test_gaussian_random_op.py 12.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import os
18
import unittest
19
import numpy as np
L
Leo Chen 已提交
20
import paddle
21 22 23 24
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.op import Operator
from paddle.fluid.executor import Executor
25
from paddle.fluid.tests.unittests.op_test import OpTest, convert_uint16_to_float
26
import paddle
27 28


29
class TestGaussianRandomOp(OpTest):
D
dzhwinter 已提交
30 31
    def setUp(self):
        self.op_type = "gaussian_random"
32
        self.set_attrs()
D
dzhwinter 已提交
33
        self.inputs = {}
M
mozga-intel 已提交
34 35
        self.use_mkldnn = False
        self.attrs = {
36
            "shape": [123, 92],
37 38
            "mean": self.mean,
            "std": self.std,
M
mozga-intel 已提交
39 40 41
            "seed": 10,
            "use_mkldnn": self.use_mkldnn
        }
C
cnn 已提交
42
        paddle.seed(10)
D
dzhwinter 已提交
43

44
        self.outputs = {'Out': np.zeros((123, 92), dtype='float32')}
D
dzhwinter 已提交
45

46 47 48 49
    def set_attrs(self):
        self.mean = 1.0
        self.std = 2.

50 51
    def test_check_output(self):
        self.check_output_customized(self.verify_output)
52

53 54 55 56 57 58 59 60 61 62 63 64 65
    def verify_output(self, outs):
        self.assertEqual(outs[0].shape, (123, 92))
        hist, _ = np.histogram(outs[0], range=(-3, 5))
        hist = hist.astype("float32")
        hist /= float(outs[0].size)
        data = np.random.normal(size=(123, 92), loc=1, scale=2)
        hist2, _ = np.histogram(data, range=(-3, 5))
        hist2 = hist2.astype("float32")
        hist2 /= float(outs[0].size)
        self.assertTrue(
            np.allclose(
                hist, hist2, rtol=0, atol=0.01),
            "hist: " + str(hist) + " hist2: " + str(hist2))
66

D
dongzhihong 已提交
67

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestGaussianRandomBF16Op(OpTest):
    def setUp(self):
        self.op_type = "gaussian_random"
        self.set_attrs()
        self.inputs = {}
        self.use_mkldnn = False
        self.attrs = {
            "shape": [123, 92],
            "mean": self.mean,
            "std": self.std,
            "seed": 10,
            "dtype": paddle.fluid.core.VarDesc.VarType.BF16,
            "use_mkldnn": self.use_mkldnn
        }
        paddle.seed(10)

        self.outputs = {'Out': np.zeros((123, 92), dtype='float32')}

    def set_attrs(self):
        self.mean = 1.0
        self.std = 2.

    def test_check_output(self):
        self.check_output_with_place_customized(
            self.verify_output, place=core.CUDAPlace(0))

    def verify_output(self, outs):
        outs = convert_uint16_to_float(outs)
        self.assertEqual(outs[0].shape, (123, 92))
        hist, _ = np.histogram(outs[0], range=(-3, 5))
        hist = hist.astype("float32")
        hist /= float(outs[0].size)
        data = np.random.normal(size=(123, 92), loc=1, scale=2)
        hist2, _ = np.histogram(data, range=(-3, 5))
        hist2 = hist2.astype("float32")
        hist2 /= float(outs[0].size)
        self.assertTrue(
            np.allclose(
                hist, hist2, rtol=0, atol=0.05),
            "hist: " + str(hist) + " hist2: " + str(hist2))


112 113 114 115 116 117
class TestMeanStdAreInt(TestGaussianRandomOp):
    def set_attrs(self):
        self.mean = 1
        self.std = 2


118 119 120 121 122 123 124 125 126 127 128
# Situation 2: Attr(shape) is a list(with tensor)
class TestGaussianRandomOp_ShapeTensorList(TestGaussianRandomOp):
    def setUp(self):
        '''Test gaussian_random op with specified value
        '''
        self.op_type = "gaussian_random"
        self.init_data()
        shape_tensor_list = []
        for index, ele in enumerate(self.shape):
            shape_tensor_list.append(("x" + str(index), np.ones(
                (1)).astype('int32') * ele))
D
dzhwinter 已提交
129

130 131 132 133 134 135 136
        self.attrs = {
            'shape': self.infer_shape,
            'mean': self.mean,
            'std': self.std,
            'seed': self.seed,
            'use_mkldnn': self.use_mkldnn
        }
D
dzhwinter 已提交
137

138 139
        self.inputs = {"ShapeTensorList": shape_tensor_list}
        self.outputs = {'Out': np.zeros((123, 92), dtype='float32')}
D
dzhwinter 已提交
140

141 142 143 144 145 146 147
    def init_data(self):
        self.shape = [123, 92]
        self.infer_shape = [-1, 92]
        self.use_mkldnn = False
        self.mean = 1.0
        self.std = 2.0
        self.seed = 10
D
dzhwinter 已提交
148

149 150
    def test_check_output(self):
        self.check_output_customized(self.verify_output)
151

M
mozga-intel 已提交
152

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
class TestGaussianRandomOp2_ShapeTensorList(
        TestGaussianRandomOp_ShapeTensorList):
    def init_data(self):
        self.shape = [123, 92]
        self.infer_shape = [-1, -1]
        self.use_mkldnn = False
        self.mean = 1.0
        self.std = 2.0
        self.seed = 10


class TestGaussianRandomOp3_ShapeTensorList(
        TestGaussianRandomOp_ShapeTensorList):
    def init_data(self):
        self.shape = [123, 92]
        self.infer_shape = [123, -1]
        self.use_mkldnn = True
        self.mean = 1.0
        self.std = 2.0
        self.seed = 10


class TestGaussianRandomOp4_ShapeTensorList(
        TestGaussianRandomOp_ShapeTensorList):
    def init_data(self):
        self.shape = [123, 92]
        self.infer_shape = [123, -1]
        self.use_mkldnn = False
        self.mean = 1.0
        self.std = 2.0
        self.seed = 10
184

185 186 187

# Situation 3: shape is a tensor
class TestGaussianRandomOp1_ShapeTensor(TestGaussianRandomOp):
188
    def setUp(self):
189 190
        '''Test gaussian_random op with specified value
        '''
191
        self.op_type = "gaussian_random"
192
        self.init_data()
193
        self.use_mkldnn = False
194 195

        self.inputs = {"ShapeTensor": np.array(self.shape).astype("int32")}
196
        self.attrs = {
197 198 199 200
            'mean': self.mean,
            'std': self.std,
            'seed': self.seed,
            'use_mkldnn': self.use_mkldnn
201
        }
202
        self.outputs = {'Out': np.zeros((123, 92), dtype='float32')}
203

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
    def init_data(self):
        self.shape = [123, 92]
        self.use_mkldnn = False
        self.mean = 1.0
        self.std = 2.0
        self.seed = 10


# Test python API
class TestGaussianRandomAPI(unittest.TestCase):
    def test_api(self):
        positive_2_int32 = fluid.layers.fill_constant([1], "int32", 2000)

        positive_2_int64 = fluid.layers.fill_constant([1], "int64", 500)
        shape_tensor_int32 = fluid.data(
            name="shape_tensor_int32", shape=[2], dtype="int32")

        shape_tensor_int64 = fluid.data(
            name="shape_tensor_int64", shape=[2], dtype="int64")

        out_1 = fluid.layers.gaussian_random(
            shape=[2000, 500], dtype="float32", mean=0.0, std=1.0, seed=10)

        out_2 = fluid.layers.gaussian_random(
            shape=[2000, positive_2_int32],
            dtype="float32",
            mean=0.,
            std=1.0,
            seed=10)

        out_3 = fluid.layers.gaussian_random(
            shape=[2000, positive_2_int64],
            dtype="float32",
            mean=0.,
            std=1.0,
            seed=10)

        out_4 = fluid.layers.gaussian_random(
            shape=shape_tensor_int32,
            dtype="float32",
            mean=0.,
            std=1.0,
            seed=10)

        out_5 = fluid.layers.gaussian_random(
            shape=shape_tensor_int64,
            dtype="float32",
            mean=0.,
            std=1.0,
            seed=10)

        out_6 = fluid.layers.gaussian_random(
            shape=shape_tensor_int64,
            dtype=np.float32,
            mean=0.,
            std=1.0,
            seed=10)

        exe = fluid.Executor(place=fluid.CPUPlace())
        res_1, res_2, res_3, res_4, res_5, res_6 = exe.run(
            fluid.default_main_program(),
            feed={
                "shape_tensor_int32": np.array([2000, 500]).astype("int32"),
                "shape_tensor_int64": np.array([2000, 500]).astype("int64"),
            },
            fetch_list=[out_1, out_2, out_3, out_4, out_5, out_6])

        self.assertAlmostEqual(np.mean(res_1), 0.0, delta=0.1)
        self.assertAlmostEqual(np.std(res_1), 1., delta=0.1)
        self.assertAlmostEqual(np.mean(res_2), 0.0, delta=0.1)
        self.assertAlmostEqual(np.std(res_2), 1., delta=0.1)
        self.assertAlmostEqual(np.mean(res_3), 0.0, delta=0.1)
        self.assertAlmostEqual(np.std(res_3), 1., delta=0.1)
        self.assertAlmostEqual(np.mean(res_4), 0.0, delta=0.1)
        self.assertAlmostEqual(np.std(res_5), 1., delta=0.1)
        self.assertAlmostEqual(np.mean(res_5), 0.0, delta=0.1)
        self.assertAlmostEqual(np.std(res_5), 1., delta=0.1)
        self.assertAlmostEqual(np.mean(res_6), 0.0, delta=0.1)
        self.assertAlmostEqual(np.std(res_6), 1., delta=0.1)
283

284 285 286
    def test_default_dtype(self):
        paddle.disable_static()

287
        def test_default_fp16():
288
            paddle.framework.set_default_dtype('float16')
289
            paddle.tensor.random.gaussian([2, 3])
290

291
        self.assertRaises(TypeError, test_default_fp16)
292

293
        def test_default_fp32():
294
            paddle.framework.set_default_dtype('float32')
295
            out = paddle.tensor.random.gaussian([2, 3])
296 297
            self.assertEqual(out.dtype, fluid.core.VarDesc.VarType.FP32)

298
        def test_default_fp64():
299
            paddle.framework.set_default_dtype('float64')
300
            out = paddle.tensor.random.gaussian([2, 3])
301 302
            self.assertEqual(out.dtype, fluid.core.VarDesc.VarType.FP64)

303 304
        test_default_fp64()
        test_default_fp32()
305 306 307 308 309 310 311 312

        paddle.enable_static()


class TestStandardNormalDtype(unittest.TestCase):
    def test_default_dtype(self):
        paddle.disable_static()

313
        def test_default_fp16():
314 315 316
            paddle.framework.set_default_dtype('float16')
            paddle.tensor.random.standard_normal([2, 3])

317
        self.assertRaises(TypeError, test_default_fp16)
318

319
        def test_default_fp32():
320 321 322 323
            paddle.framework.set_default_dtype('float32')
            out = paddle.tensor.random.standard_normal([2, 3])
            self.assertEqual(out.dtype, fluid.core.VarDesc.VarType.FP32)

324
        def test_default_fp64():
325 326 327 328
            paddle.framework.set_default_dtype('float64')
            out = paddle.tensor.random.standard_normal([2, 3])
            self.assertEqual(out.dtype, fluid.core.VarDesc.VarType.FP64)

329 330
        test_default_fp64()
        test_default_fp32()
331 332 333

        paddle.enable_static()

334

335 336 337 338 339 340
class TestRandomValue(unittest.TestCase):
    def test_fixed_random_number(self):
        # Test GPU Fixed random number, which is generated by 'curandStatePhilox4_32_10_t'
        if not paddle.is_compiled_with_cuda():
            return

341
        # Different GPU generatte different random value. Only test V100 here.
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
        if not "V100" in paddle.device.cuda.get_device_name():
            return

        def _check_random_value(dtype, expect, expect_mean, expect_std):
            x = paddle.randn([32, 3, 1024, 1024], dtype=dtype)
            actual = x.numpy()
            self.assertTrue(np.allclose(actual[2, 1, 512, 1000:1010], expect))
            self.assertTrue(np.mean(actual), expect_mean)
            self.assertTrue(np.std(actual), expect_std)

        print("Test Fixed Random number on V100 GPU------>")
        paddle.disable_static()
        paddle.set_device('gpu')
        paddle.seed(2021)
        expect = [
            -0.79037829, -0.54411126, -0.32266671, 0.35791815, 1.44169267,
            -0.87785644, -1.23909874, -2.18194139, 0.49489656, 0.40703062
        ]
        expect_mean = -0.0000053026194133403266873214888799115129813799285329878330230713
        expect_std = 0.99999191058126390974081232343451119959354400634765625
        _check_random_value(core.VarDesc.VarType.FP64, expect, expect_mean,
                            expect_std)

        expect = [
            -0.7988942, 1.8644791, 0.02782744, 1.3692524, 0.6419724, 0.12436751,
            0.12058455, -1.9984808, 1.5635862, 0.18506318
        ]
        expect_mean = -0.00004762359094456769526004791259765625
        expect_std = 0.999975681304931640625
        _check_random_value(core.VarDesc.VarType.FP32, expect, expect_mean,
                            expect_std)
        paddle.enable_static()


Q
qijun 已提交
376
if __name__ == "__main__":
377
    unittest.main()