gradients()
1185 1186

        """
X
Xin Pan 已提交
1187
        for p in self.parameters():
1188 1189
            if p.trainable:
                p.clear_gradient()
X
Xin Pan 已提交
1190

1191
    def _build_once(self, *args, **kwargs):
1192 1193
        pass

1194
    def _dygraph_call_func(self, *inputs, **kwargs):
Q
qizhaoaoe 已提交
1195 1196
        from paddle.distributed import parallel_helper

1197 1198 1199 1200
        for forward_pre_hook in self._forward_pre_hooks.values():
            hook_result = forward_pre_hook(self, inputs)
            if hook_result is not None:
                if not isinstance(hook_result, tuple):
1201
                    hook_result = (hook_result,)
1202 1203 1204 1205 1206 1207 1208 1209 1210
                inputs = hook_result

        if not self._built:
            with program_desc_tracing_guard(False):
                self._build_once(*inputs, **kwargs)

                # TODO(liuyuhui) Only xpu broadcast parameters here.
                # The other device is to call _sync_params_buffers in DataParallel
                # to realize the parameter synchronization among multiply cards.
1211 1212 1213 1214
                if (
                    parallel_helper._is_data_parallel_mode()
                    and paddle.is_compiled_with_xpu()
                ):
1215
                    parallel_helper._broadcast_parameters(
1216 1217
                        self._parameters.values()
                    )
1218 1219 1220

            self._built = True

1221
        if in_profiler_mode():
1222 1223 1224
            with profiler.RecordEvent(
                self.__class__.__name__, profiler.TracerEventType.Forward
            ):
1225 1226
                outputs = self.forward(*inputs, **kwargs)
        else:
C
chenjian 已提交
1227
            outputs = self.forward(*inputs, **kwargs)
1228 1229 1230 1231 1232 1233 1234 1235

        for forward_post_hook in self._forward_post_hooks.values():
            hook_result = forward_post_hook(self, inputs, outputs)
            if hook_result is not None:
                outputs = hook_result

        return outputs

1236
    def __call__(self, *inputs, **kwargs):
1237 1238 1239 1240 1241 1242 1243 1244
        if (
            (not in_declarative_mode())
            and (not self._forward_pre_hooks)
            and (not self._forward_post_hooks)
            and (not self._built)
            and in_dygraph_mode()
            and (not in_profiler_mode())
        ):
1245 1246 1247 1248
            self._build_once(*inputs, **kwargs)
            return self.forward(*inputs, **kwargs)
        else:
            return self._dygraph_call_func(*inputs, **kwargs)
M
minqiyang 已提交
1249

1250
    def forward(self, *inputs, **kwargs):
1251 1252 1253 1254 1255 1256 1257 1258
        """
        Defines the computation performed at every call.
        Should be overridden by all subclasses.

        Parameters:
            *inputs(tuple): unpacked tuple arguments
            **kwargs(dict): unpacked dict arguments
        """
1259
        raise NotImplementedError
X
Xin Pan 已提交
1260 1261 1262 1263

    def backward(self, *inputs):
        raise ValueError("Layer shouldn't implement backward")

X
Xin Pan 已提交
1264
    def add_sublayer(self, name, sublayer):
U
ustiniankw 已提交
1265 1266 1267
        """

        Adds a sub Layer instance.
X
Xin Pan 已提交
1268

1269
        Added sublayer can be accessed by self.name
X
Xin Pan 已提交
1270

1271 1272 1273
        Parameters:
            name(str): name of this sublayer.
            sublayer(Layer): an instance of Layer.
X
Xin Pan 已提交
1274
        Returns:
U
ustiniankw 已提交
1275
            Layer, the sublayer passed in.
1276

1277 1278 1279 1280 1281 1282 1283
        Examples:
            .. code-block:: python

                import paddle

                class MySequential(paddle.nn.Layer):
                    def __init__(self, *layers):
1284
                        super().__init__()
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
                        if len(layers) > 0 and isinstance(layers[0], tuple):
                            for name, layer in layers:
                                self.add_sublayer(name, layer)
                        else:
                            for idx, layer in enumerate(layers):
                                self.add_sublayer(str(idx), layer)

                    def forward(self, input):
                        for layer in self._sub_layers.values():
                            input = layer(input)
                        return input

                fc1 = paddle.nn.Linear(10, 3)
                fc2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = MySequential(fc1, fc2)
                for prefix, layer in model.named_sublayers():
                    print(prefix, layer)
U
ustiniankw 已提交
1302

X
Xin Pan 已提交
1303
        """
1304
        assert isinstance(sublayer, Layer) or sublayer is None
1305

X
Xin Pan 已提交
1306 1307 1308 1309 1310 1311
        self._sub_layers[name] = sublayer
        return sublayer

    def add_parameter(self, name, parameter):
        """Adds a Parameter instance.

1312
        Added parameter can be accessed by self.name
X
Xin Pan 已提交
1313

1314 1315 1316
        Parameters:
            name(str): name of this sublayer.
            parameter(Parameter): an instance of Parameter.
X
Xin Pan 已提交
1317
        Returns:
U
ustiniankw 已提交
1318
            Parameter, the parameter passed in.
1319 1320 1321 1322 1323 1324 1325
        Examples:
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
1326
                        super().__init__()
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
                        self._linear = paddle.nn.Linear(1, 1)
                        w_tmp = self.create_parameter([1,1])
                        self.add_parameter("w_tmp", w_tmp)

                    def forward(self, input):
                        return self._linear(input)

                mylayer = MyLayer()
                for name, param in mylayer.named_parameters():
                    print(name, param)      # will print w_tmp,_linear.weight,_linear.bias

X
Xin Pan 已提交
1338
        """
1339
        if '_parameters' not in self.__dict__:
1340
            raise RuntimeError("super().__init__() should be called firstly.")
1341
        elif not isinstance(name, str):
1342
            raise TypeError(
1343 1344 1345 1346
                "The name of parameter should be a string, but received {}.".format(
                    type(name).__name__
                )
            )
1347 1348 1349 1350
        elif '.' in name:
            raise KeyError(
                "The name of parameter can not contain `.`, "
                "because when you access the newly added parameter in the "
1351 1352
                "form of `self.**.**`, it will cause AttributeError."
            )
1353 1354 1355
        elif name == '':
            raise KeyError("The name of parameter can not be empty.")
        elif hasattr(self, name) and name not in self._parameters:
1356
            raise KeyError(f"The parameter '{name}' already exists.")
1357 1358 1359
        elif parameter is not None and not isinstance(
            parameter, framework.Parameter
        ):
1360
            raise TypeError(
1361 1362 1363 1364
                "The parameter to be added should be a Parameter, but received {}.".format(
                    type(parameter).__name__
                )
            )
1365 1366 1367
        else:
            if parameter is None:
                self._parameters[name] = None
1368

1369
            if len(self._loaddict_holder) > 0:
1370 1371 1372 1373 1374
                assert (
                    parameter.name in self._loaddict_holder
                ), "Parameter not found, Can't not find [ {} ] in state_dict".format(
                    parameter.name
                )
H
hong 已提交
1375

1376
                parameter.set_value(self._loaddict_holder[parameter.name])
1377

1378
            self._parameters[name] = parameter
X
Xin Pan 已提交
1379 1380
        return parameter

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
    def _set_op_attrs(self, attrs):
        """
        Add customized attribute while append_op. In case of quantization, we want to save
        some attributes into op_desc while exporting inference model by @to_static.

        Arguments:
            attrs(dict): customized attributes that will be added into op_descs.

        NOTE: The interface is only exposed to developers.
        """

        def is_already_registered(is_pre_hook):
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
            layers_hooks = (
                self._forward_pre_hooks
                if is_pre_hook
                else self._forward_post_hooks
            )
            candidate_hook = (
                record_program_ops_pre_hook
                if is_pre_hook
                else set_op_customized_attrs_post_hook
            )
1403 1404 1405 1406

            already_registed = False
            if layers_hooks:
                last_key = next(reversed(layers_hooks))
1407
                already_registed = layers_hooks[last_key] == candidate_hook
1408 1409 1410 1411

            return already_registed

        if not isinstance(attrs, dict):
1412 1413
            raise TypeError(
                "attrs should be type(dict), but received {}".format(
1414 1415 1416
                    type(attrs).__name__
                )
            )
1417 1418 1419 1420 1421 1422

        # NOTE: Overwrite behavior for same key.
        self._customized_attrs.update(attrs)

        if not is_already_registered(is_pre_hook=True):
            pre_hook_helper = self.register_forward_pre_hook(
1423 1424
                record_program_ops_pre_hook
            )
1425 1426 1427 1428 1429 1430
            assert len(self._op_recorder.hooks) == 0
            self._op_recorder.hooks = [pre_hook_helper]

        # manually register post_hook to ensure it is inserted into the head.
        if not is_already_registered(is_pre_hook=False):
            post_hook_helper = self.register_forward_post_hook(
1431 1432
                set_op_customized_attrs_post_hook
            )
1433
            if len(self._forward_post_hooks) > 1:
1434 1435 1436
                self._forward_post_hooks.move_to_end(
                    post_hook_helper._hook_id, last=False
                )
1437 1438 1439 1440 1441 1442

            assert len(self._op_recorder.hooks) == 1

            # hooks that need to be removed once we finish executing them.
            self._op_recorder.hooks.append(post_hook_helper)

1443 1444 1445 1446 1447 1448
    def __getstate__(self):
        return self.__dict__

    def __setstate__(self, state):
        self.__dict__.update(state)

X
Xin Pan 已提交
1449
    def __getattr__(self, name):
1450 1451 1452
        if '_parameters' in self.__dict__:
            _parameters = self.__dict__['_parameters']
            if name in self._parameters:
1453
                if in_declarative_mode():
1454
                    return _convert_into_variable(self._parameters[name])
1455 1456 1457 1458 1459 1460 1461 1462
                return self._parameters[name]
        if '_sub_layers' in self.__dict__:
            _sub_layers = self.__dict__['_sub_layers']
            if name in self._sub_layers:
                return self._sub_layers[name]
        if '_buffers' in self.__dict__:
            _buffers = self.__dict__['_buffers']
            if name in _buffers:
1463
                if in_declarative_mode():
1464
                    return _convert_into_variable(_buffers[name])
1465 1466
                return _buffers[name]
        return object.__getattribute__(self, name)
X
Xin Pan 已提交
1467 1468

    def __setattr__(self, name, value):
S
songyouwei 已提交
1469 1470 1471 1472 1473
        def _remove_if_exist(*dicts):
            for d in dicts:
                if name in d:
                    del d[name]

1474 1475
        if isinstance(getattr(type(self), name, None), property):
            object.__setattr__(self, name, value)
1476
        params = self.__dict__.get('_parameters', None)
X
Xin Pan 已提交
1477 1478
        if isinstance(value, framework.Parameter):
            if params is None:
1479
                raise ValueError("super().__init__() should be called first")
H
hong 已提交
1480
            if len(self._loaddict_holder) > 0:
1481 1482 1483 1484 1485
                assert (
                    value.name in self._loaddict_holder
                ), "Parameter not found, Can't not find [ {} ] in state_dict".format(
                    value.name
                )
H
hong 已提交
1486 1487 1488

                value.set_value(self._loaddict_holder[value.name])

1489
            _remove_if_exist(self.__dict__, self._buffers, self._sub_layers)
1490
            params[name] = value
1491 1492 1493
        elif params is not None and name in params:
            if value is not None:
                raise TypeError(
1494 1495 1496 1497
                    "assignment to parameter '{}' should be of type Parameter or None, but got '{}'".format(
                        name, type(value).__name__
                    )
                )
1498
            params[name] = None
X
Xin Pan 已提交
1499
        else:
1500
            layers = self.__dict__.get('_sub_layers', None)
J
Jiabin Yang 已提交
1501
            if isinstance(value, Layer):
1502 1503
                if layers is None:
                    raise ValueError(
1504
                        "super().__init__() should be called first"
1505 1506
                    )

1507
                _remove_if_exist(self.__dict__, self._parameters, self._buffers)
1508 1509 1510 1511
                layers[name] = value
            elif layers is not None and name in layers:
                if value is not None:
                    raise TypeError(
1512 1513 1514 1515
                        "assignment to sublayer '{}' should be of type Layer or None, but got '{}'".format(
                            name, type(value).__name__
                        )
                    )
1516 1517
                layers[name] = None
            else:
1518
                _buffers = self.__dict__.get('_buffers', None)
W
wanghuancoder 已提交
1519
                if isinstance(value, core.eager.Tensor):
1520 1521
                    if _buffers is None:
                        raise ValueError(
1522
                            "super().__init__() should be called first"
1523
                        )
1524 1525 1526
                    _remove_if_exist(
                        self.__dict__, self._parameters, self._sub_layers
                    )
1527 1528 1529 1530
                    # Set persistable=False by default. Only `register_buffer` can
                    # add a persistable buffer.
                    if name not in self._buffers:
                        self._non_persistable_buffer_names_set.add(name)
1531 1532
                    if not value.name:
                        value.name = unique_name.generate('_buffers_' + name)
1533 1534
                    _buffers[name] = value
                elif _buffers is not None and name in _buffers:
1535
                    # Note(Aurelius84): In Dy2stat, the value of the Buffer may be modified in
1536 1537 1538 1539
                    # decorated function, such as `self.buffer = new_tensor`. So we update its
                    # value via `assign`.
                    if type(value) == framework.Variable:
                        from paddle import assign
1540

1541 1542 1543 1544
                        # Note(zhhsplendid): the condition below happens in PaddleGan model,
                        # but should all non-Variable _buffers[name] be re-assign? We
                        # should consider it in the future. I current wrote this as
                        # conservative code.
1545 1546 1547
                        if in_declarative_mode() and _buffers[name] is None:
                            raise RuntimeError(
                                'In Dy2stat, self.{0} is a buffer and self.{0} is '
1548 1549 1550 1551 1552 1553
                                'not allowed to be set to Variable when self.{0} is None.'.format(
                                    name
                                )
                            )
                        elif (
                            _buffers[name] is None
W
wanghuancoder 已提交
1554
                            or type(getattr(self, name)) == core.eager.Tensor
1555
                        ):
1556 1557
                            _buffers[name] = assign(value)
                        else:
1558
                            assign(value, getattr(self, name))
1559
                    elif value is not None:
1560
                        raise TypeError(
W
wanghuancoder 已提交
1561
                            "assignment to buffers '{}' should be of type core.Tensor or None, but got '{}'".format(
1562 1563 1564
                                name, type(value).__name__
                            )
                        )
1565 1566 1567 1568
                    else:
                        # Assigning None will remove the buffer, but if re-assign a new varBase to it,
                        # it will be remarked as a buffer with same `persistable` attribute.
                        _buffers[name] = None
1569 1570
                else:
                    object.__setattr__(self, name, value)
X
Xin Pan 已提交
1571 1572 1573 1574 1575 1576

    def __delattr__(self, name):
        if name in self._parameters:
            del self._parameters[name]
        elif name in self._sub_layers:
            del self._sub_layers[name]
1577 1578 1579
        elif name in self._buffers:
            del self._buffers[name]
            self._non_persistable_buffer_names_set.discard(name)
X
Xin Pan 已提交
1580 1581 1582
        else:
            object.__delattr__(self, name)

1583 1584
    def __dir__(self):
        """
W
wanghuancoder 已提交
1585
        Return a list. Get all parameters, buffers(non-parameter tensors), sublayers, method and attr of Layer.
1586 1587

        Examples:
1588 1589 1590
            .. code-block:: python
                import paddle
                import numpy as np
1591

1592 1593
                class Mylayer(paddle.nn.Layer):
                    def __init__(self):
1594
                        super().__init__()
1595 1596
                        self.linear1 = paddle.nn.Linear(10, 10)
                        self.linear2 = paddle.nn.Linear(5, 5)
C
cnn 已提交
1597
                        self.conv2d = paddle.nn.Conv2D(3, 2, 3)
1598 1599
                        self.embedding = paddle.nn.Embedding(128, 16)
                        self.h_0 = paddle.to_tensor(np.zeros([10, 10]).astype('float32'))
1600

1601 1602 1603 1604
                mylayer = Mylayer()
                print(dir(mylayer))
                # only parts are shown, because of list have too much content
                # ['__call__', '__class__',  ... , 'conv2d', 'embedding', 'h_0', 'linear1', 'linear2', ... , 'sublayers', 'train']
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616

        """
        method = dir(self.__class__)
        attrs = list(self.__dict__.keys())
        parameters = list(self._parameters.keys())
        sublayers = list(self._sub_layers.keys())
        buffers = list(self._buffers.keys())

        keys = method + attrs + parameters + sublayers + buffers

        return keys

1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
    def extra_repr(self):
        """
        Extra representation of this layer, you can have custom implementation
        of your own layer.
        """
        return ''

    def __repr__(self):
        extra_lines = []
        extra_repr = self.extra_repr()
        extra_lines = extra_repr.split('\n')
        sublayer_lines = []
        for name, layer in self._sub_layers.items():
            sublayer_str = repr(layer)
            sublayer_str = _addindent(sublayer_str, 2)
            sublayer_lines.append('(' + name + '): ' + sublayer_str)

        final_str = self.__class__.__name__ + '('
        if extra_lines:
            if len(extra_lines) > 1:
                final_str += '\n  ' + '\n  '.join(extra_lines) + '\n'
            elif len(extra_lines) == 1:
                final_str += extra_lines[0]
        if sublayer_lines:
            final_str += '\n  ' + '\n  '.join(sublayer_lines) + '\n'

        final_str += ')'
        return final_str

1646 1647 1648 1649 1650
    def register_state_dict_hook(self, hook):
        hook_remove_helper = HookRemoveHelper(self._state_dict_hooks)
        self._state_dict_hooks[hook_remove_helper._hook_id] = hook
        return hook_remove_helper

1651 1652 1653 1654 1655 1656
    def _obtain_parameters_buffers(
        self,
        destination=None,
        include_sublayers=True,
        structured_name_prefix="",
    ):
S
ShenLiang 已提交
1657
        """
1658
        The difference from state_dict() is that state_dict_hook will not be called,
S
ShenLiang 已提交
1659 1660 1661 1662 1663 1664 1665 1666
        but the original types of parameters and buffers will be maintained.
        """
        if destination is None:
            destination = collections.OrderedDict()
        for name, data in self._parameters.items():
            if data is not None:
                destination[structured_name_prefix + name] = data
        for name, buffer in self._buffers.items():
1667 1668 1669 1670
            if (
                buffer is not None
                and name not in self._non_persistable_buffer_names_set
            ):
S
ShenLiang 已提交
1671 1672 1673 1674 1675 1676 1677 1678
                destination[structured_name_prefix + name] = buffer

        if include_sublayers:
            for layer_name, layer_item in self._sub_layers.items():
                if layer_item is not None:
                    destination_temp = destination.copy()
                    destination_temp.update(
                        layer_item._obtain_parameters_buffers(
1679 1680 1681 1682 1683
                            destination_temp,
                            include_sublayers,
                            structured_name_prefix + layer_name + ".",
                        )
                    )
S
ShenLiang 已提交
1684 1685 1686
                    destination = destination_temp
        return destination

1687 1688 1689 1690 1691 1692 1693 1694
    def _state_dict_impl(
        self,
        destination=None,
        include_sublayers=True,
        structured_name_prefix="",
        include_non_persistable_buffer=False,
        use_hook=True,
    ):
1695 1696 1697 1698 1699 1700 1701
        """
        Get all parameters and persistable buffers of current layer and its sub-layers. And set them into a dict

        Parameters:
            destination(dict, optional) : If provide, all the parameters and persistable buffers will be set to this dict . Default: None
            include_sublayers(bool, optional) : If true, also include the parameters and persistable buffers from sublayers. Default: True
            include_non_persistable_buffer(bool, optional): If true, include non persistable buffers of current layer and its sub-layers, it is used in pure fp16 and jit.save. Default: False
1702
            use_hook(bool, optional) : If true, the operations contained in _state_dict_hooks will be appended to the destination. Default: True
1703 1704 1705 1706 1707 1708 1709 1710 1711
        """

        if destination is None:
            destination = collections.OrderedDict()
        for name, data in self._parameters.items():
            if data is not None:
                destination[structured_name_prefix + name] = data
        for name, buffer in self._buffers.items():
            if not include_non_persistable_buffer:
1712 1713 1714 1715
                if (
                    buffer is not None
                    and name not in self._non_persistable_buffer_names_set
                ):
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
                    destination[structured_name_prefix + name] = buffer
            else:
                if buffer is not None:
                    destination[structured_name_prefix + name] = buffer

        if include_sublayers:
            for layer_name, layer_item in self._sub_layers.items():
                if layer_item is not None:
                    destination_temp = destination.copy()
                    destination_temp.update(
                        layer_item._state_dict_impl(
1727 1728
                            destination_temp,
                            include_sublayers,
1729
                            structured_name_prefix + layer_name + ".",
1730 1731 1732 1733
                            include_non_persistable_buffer,
                            use_hook,
                        )
                    )
1734
                    destination = destination_temp
1735 1736 1737 1738 1739
        if use_hook:
            for state_dict_hook in self._state_dict_hooks.values():
                hook_result = state_dict_hook(destination)
                if hook_result is not None:
                    destination = hook_result
1740 1741 1742

        return destination

1743 1744 1745 1746 1747 1748 1749
    def to_static_state_dict(
        self,
        destination=None,
        include_sublayers=True,
        structured_name_prefix="",
        use_hook=True,
    ):
1750
        '''
U
ustiniankw 已提交
1751

1752 1753 1754 1755 1756
        Get all parameters and buffers of current layer and its sub-layers. And set them into a dict

        Parameters:
            destination(dict, optional) : If provide, all the parameters and persistable buffers will be set to this dict . Default: None
            include_sublayers(bool, optional) : If true, also include the parameters and persistable buffers from sublayers. Default: True
1757
            use_hook(bool, optional) : If true, the operations contained in _state_dict_hooks will be appended to the destination. Default: True
1758

1759
        Retruns:
U
ustiniankw 已提交
1760
            dict, a dict contains all the parameters and persistable buffers.
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776

        Examples:
            .. code-block:: python

                import paddle

                emb = paddle.nn.Embedding(10, 10)

                state_dict = emb.to_static_state_dict()
                paddle.save( state_dict, "paddle_dy.pdparams")

        '''
        return self._state_dict_impl(
            destination=destination,
            include_sublayers=include_sublayers,
            structured_name_prefix=structured_name_prefix,
1777
            include_non_persistable_buffer=True,
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
            use_hook=use_hook,
        )

    def state_dict(
        self,
        destination=None,
        include_sublayers=True,
        structured_name_prefix="",
        use_hook=True,
    ):
H
hong 已提交
1788
        '''
1789
        Get all parameters and persistable buffers of current layer and its sub-layers. And set them into a dict
H
hong 已提交
1790

1791
        Parameters:
1792 1793
            destination(dict, optional) : If provide, all the parameters and persistable buffers will be set to this dict . Default: None
            include_sublayers(bool, optional) : If true, also include the parameters and persistable buffers from sublayers. Default: True
1794
            use_hook(bool, optional) : If true, the operations contained in _state_dict_hooks will be appended to the destination. Default: True
1795

H
hong 已提交
1796
        Retruns:
1797
            dict: a dict contains all the parameters and persistable buffers.
H
hong 已提交
1798 1799

        Examples:
1800 1801
            .. code-block:: python

1802
                import paddle
H
hong 已提交
1803

1804 1805 1806 1807
                emb = paddle.nn.Embedding(10, 10)

                state_dict = emb.state_dict()
                paddle.save( state_dict, "paddle_dy.pdparams")
H
hong 已提交
1808 1809

        '''
1810 1811 1812 1813
        return self._state_dict_impl(
            destination=destination,
            include_sublayers=include_sublayers,
            structured_name_prefix=structured_name_prefix,
1814
            include_non_persistable_buffer=False,
1815 1816
            use_hook=use_hook,
        )
1817

1818
    @framework.deprecate_stat_dict
J
Jiabin Yang 已提交
1819
    def set_state_dict(self, state_dict, use_structured_name=True):
H
hong 已提交
1820
        '''
1821
        Set parameters and persistable buffers from state_dict. All the parameters and buffers will be reset by the tensor in the state_dict
H
hong 已提交
1822

1823
        Parameters:
1824
            state_dict(dict) : Dict contains all the parameters and persistable buffers.
1825
            use_structured_name(bool, optional) : If true, use structured name as key, otherwise, use parameter or buffer name as key.
H
hong 已提交
1826
                                                  Default: True
H
hong 已提交
1827
        Returns:
1828 1829
            missing_keys(list):A list of str containing the missing keys
            unexpected_keys(list):A list of str containing the unexpected keys
H
hong 已提交
1830 1831

        Examples:
1832 1833
            .. code-block:: python

1834
                import paddle
1835

1836
                emb = paddle.nn.Embedding(10, 10)
H
hong 已提交
1837

1838
                state_dict = emb.state_dict()
1839 1840
                paddle.save(state_dict, "paddle_dy.pdparams")
                para_state_dict = paddle.load("paddle_dy.pdparams")
1841
                emb.set_state_dict(para_state_dict)
H
hong 已提交
1842

H
hong 已提交
1843
        '''
1844 1845 1846
        missing_keys = []
        match_keys = set()
        unexpected_keys = []
H
hong 已提交
1847

1848 1849 1850
        def _check_match(key, param):
            state = state_dict.get(key, None)
            if state is None:
1851
                missing_keys.append(key)
1852
                raise ValueError(f"{key} is not found in the provided dict.")
1853
            if isinstance(state, (dict, list)):
1854
                if len(state) != len(param):
1855
                    missing_keys.append(key)
1856 1857 1858 1859 1860 1861
                    raise ValueError(
                        "{} receieves the length of {}, "
                        "but the expected shape is {}".format(
                            key, len(state), len(param)
                        )
                    )
S
Steffy-zxf 已提交
1862
                else:
1863
                    match_keys.add(key)
S
Steffy-zxf 已提交
1864 1865
                    return param, state
            else:
1866 1867 1868 1869 1870
                state_shape = (
                    state.shape()
                    if inspect.ismethod(state.shape)
                    else state.shape
                )
S
Steffy-zxf 已提交
1871 1872

                if list(state_shape) != list(param.shape):
1873
                    missing_keys.append(key)
S
Steffy-zxf 已提交
1874
                    raise ValueError(
1875 1876 1877 1878
                        "{} receives a shape {}, but the expected shape is {}.".format(
                            key, list(state_shape), list(param.shape)
                        )
                    )
1879
                match_keys.add(key)
S
Steffy-zxf 已提交
1880
                return param, state
1881 1882

        matched_param_state = []
S
sneaxiy 已提交
1883
        for key, param in self._state_dict_impl(use_hook=False).items():
1884 1885 1886 1887 1888
            key_name = key if use_structured_name else param.name
            try:
                match_res = _check_match(key_name, param)
                matched_param_state.append(match_res)
            except ValueError as err:
1889
                warnings.warn(f"Skip loading for {key}. " + str(err))
1890 1891 1892
        for key in state_dict.keys():
            if key not in match_keys:
                unexpected_keys.append(key)
姜永久 已提交
1893
        if in_dygraph_mode():
1894 1895 1896
            for param, state in matched_param_state:
                param.set_value(state)
        else:
H
hong 已提交
1897

1898 1899 1900 1901 1902 1903 1904
            def _set_var(var, ndarray):
                t = global_scope().find_var(var.name).get_tensor()
                p = t._place()
                if p.is_cpu_place():
                    place = core.CPUPlace()
                elif p.is_cuda_pinned_place():
                    place = core.CUDAPinnedPlace()
1905 1906 1907 1908
                elif p.is_xpu_place():
                    p = core.Place()
                    p.set_place(t._place())
                    place = core.XPUPlace(p.xpu_device_id())
1909 1910 1911 1912 1913 1914
                else:
                    p = core.Place()
                    p.set_place(t._place())
                    place = core.CUDAPlace(p.gpu_device_id())
                t.set(ndarray, place)

1915 1916 1917 1918 1919
            try:
                executor = Executor(_get_device())._default_executor
                # restore parameter states
                core._create_loaded_parameter(
                    [param for param, state in matched_param_state],
1920 1921 1922
                    global_scope(),
                    executor,
                )
1923 1924 1925 1926 1927 1928
                for param, state in matched_param_state:
                    _set_var(param, state)
            except ValueError as e:
                raise ValueError(
                    "This error might happens in dy2static, while calling 'set_state_dict' dynamicly in 'forward', which is not supported. If you only need call 'set_state_dict' once, move it to '__init__'."
                )
1929

1930 1931
        return missing_keys, unexpected_keys

C
chentianyu03 已提交
1932 1933 1934 1935 1936
    def to(self, device=None, dtype=None, blocking=None):
        '''
        Cast the parameters and buffers of Layer by the give device, dtype and blocking.

        Parameters:
1937 1938 1939 1940
            device(str|paddle.CPUPlace()|paddle.CUDAPlace()|paddle.CUDAPinnedPlace()|paddle.XPUPlace()|None, optional): The device of the Layer which want to be stored.
            If None, the device is the same with the original Tensor. If device is string, it can be ``cpu``, ``gpu:x`` and ``xpu:x``, where ``x`` is the
            index of the GPUs or XPUs. Default: None.

1941
            dtype(str|numpy.dtype|paddle.dtype|None, optional): The type of the data. If None, the dtype is the same with the original Tensor. Default: None.
C
chentianyu03 已提交
1942

1943
            blocking(bool|None, optional): If False and the source is in pinned memory, the copy will be
C
chentianyu03 已提交
1944
              asynchronous with respect to the host. Otherwise, the argument has no effect. If None, the blocking is set True. Default: None.
1945

C
chentianyu03 已提交
1946
        Returns:
1947
            self
C
chentianyu03 已提交
1948 1949 1950 1951

        Examples:
            .. code-block:: python

1952
                # required: skip
C
chentianyu03 已提交
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
                import paddle

                linear=paddle.nn.Linear(2, 2)
                linear.weight
                #Parameter containing:
                #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #       [[-0.32770029,  0.38653070],
                #        [ 0.46030545,  0.08158520]])

                linear.to(dtype='float64')
                linear.weight
                #Tenor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=False,
                #       [[-0.32770029,  0.38653070],
                #        [ 0.46030545,  0.08158520]])

                linear.to(device='cpu')
                linear.weight
                #Tensor(shape=[2, 2], dtype=float64, place=CPUPlace, stop_gradient=False,
                #       [[-0.32770029,  0.38653070],
                #        [ 0.46030545,  0.08158520]])
                linear.to(device=paddle.CUDAPinnedPlace(), blocking=False)
                linear.weight
                #Tensor(shape=[2, 2], dtype=float64, place=CUDAPinnedPlace, stop_gradient=False,
                #       [[-0.04989364, -0.56889004],
                #        [ 0.33960250,  0.96878713]])
1978

1979
        '''
1980 1981 1982 1983 1984 1985 1986
        return self._to_impl(
            device=device,
            dtype=dtype,
            blocking=blocking,
            include_sublayers=True,
            floating_only=False,
        )
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

    def _apply(self, func, device, dtype, blocking, include_sublayers=True):
        if include_sublayers:
            for layer in self.children():
                layer._apply(func, device, dtype, blocking, include_sublayers)

        for key, param in self._parameters.items():
            if param is not None:
                with no_grad():
                    param_applied = func(param, device, dtype, blocking)

                if param.grad is not None:
                    with no_grad():
2000 2001 2002
                        grad_applied = func(
                            param._grad_ivar(), device, dtype, blocking
                        )
2003 2004

        for key, buf in self._buffers.items():
2005 2006
            if buf is not None:
                self._buffers[key] = func(buf, device, dtype, blocking)
2007

2008 2009
        self._dtype = dtype

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
    def _transform(self, t, device, dtype, blocking):
        if device is None:
            device = t.place
        if dtype is None:
            dtype = t.dtype

        if type(dtype) is not VarDesc.VarType:
            dtype = convert_np_dtype_to_dtype_(dtype)

        # 1. gpu place need to determine whether the memory is sufficient for allocation:
        if t.place.is_gpu_place():
            # for gpu, minimum memory allocation unit is 256 bytes.
            size_dtype = core.size_of_dtype(dtype)
            # Note(zhangbo): Paddle GPU minimum memory allocation unit is 256 bytes, waiting_alloc_memory will comput ‘t’ occupied memory space.
            # Coefficient 1.2 is used to avoid OOM that may occur in this critical state when the memory is just enough.
            waiting_alloc_memory = (
2026 2027
                ((np.prod(t.shape) * size_dtype) / 256 + 1) * 256 * 1.2
            )
2028 2029 2030
            gpu_memory_available = core.gpu_memory_available()
            if gpu_memory_available < waiting_alloc_memory:
                # Copy param / Tensor to cpu
2031 2032 2033
                t_used = t._copy_to(
                    paddle.CPUPlace(), blocking
                )  # k-v type will error
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
                # Release mem of t
                t.value().get_tensor()._clear()
            else:
                t_used = t
        else:
            t_used = t

        # 2. cast param / Tensor to dtype
        if dtype is not None and dtype != t_used.dtype:
            with paddle.fluid.framework._dygraph_place_guard(
2044 2045
                place=t_used.place
            ):
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
                t_casted = t_used.cast(dtype=dtype)
        else:
            t_casted = t_used

        # 3. Copy casted cpu param / Tensor to device
        if device is not None and not t_casted.place._equals(device):
            new_t = t_casted._copy_to(device, blocking)
        else:
            new_t = t_casted

        # 4. share Tensor to origin param / Tensor
        dst_tensor = t.value().get_tensor()
        src_tensor = new_t.value().get_tensor()
        dst_tensor._share_data_with(src_tensor)

        return t

2063 2064 2065 2066 2067 2068 2069 2070
    def _to_impl(
        self,
        device=None,
        dtype=None,
        blocking=None,
        include_sublayers=True,
        floating_only=False,
    ):
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
        '''
        Cast the parameters and buffers of Layer by the give device, dtype and blocking.

        Parameters:
            device(str|paddle.CPUPlace()|paddle.CUDAPlace()|paddle.CUDAPinnedPlace()|paddle.XPUPlace()|None, optional): The device of the Layer which want to be stored.
            If None, the device is the same with the original Tensor. If device is string, it can be ``cpu``, ``gpu:x`` and ``xpu:x``, where ``x`` is the
            index of the GPUs or XPUs. Default: None.

            dtype(str|numpy.dtype|paddle.dtype|None, optional): The type of the data. If None, the dtype is the same with the original Tensor. Default: None.

            blocking(bool|None, optional): If False and the source is in pinned memory, the copy will be
              asynchronous with respect to the host. Otherwise, the argument has no effect. If None, the blocking is set True. Default: None.
2083

2084 2085
            include_sublayers(bool|True, optional): If True, deal with self and all sublayers parameters and buffers, if not only deal with self parameters and buffers. Default: True.

2086 2087
            floating_only(bool|False, optional): If True, only cast all floating point parameters and buffers of Layer by the give device, dtype and blocking.

2088 2089
        Returns:
            self
C
chentianyu03 已提交
2090 2091 2092 2093

        '''

        if device is None and dtype is None and blocking is None:
2094
            return self
C
chentianyu03 已提交
2095 2096 2097 2098

        if device is not None:
            if isinstance(device, str):
                device = paddle.device._convert_to_place(device)
2099 2100 2101 2102 2103 2104 2105 2106 2107
            elif isinstance(
                device,
                (
                    core.CPUPlace,
                    core.CUDAPlace,
                    core.CUDAPinnedPlace,
                    core.XPUPlace,
                ),
            ):
C
chentianyu03 已提交
2108 2109 2110 2111
                pass
            else:
                raise ValueError(
                    "device value error, must be str, paddle.CPUPlace(), paddle.CUDAPlace(), paddle.CUDAPinnedPlace() or paddle.XPUPlace(), but the type of device is "
2112 2113
                    + type(device).__name__
                )
C
chentianyu03 已提交
2114 2115 2116 2117 2118

        if blocking is None:
            blocking = True
        else:
            assert isinstance(
2119 2120
                blocking, bool
            ), "blocking value error, must be the True, False or None"
C
chentianyu03 已提交
2121 2122

        def transform(t, device, dtype, blocking):
2123 2124 2125
            if floating_only and (not paddle.is_floating_point(t)):
                return t
            return self._transform(t, device, dtype, blocking)
C
chentianyu03 已提交
2126

2127 2128
        with warnings.catch_warnings():
            warnings.filterwarnings("ignore", category=UserWarning)
2129
            self._apply(transform, device, dtype, blocking, include_sublayers)
2130

2131
        self._dtype = dtype
2132
        return self
C
chentianyu03 已提交
2133

2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
    def _startup_program(self):
        """
        Return starup program containing initialization operations of all parameters.

        NOTE(dev): This is a very low level API and only for inner developer.
        """
        startup_program = Program()
        for param in self.parameters():
            param._create_init_op(startup_program.global_block())

        return startup_program

2146 2147 2148
    # [aliases] Compatible with old method names
    set_dict = set_state_dict
    load_dict = set_state_dict