ContextProjectionOp.cpp 14.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "ContextProjectionOp.h"
16 17 18 19 20 21
#include "paddle/math/Matrix.h"
#include "paddle/math/Vector.h"

namespace paddle {

template <>
22 23 24 25
void ContextProjectionForward<DEVICE_TYPE_CPU>(CpuMatrix* out_mat,
                                               const CpuMatrix* input_mat,
                                               const CpuMatrix* weight_mat,
                                               const CpuIVector& seq_vec,
26 27
                                               size_t context_length,
                                               int context_start,
28
                                               size_t begin_pad) {
29 30
  const int* starts = seq_vec.getData();
  const size_t num_sequences = seq_vec.getSize() - 1;
31 32
  auto w_mat = const_cast<CpuMatrix*>(weight_mat);
  auto in_mat = const_cast<CpuMatrix*>(input_mat);
33 34 35 36 37 38 39 40 41 42
  for (size_t i = 0; i < num_sequences; ++i) {
    for (size_t j = 0; j < context_length; ++j) {
      int begin = starts[i] + context_start + j;
      int end = starts[i + 1] + context_start + j;
      int dst_begin = starts[i];
      int dst_end = starts[i + 1];
      if (begin < starts[i]) {
        int64_t pad_size =
            std::min(starts[i] - begin, starts[i + 1] - starts[i]);
        MatrixPtr mat = out_mat->subMatrix(starts[i], pad_size);
43 44
        if (w_mat) {
          MatrixPtr sub = w_mat->subMatrix(j, pad_size);
45 46 47 48 49 50 51 52 53
          mat->addAtOffset(*sub, j * in_mat->getWidth());
        }
        dst_begin = starts[i] + pad_size;
        begin = starts[i];
      }
      if (end > starts[i + 1]) {
        int64_t pad_size =
            std::min(end - starts[i + 1], starts[i + 1] - starts[i]);
        MatrixPtr mat = out_mat->subMatrix(starts[i + 1] - pad_size, pad_size);
54 55
        if (w_mat) {
          MatrixPtr sub = w_mat->subMatrix(
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
              begin_pad + context_start + j - pad_size, pad_size);
          mat->addAtOffset(*sub, j * in_mat->getWidth());
        }
        dst_end = starts[i + 1] - pad_size;
        end = starts[i + 1];
      }
      if (end <= begin) continue;
      MatrixPtr src = in_mat->subMatrix(begin, end - begin);
      MatrixPtr dst = out_mat->subMatrix(dst_begin, dst_end - dst_begin);
      dst->addAtOffset(*src, j * in_mat->getWidth());
    }
  }
}

/**
 * \param inputs[0] input value.
 * \param inputs[1] input weight.
 * \param inputs[2] input sequence.
 * \param outputs[0] output value.
 */
template <DeviceType Device>
class ContextProjectionForwardFunc : public FunctionBase {
public:
  void init(const FuncConfig& config) override {
    context_length_ = config.get<size_t>("context_length");
    context_start_ = config.get<int>("context_start");
    begin_pad_ = config.get<size_t>("begin_pad");
  }

  void calc(const Arguments& inputs,
            const Arguments& outputs,
            const Arguments& inouts) override {
    CHECK_EQ(3, inputs.size());
    CHECK_EQ(1, outputs.size());
    CHECK_EQ(0, inouts.size());

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
    CHECK(outputs[0].getData() && inputs[0].getData() && inputs[2].getData());
    CHECK_EQ(outputs[0].dims_.size(), 2);
    CHECK_EQ(inputs[0].dims_.size(), 2);
    CHECK_EQ(inputs[1].dims_.size(), 2);
    CHECK_EQ(inputs[2].dims_.size(), 1);
    /// dim of output = dim of input * context_length
    CHECK_EQ(outputs[0].dims_[1], inputs[0].dims_[1] * context_length_);
    /// dim of input == dim of weight
    CHECK_EQ(inputs[0].dims_[1], inputs[1].dims_[1]);
    /// input and output has the same batch_size
    CHECK_EQ(inputs[0].dims_[0], outputs[0].dims_[0]);

    auto out_mat = std::make_shared<typename MatrixT<Device>::type>(
        outputs[0].getData(), outputs[0].dims_[0], outputs[0].dims_[1]);
    const auto in_mat = std::make_shared<typename MatrixT<Device>::type>(
        inputs[0].getData(), inputs[0].dims_[0], inputs[0].dims_[1]);
    const auto w_mat =
        !inputs[1].getData()
            ? nullptr
            : std::make_shared<typename MatrixT<Device>::type>(
                  inputs[1].getData(), inputs[1].dims_[0], inputs[1].dims_[1]);
    typename SequenceT<Device>::type seq_vec(
        inputs[2].dims_[0], reinterpret_cast<int*>(inputs[2].getData()));

    ContextProjectionForward<Device>(out_mat.get(),
                                     in_mat.get(),
                                     w_mat.get(),
                                     seq_vec,
120 121
                                     context_length_,
                                     context_start_,
122
                                     begin_pad_);
123 124 125 126 127 128 129 130
  }

private:
  size_t context_length_;
  int context_start_;
  size_t begin_pad_;
};

131
template <>
132 133 134 135
void ContextProjectionBackward<DEVICE_TYPE_CPU>(CpuMatrix* out_grad_mat,
                                                CpuMatrix* in_grad_mat,
                                                CpuMatrix* w_grad_mat,
                                                const CpuIVector& seq_vec,
136 137 138
                                                size_t context_length,
                                                int context_start,
                                                size_t begin_pad,
139 140
                                                bool is_padding,
                                                size_t total_pad) {
141
  CHECK(out_grad_mat);
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
  size_t input_dim = in_grad_mat ? in_grad_mat->getWidth()
                                 : w_grad_mat ? w_grad_mat->getWidth() : 0;
  const int* starts = seq_vec.getData();
  size_t num_sequences = seq_vec.getSize() - 1;
  for (size_t i = 0; i < num_sequences; ++i) {
    for (size_t j = 0; j < context_length; ++j) {
      int begin = starts[i] + context_start + j;
      int end = starts[i + 1] + context_start + j;
      int dst_begin = starts[i];
      int dst_end = starts[i + 1];
      if (begin < starts[i]) {
        int64_t pad_size =
            std::min(starts[i] - begin, starts[i + 1] - starts[i]);
        if (is_padding && w_grad_mat) {
          MatrixPtr mat = out_grad_mat->subMatrix(starts[i], pad_size);
          MatrixPtr sub = w_grad_mat->subMatrix(j, pad_size);
          sub->addAtOffset(*mat, j * input_dim);
        }
        dst_begin = starts[i] + pad_size;
        begin = starts[i];
      }
      if (end > starts[i + 1]) {
        int64_t pad_size =
            std::min(end - starts[i + 1], starts[i + 1] - starts[i]);
        if (is_padding && w_grad_mat) {
          MatrixPtr mat =
              out_grad_mat->subMatrix(starts[i + 1] - pad_size, pad_size);
          MatrixPtr sub = w_grad_mat->subMatrix(
              begin_pad + context_start + j - pad_size, pad_size);
          sub->addAtOffset(*mat, j * input_dim);
        }
        dst_end = starts[i + 1] - pad_size;
        end = starts[i + 1];
      }
      if (end <= begin) continue;
      if (!in_grad_mat) continue;
      MatrixPtr src = in_grad_mat->subMatrix(begin, end - begin);
      MatrixPtr dst = out_grad_mat->subMatrix(dst_begin, dst_end - dst_begin);
      src->addAtOffset(*dst, j * input_dim);
    }
  }
}

/**
186 187
 * \param inputs[0] input grad.
 * \param inputs[1] weight grad.
188 189 190 191 192 193 194 195 196 197 198
 * \param inputs[2] input sequence.
 * \param outputs[0] output value.
 */
template <DeviceType Device>
class ContextProjectionBackwardFunc : public FunctionBase {
public:
  void init(const FuncConfig& config) override {
    context_length_ = config.get<size_t>("context_length");
    context_start_ = config.get<int>("context_start");
    begin_pad_ = config.get<size_t>("begin_pad");
    is_padding_ = config.get<bool>("is_padding");
199
    total_pad_ = config.get<size_t>("total_pad");
200 201 202 203 204 205 206 207 208
  }

  void calc(const Arguments& inputs,
            const Arguments& outputs,
            const Arguments& inouts) override {
    CHECK_EQ(3, inputs.size());
    CHECK_EQ(1, outputs.size());
    CHECK_EQ(0, inouts.size());

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
    CHECK(outputs[0].getData() && inputs[2].getData());
    CHECK_EQ(outputs[0].dims_.size(), 2);
    CHECK_EQ(inputs[0].dims_.size(), 2);
    CHECK_EQ(inputs[1].dims_.size(), 2);
    CHECK_EQ(inputs[2].dims_.size(), 1);

    /// dim of input == dim of weight
    CHECK_EQ(inputs[0].dims_[1], inputs[1].dims_[1]);
    /// input and output has the same batch_size
    CHECK_EQ(inputs[0].dims_[0], outputs[0].dims_[0]);
    /// dim of output = dim of input * context_length
    CHECK_EQ(outputs[0].dims_[1], inputs[0].dims_[1] * context_length_);

    auto out_grad_mat = std::make_shared<typename MatrixT<Device>::type>(
        outputs[0].getData(), outputs[0].dims_[0], outputs[0].dims_[1]);
    auto in_grad_mat =
        !inputs[0].getData()
            ? nullptr
            : std::make_shared<typename MatrixT<Device>::type>(
                  inputs[0].getData(), inputs[0].dims_[0], inputs[0].dims_[1]);
    auto w_grad_mat =
        !inputs[1].getData()
            ? nullptr
            : std::make_shared<typename MatrixT<Device>::type>(
                  inputs[1].getData(), inputs[1].dims_[0], inputs[1].dims_[1]);
    typename SequenceT<Device>::type seq_vec(
        inputs[2].dims_[0], reinterpret_cast<int*>(inputs[2].getData()));

    ContextProjectionBackward<Device>(out_grad_mat.get(),
                                      in_grad_mat ? in_grad_mat.get() : nullptr,
                                      w_grad_mat ? w_grad_mat.get() : nullptr,
                                      seq_vec,
241 242 243
                                      context_length_,
                                      context_start_,
                                      begin_pad_,
244 245
                                      is_padding_,
                                      total_pad_);
246 247 248 249 250 251 252
  }

private:
  size_t context_length_;
  int context_start_;
  size_t begin_pad_;
  bool is_padding_;
253
  size_t total_pad_;
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
};

/**
 * \param inputs[0] input grad.
 * \param inputs[1] input sequence.
 * \param outputs[0] output grad.
 */
template <DeviceType Device>
class ContextProjectionBackwardDataFunc : public FunctionBase {
public:
  void init(const FuncConfig& config) override {
    context_length_ = config.get<size_t>("context_length");
    context_start_ = config.get<int>("context_start");
  }

  void calc(const Arguments& inputs,
            const Arguments& outputs,
            const Arguments& inouts) override {
    CHECK_EQ(2, inputs.size());
    CHECK_EQ(1, outputs.size());
    CHECK_EQ(0, inouts.size());
275 276 277 278 279 280 281
    CHECK(inputs[0].getData() && outputs[0].getData() && inputs[1].getData());
    CHECK_EQ(outputs[0].dims_.size(), 2);
    CHECK_EQ(inputs[0].dims_.size(), 2);
    CHECK_EQ(inputs[1].dims_.size(), 1);
    CHECK_EQ(outputs[0].dims_[1], inputs[0].dims_[1] * context_length_);
    /// input and output has the same batch_size
    CHECK_EQ(inputs[0].dims_[0], outputs[0].dims_[0]);
282

283 284 285 286 287 288 289 290 291 292
    auto out_grad_mat = std::make_shared<typename MatrixT<Device>::type>(
        outputs[0].getData(), outputs[0].dims_[0], outputs[0].dims_[1]);
    const auto in_grad_mat = std::make_shared<typename MatrixT<Device>::type>(
        inputs[0].getData(), inputs[0].dims_[0], inputs[0].dims_[1]);
    typename SequenceT<Device>::type seq_vec(
        inputs[1].dims_[0], reinterpret_cast<int*>(inputs[1].getData()));

    ContextProjectionBackwardData<Device>(out_grad_mat.get(),
                                          in_grad_mat.get(),
                                          seq_vec,
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
                                          context_length_,
                                          context_start_);
  }

private:
  size_t context_length_;
  int context_start_;
};

/**
 * \param inputs[0] weight grad.
 * \param inputs[1] input sequence.
 * \param outputs[0] output grad.
 */
template <DeviceType Device>
class ContextProjectionBackwardWeightFunc : public FunctionBase {
public:
  void init(const FuncConfig& config) override {
    context_length_ = config.get<size_t>("context_length");
    context_start_ = config.get<int>("context_start");
    begin_pad_ = config.get<size_t>("begin_pad");
    total_pad_ = config.get<size_t>("total_pad");
  }

  void calc(const Arguments& inputs,
            const Arguments& outputs,
            const Arguments& inouts) override {
    CHECK_EQ(2, inputs.size());
    CHECK_EQ(1, outputs.size());
    CHECK_EQ(0, inouts.size());

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
    CHECK(inputs[0].getData() && outputs[0].getData() && inputs[1].getData());
    CHECK_EQ(outputs[0].dims_.size(), 2);
    CHECK_EQ(inputs[0].dims_.size(), 2);
    CHECK_EQ(inputs[1].dims_.size(), 1);
    CHECK_EQ(outputs[0].dims_[1], inputs[0].dims_[1] * context_length_);

    auto out_grad_mat = std::make_shared<typename MatrixT<Device>::type>(
        outputs[0].getData(), outputs[0].dims_[0], outputs[0].dims_[1]);
    auto w_grad_mat = std::make_shared<typename MatrixT<Device>::type>(
        inputs[0].getData(), inputs[0].dims_[0], inputs[0].dims_[1]);
    typename SequenceT<Device>::type seq_vec(
        inputs[1].dims_[0], reinterpret_cast<int*>(inputs[1].getData()));

    ContextProjectionBackwardWeight<Device>(out_grad_mat.get(),
                                            w_grad_mat.get(),
                                            seq_vec,
340 341 342 343 344 345 346 347 348 349 350 351 352
                                            context_length_,
                                            context_start_,
                                            total_pad_,
                                            begin_pad_);
  }

private:
  size_t context_length_;
  int context_start_;
  size_t begin_pad_;
  size_t total_pad_;
};

353 354 355
REGISTER_TYPED_FUNC(ContextProjectionForward,
                    CPU,
                    ContextProjectionForwardFunc);
356 357 358
REGISTER_TYPED_FUNC(ContextProjectionBackward,
                    CPU,
                    ContextProjectionBackwardFunc);
359 360 361 362
#ifndef PADDLE_ONLY_CPU
REGISTER_TYPED_FUNC(ContextProjectionForward,
                    GPU,
                    ContextProjectionForwardFunc);
363 364 365
REGISTER_TYPED_FUNC(ContextProjectionBackward,
                    GPU,
                    ContextProjectionBackwardFunc);
366 367 368 369 370 371
REGISTER_TYPED_FUNC(ContextProjectionBackwardData,
                    GPU,
                    ContextProjectionBackwardDataFunc);
REGISTER_TYPED_FUNC(ContextProjectionBackwardWeight,
                    GPU,
                    ContextProjectionBackwardWeightFunc);
372 373
#endif
}  // namespace paddle