pooling.py 53.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .. import functional as F
Z
zhiboniu 已提交
16
from .. import Layer
17

18 19
__all__ = []

20

Z
zhiboniu 已提交
21
class AvgPool1D(Layer):
W
Wei Shengyu 已提交
22
    r"""
23
    This operation applies a 1D average pooling over an input signal composed
24
    of several input planes, based on the input, output_size, return_mask parameters.
25 26 27 28 29
    Input(X) and output(Out) are in NCL format, where N is batch
    size, C is the number of channels, L is the length of the feature.
    The output tensor shape will be [N, C, output_size].

    The output value of the layer with input size (N, C, L),
W
Wei Shengyu 已提交
30
    output (N, C, :math:`L_{out}`) and kernel_size ksize can be precisely described as
31 32 33 34
    For average pool1d:

    ..  math::

W
Wei Shengyu 已提交
35
        Output(N_i, C_i, l) = \frac{Input[N_i, C_i, stride \times l:stride \times l+k]}{ksize}
36

W
Wei Shengyu 已提交
37 38
    Parameters:
        kernel_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
39
            it must contain an integer.
W
Wei Shengyu 已提交
40 41 42
        stride(int|list|tuple, optional): The pool stride size. If pool stride size is a tuple or list,
            it must contain an integer. Default None, then stride will be equal to the kernel_size.
        padding(str|int|list|tuple, optional): The padding size. Padding could be in one of the following forms.
43 44 45 46 47 48
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
W
Wei Shengyu 已提交
49 50 51 52 53
        exclusive(bool, optional): Whether to exclude padding points in average pooling mode, default is `True`.
        ceil_mode(bool, optional): ${ceil_mode_comment}Whether to use the ceil function to calculate output height
            and width. If it is set to False, the floor function will be used. The default value is False.
        name(str, optional): For eed to detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no nset and None by default.
54

55
    Shape:
W
Wei Shengyu 已提交
56 57 58 59
        - x(Tensor): The input tensor of avg pool1d operator, which is a 3-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of avg pool1d  operator, which is a 3-D tensor.
          The data type is same as input x.
60

61 62
    Returns:
        A callable object of AvgPool1D.
63

64 65 66
    Examples:

        .. code-block:: python
67

W
Wei Shengyu 已提交
68 69
            import paddle
            import paddle.nn as nn
70

71
            data = paddle.uniform([1, 3, 32], dtype="float32", min=-1, max=1)
W
Wei Shengyu 已提交
72 73 74
            AvgPool1D = nn.AvgPool1D(kernel_size=2, stride=2, padding=0)
            pool_out = AvgPool1D(data)
            # pool_out shape: [1, 3, 16]
75 76 77

    """

78 79 80 81 82 83 84 85 86
    def __init__(
        self,
        kernel_size,
        stride=None,
        padding=0,
        exclusive=True,
        ceil_mode=False,
        name=None,
    ):
87
        super().__init__()
88 89 90 91
        self.kernel_size = kernel_size
        self.stride = stride
        self.padding = padding
        self.ceil_mode = ceil_mode
92
        self.exclusive = exclusive
93 94 95
        self.name = name

    def forward(self, x):
96 97 98 99 100 101 102 103 104
        out = F.avg_pool1d(
            x,
            self.kernel_size,
            self.stride,
            self.padding,
            self.exclusive,
            self.ceil_mode,
            self.name,
        )
105 106
        return out

107 108
    def extra_repr(self):
        return 'kernel_size={kernel_size}, stride={stride}, padding={padding}'.format(
109 110
            **self.__dict__
        )
111

112

Z
zhiboniu 已提交
113
class AvgPool2D(Layer):
114
    r"""
115 116 117 118
    This operation applies 2D average pooling over input features based on the input,
    and kernel_size, stride, padding parameters. Input(X) and Output(Out) are
    in NCHW format, where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
119

120
    Example:
W
Wei Shengyu 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
        Input:
            X shape: :math:`(N, C, :math:`H_{in}`, :math:`W_{in}`)`
        Attr:
            kernel_size: ksize

        Output:
            Out shape: :math:`(N, C, :math:`H_{out}`, :math:`W_{out}`)`

        ..  math::

            Output(N_i, C_j, h, w)  = \frac{\sum_{m=0}^{ksize[0]-1} \sum_{n=0}^{ksize[1]-1}
                Input(N_i, C_j, stride[0] \times h + m, stride[1] \times w + n)}{ksize[0] * ksize[1]}

    Parameters:
        kernel_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
136 137
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
W
Wei Shengyu 已提交
138
        stride(int|list|tuple, optional): The pool stride size. If pool stride size is a tuple or list,
139 140
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
W
Wei Shengyu 已提交
141 142
            Default None, then stride will be equal to the kernel_size.
        padding(str|int|list|tuple, optional): The padding size. Padding could be in one of the following forms.
143 144 145 146 147 148
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
W
Wei Shengyu 已提交
149 150 151 152 153 154 155 156 157 158
        ceil_mode(bool, optional): When True, will use `ceil` instead of `floor` to compute the output shape.
        exclusive(bool, optional): Whether to exclude padding points in average pooling
            mode, default is `true`.
        divisor_override(float, optional): If specified, it will be used as divisor, otherwise kernel_size will be
            used. Default None.
        data_format(str, optional): The data format of the input and output data. An optional string from: `"NCHW"`,
            `"NDHW"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
159

160
    Shape:
W
Wei Shengyu 已提交
161 162 163 164
        - x(Tensor): The input tensor of avg pool2d operator, which is a 4-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of avg pool2d  operator, which is a 4-D tensor.
          The data type is same as input x.
165

W
Wei Shengyu 已提交
166 167
    Returns:
        A callable object of AvgPool2D.
168

169 170
    Examples:
        .. code-block:: python
171

W
Wei Shengyu 已提交
172 173
            import paddle
            import paddle.nn as nn
174

W
Wei Shengyu 已提交
175
            # max pool2d
176
            input = paddle.uniform([1, 3, 32, 32], dtype="float32", min=-1, max=1)
W
Wei Shengyu 已提交
177
            AvgPool2D = nn.AvgPool2D(kernel_size=2,
178
                                stride=2, padding=0)
W
Wei Shengyu 已提交
179 180
            output = AvgPool2D(input)
            # output.shape [1, 3, 16, 16]
181 182 183

    """

184 185 186 187 188 189 190 191 192 193 194
    def __init__(
        self,
        kernel_size,
        stride=None,
        padding=0,
        ceil_mode=False,
        exclusive=True,
        divisor_override=None,
        data_format="NCHW",
        name=None,
    ):
195
        super().__init__()
196
        self.ksize = kernel_size
197 198 199
        self.stride = stride
        self.padding = padding
        self.ceil_mode = ceil_mode
200
        self.exclusive = exclusive
201 202
        self.divisor = divisor_override
        self.data_format = data_format
203 204
        self.name = name

205
    def forward(self, x):
206 207 208 209 210 211 212 213 214 215 216
        return F.avg_pool2d(
            x,
            kernel_size=self.ksize,
            stride=self.stride,
            padding=self.padding,
            ceil_mode=self.ceil_mode,
            exclusive=self.exclusive,
            divisor_override=self.divisor,
            data_format=self.data_format,
            name=self.name,
        )
217

218 219
    def extra_repr(self):
        return 'kernel_size={ksize}, stride={stride}, padding={padding}'.format(
220 221
            **self.__dict__
        )
222

223

Z
zhiboniu 已提交
224
class AvgPool3D(Layer):
225
    """
226

227 228 229 230
    This operation applies 3D max pooling over input features based on the input,
    and kernel_size, stride, padding parameters. Input(X) and Output(Out) are
    in NCDHW format, where N is batch size, C is the number of channels,
    H is the height of the feature,  D is the depth of the feature, and W is the width of the feature.
231

W
Wei Shengyu 已提交
232 233
    Parameters:
        kernel_size(int|list|tuple): The pool kernel size. If pool kernel size
234 235 236
            is a tuple or list, it must contain three integers,
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
W
Wei Shengyu 已提交
237
        stride(int|list|tuple, optional): The pool stride size. If pool stride size is a tuple or list,
238 239
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
            Otherwise, the pool stride size will be a cube of an int.
W
Wei Shengyu 已提交
240 241
            Default None, then stride will be equal to the kernel_size.
        padding(str|int|list|tuple, optional): The padding size. Padding could be in one of the following forms.
242 243 244 245 246 247
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
W
Wei Shengyu 已提交
248 249 250 251 252 253 254
        ceil_mode(bool, optional): ${ceil_mode_comment}
        exclusive(bool, optional): Whether to exclude padding points in average pooling mode, default is True.
        divisor_override(int|float, optional): if specified, it will be used as divisor, otherwise kernel_size will
            be used. Default None.
        data_format(str, optional): The data format of the input and output data. An optional string from: `"NCDHW"`,
             `"NDHWC"`. The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
             `[batch_size, input_channels, input_depth, input_height, input_width]`.
255
        name(str, optional): For detailed information, please refer
W
Wei Shengyu 已提交
256 257
             to :ref:`api_guide_Name`. Usually name is no need to set and
             None by default.
258

W
Wei Shengyu 已提交
259 260
    Returns:
        A callable object of AvgPool3D.
261 262

    Shape:
W
Wei Shengyu 已提交
263 264 265 266
        - x(Tensor): The input tensor of avg pool3d operator, which is a 5-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of avg pool3d  operator, which is a 5-D tensor.
          The data type is same as input x.
267

268 269
    Examples:
        .. code-block:: python
270

W
Wei Shengyu 已提交
271 272
            import paddle
            import paddle.nn as nn
273

W
Wei Shengyu 已提交
274
            # avg pool3d
275
            input = paddle.uniform([1, 2, 3, 32, 32], dtype="float32", min=-1, max=1)
W
Wei Shengyu 已提交
276
            AvgPool3D = nn.AvgPool3D(kernel_size=2,
277
                                   stride=2, padding=0)
W
Wei Shengyu 已提交
278 279
            output = AvgPool3D(input)
            # output.shape [1, 2, 3, 16, 16]
280

281 282
    """

283 284 285 286 287 288 289 290 291 292 293
    def __init__(
        self,
        kernel_size,
        stride=None,
        padding=0,
        ceil_mode=False,
        exclusive=True,
        divisor_override=None,
        data_format="NCDHW",
        name=None,
    ):
294
        super().__init__()
295 296 297 298
        self.ksize = kernel_size
        self.stride = stride
        self.padding = padding
        self.ceil_mode = ceil_mode
299
        self.exclusive = exclusive
300 301
        self.divisor = divisor_override
        self.data_format = data_format
302 303
        self.name = name

304
    def forward(self, x):
305 306 307 308 309 310 311 312 313 314 315
        return F.avg_pool3d(
            x,
            kernel_size=self.ksize,
            stride=self.stride,
            padding=self.padding,
            ceil_mode=self.ceil_mode,
            exclusive=self.exclusive,
            divisor_override=self.divisor,
            data_format=self.data_format,
            name=self.name,
        )
316

317 318
    def extra_repr(self):
        return 'kernel_size={ksize}, stride={stride}, padding={padding}'.format(
319 320
            **self.__dict__
        )
321

322

Z
zhiboniu 已提交
323
class MaxPool1D(Layer):
324
    """
W
Wei Shengyu 已提交
325 326 327 328 329
    This operation applies 1D max pooling over input signal
    composed of several input planes based on the input,
    and kernel_size, stride, padding parameters. Input(X) and Output(Out) are
    in NCL format, where N is batch size, C is the number of channels,
    L is the length of the feature.
330

331 332 333
    The output value of the layer with input size (N, C, L),
    output (N, C, L_{out}) and kernel_size k can be precisely described as
    For average pool1d:
334 335 336

    ..  math::

W
Wei Shengyu 已提交
337
        Output(N_i, C_i, l) =  max(Input[N_i, C_i, stride \times l:stride \times l+k])
338

W
Wei Shengyu 已提交
339 340
    Parameters:
        kernel_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
341
            it must contain an integer.
W
Wei Shengyu 已提交
342 343 344
        stride(int|list|tuple, optional): The pool stride size. If pool stride size is a tuple or list,
            it must contain an integer. Default None, then stride will be equal to the kernel_size.
        padding(str|int|list|tuple, optional): The padding size. Padding could be in one of the following forms.
345 346 347
            1. A string in ['valid', 'same'].
            2. An integer, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
W
Wei Shengyu 已提交
348 349
            4. A list[int] or tuple(int) whose length is 2, It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or(0,0).
350
            The default value is 0.
W
Wei Shengyu 已提交
351 352 353 354 355
        return_mask(bool, optional): Whether return the max indices along with the outputs. default is `False`.
        ceil_mode(bool, optional): Whether to use the ceil function to calculate output height and width.
            False is the default. If it is set to False, the floor function will be used. Default False.
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
356
    Returns:
W
Wei Shengyu 已提交
357
        A callable object of MaxPool1D.
358

359
    Shape:
W
Wei Shengyu 已提交
360 361 362 363
        - x(Tensor): The input tensor of max pool1d operator, which is a 3-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of max pool1d  operator, which is a 3-D tensor.
          The data type is same as input x.
364 365

    Examples:
366

367 368
        .. code-block:: python

W
Wei Shengyu 已提交
369 370
            import paddle
            import paddle.nn as nn
371

372
            data = paddle.uniform([1, 3, 32], dtype="float32", min=-1, max=1)
W
Wei Shengyu 已提交
373 374 375
            MaxPool1D = nn.MaxPool1D(kernel_size=2, stride=2, padding=0)
            pool_out = MaxPool1D(data)
            # pool_out shape: [1, 3, 16]
376

W
Wei Shengyu 已提交
377 378 379
            MaxPool1D = nn.MaxPool1D(kernel_size=2, stride=2, padding=0, return_mask=True)
            pool_out, indices = MaxPool1D(data)
            # pool_out shape: [1, 3, 16], indices shape: [1, 3, 16]
380 381 382

    """

383 384 385 386 387 388 389 390 391
    def __init__(
        self,
        kernel_size,
        stride=None,
        padding=0,
        return_mask=False,
        ceil_mode=False,
        name=None,
    ):
392
        super().__init__()
393 394 395 396
        self.kernel_size = kernel_size
        self.stride = stride
        self.padding = padding
        self.ceil_mode = ceil_mode
397
        self.return_mask = return_mask
398 399 400
        self.name = name

    def forward(self, input):
401 402 403 404 405 406 407 408 409
        out = F.max_pool1d(
            input,
            self.kernel_size,
            self.stride,
            self.padding,
            self.return_mask,
            self.ceil_mode,
            self.name,
        )
410
        return out
411

412 413
    def extra_repr(self):
        return 'kernel_size={kernel_size}, stride={stride}, padding={padding}'.format(
414 415
            **self.__dict__
        )
416

417

Z
zhiboniu 已提交
418
class MaxPool2D(Layer):
419
    r"""
420
    This operation applies 2D max pooling over input feature based on the input,
421 422 423 424 425
    and kernel_size, stride, padding parameters. Input(X) and Output(Out) are
    in NCHW format, where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.

    Example:
W
Wei Shengyu 已提交
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
        - Input:
            X shape: :math:`(N, C, H_{in}, W_{in})`
        - Attr:
            kernel_size: ksize

        - Output:
            Out shape: :math:`(N, C, H_{out}, W_{out})`

        ..  math::

            Output(N_i, C_j, h, w) = \max_{m=0, \ldots, ksize[0] -1} \max_{n=0, \ldots, ksize[1]-1}
                Input(N_i, C_j, stride[0] \times h + m, stride[1] \times w + n)

    Parameters:
        kernel_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
441 442
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
W
Wei Shengyu 已提交
443
        stride(int|list|tuple, optional): The pool stride size. If pool stride size is a tuple or list,
444
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
445
            Otherwise, the pool stride size will be a square of an int.
W
Wei Shengyu 已提交
446 447
            Default None, then stride will be equal to the kernel_size.
        padding(str|int|list|tuple, optional): The padding size. Padding could be in one of the following forms.
448 449 450
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
W
Wei Shengyu 已提交
451
            4. A list[int] or tuple(int) whose length is \4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
452 453
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
W
Wei Shengyu 已提交
454 455 456 457 458 459 460
        ceil_mode(bool, optional): when True, will use `ceil` instead of `floor` to compute the output shape
        return_mask(bool, optional): Whether to return the max indices along with the outputs.
        data_format(str, optional): The data format of the input and output data. An optional string from: `"NCHW"`, `"NDHW"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
461

W
Wei Shengyu 已提交
462 463
    Returns:
        A callable object of MaxPool2D.
464 465

    Shape:
W
Wei Shengyu 已提交
466 467 468 469
        - x(Tensor): The input tensor of max pool2d operator, which is a 4-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of max pool2d  operator, which is a 4-D tensor.
          The data type is same as input x.
470

471 472
    Examples:
        .. code-block:: python
473

W
Wei Shengyu 已提交
474 475
            import paddle
            import paddle.nn as nn
476

W
Wei Shengyu 已提交
477
            # max pool2d
478
            input = paddle.uniform([1, 3, 32, 32], dtype="float32", min=-1, max=1)
W
Wei Shengyu 已提交
479
            MaxPool2D = nn.MaxPool2D(kernel_size=2,
480
                                   stride=2, padding=0)
W
Wei Shengyu 已提交
481 482
            output = MaxPool2D(input)
            # output.shape [1, 3, 16, 16]
483

W
Wei Shengyu 已提交
484 485 486 487
            # for return_mask=True
            MaxPool2D = nn.MaxPool2D(kernel_size=2, stride=2, padding=0, return_mask=True)
            output, max_indices = MaxPool2D(input)
            # output.shape [1, 3, 16, 16], max_indices.shape [1, 3, 16, 16],
488 489
    """

490 491 492 493 494 495 496 497 498 499
    def __init__(
        self,
        kernel_size,
        stride=None,
        padding=0,
        return_mask=False,
        ceil_mode=False,
        data_format="NCHW",
        name=None,
    ):
500
        super().__init__()
501 502 503
        self.ksize = kernel_size
        self.stride = stride
        self.padding = padding
504
        self.return_mask = return_mask
505 506 507 508 509
        self.ceil_mode = ceil_mode
        self.data_format = data_format
        self.name = name

    def forward(self, x):
510 511 512 513 514 515 516 517 518 519
        return F.max_pool2d(
            x,
            kernel_size=self.ksize,
            stride=self.stride,
            padding=self.padding,
            return_mask=self.return_mask,
            ceil_mode=self.ceil_mode,
            data_format=self.data_format,
            name=self.name,
        )
520

521 522
    def extra_repr(self):
        return 'kernel_size={ksize}, stride={stride}, padding={padding}'.format(
523 524
            **self.__dict__
        )
525

526

Z
zhiboniu 已提交
527
class MaxPool3D(Layer):
528
    """
529
    This operation applies 3D max pooling over input features based on the input,
530
    and kernel_size, stride, padding parameters. Input(X) and Output(Out) are
531 532
    in NCDHW format, where N is batch size, C is the number of channels,
    H is the height of the feature,  D is the depth of the feature, and W is the width of the feature.
533

W
Wei Shengyu 已提交
534 535
    Parameters:
        kernel_size(int|list|tuple): The pool kernel size. If the kernel size
536
            is a tuple or list, it must contain three integers,
537
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
538
            Otherwise, the pool kernel size will be the cube of an int.
W
Wei Shengyu 已提交
539
        stride(int|list|tuple, optional): The pool stride size. If pool stride size is a tuple or list,
540 541
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
            Otherwise, the pool stride size will be a cube of an int.
W
Wei Shengyu 已提交
542 543
            Default None, then stride will be equal to the kernel_size.
        padding(str|int|list|tuple, optional): The padding size. Padding could be in one of the following forms.
544 545 546
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
W
Wei Shengyu 已提交
547
            4. A list[int] or tuple(int) whose length is \6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
548 549
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
W
Wei Shengyu 已提交
550 551 552 553 554 555 556
        ceil_mode(bool, optional): ${ceil_mode_comment}
        return_mask(bool, optional): Whether to return the max indices along with the outputs.
        data_format(str, optional): The data format of the input and output data. An optional string from: `"NCDHW"`,
            `"NDHWC"`. The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
557 558


W
Wei Shengyu 已提交
559 560
    Returns:
        A callable object of MaxPool3D.
561 562

    Shape:
W
Wei Shengyu 已提交
563 564 565 566
        - x(Tensor): The input tensor of max pool3d operator, which is a 5-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of max pool3d  operator, which is a 5-D tensor.
          The data type is same as input x.
567

568 569
    Examples:
        .. code-block:: python
570

W
Wei Shengyu 已提交
571 572
            import paddle
            import paddle.nn as nn
573

W
Wei Shengyu 已提交
574
            # max pool3d
575
            input = paddle.uniform([1, 2, 3, 32, 32], dtype="float32", min=-1, max=1)
W
Wei Shengyu 已提交
576
            MaxPool3D = nn.MaxPool3D(kernel_size=2,
577
                                   stride=2, padding=0)
W
Wei Shengyu 已提交
578 579
            output = MaxPool3D(input)
            # output.shape [1, 2, 3, 16, 16]
580

W
Wei Shengyu 已提交
581 582 583 584
            # for return_mask=True
            MaxPool3D = nn.MaxPool3D(kernel_size=2, stride=2, padding=0, return_mask=True)
            output, max_indices = MaxPool3D(input)
            # output.shape [1, 2, 3, 16, 16], max_indices.shape [1, 2, 3, 16, 16],
585 586
    """

587 588 589 590 591 592 593 594 595 596
    def __init__(
        self,
        kernel_size,
        stride=None,
        padding=0,
        return_mask=False,
        ceil_mode=False,
        data_format="NCDHW",
        name=None,
    ):
597
        super().__init__()
598 599 600
        self.ksize = kernel_size
        self.stride = stride
        self.padding = padding
601
        self.return_mask = return_mask
602 603 604 605 606
        self.ceil_mode = ceil_mode
        self.data_format = data_format
        self.name = name

    def forward(self, x):
607 608 609 610 611 612 613 614 615 616
        return F.max_pool3d(
            x,
            kernel_size=self.ksize,
            stride=self.stride,
            padding=self.padding,
            return_mask=self.return_mask,
            ceil_mode=self.ceil_mode,
            data_format=self.data_format,
            name=self.name,
        )
617

618 619
    def extra_repr(self):
        return 'kernel_size={ksize}, stride={stride}, padding={padding}'.format(
620 621
            **self.__dict__
        )
622

623

Z
zhiboniu 已提交
624
class AdaptiveAvgPool1D(Layer):
625
    r"""
626

627 628 629 630 631
    A 1D adaptive average pooling over an input signal composed
    of several input planes, based on :attr:`output_size`.
    Input and output are in NCL format, where N is batch
    size, C is the number of channels and L is the length of the feature.
    The shape of output will be :math:`[N, C, output\_size]`.
632

633
    The formulation for average adaptive pool1d is
634 635 636

    ..  math::

637
        lstart &= \lfloor i * L_{in} / L_{out}\rfloor,
638

639
        lend &= \lceil(i + 1) * L_{in} / L_{out}\rceil,
640

641
        Output(i) &= \frac{\sum Input[lstart:lend]}{lend - lstart}.
642

W
Wei Shengyu 已提交
643
    Parameters:
644 645
        output_size(int): The target output size. Its data type must be int.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
646

647
    Returns:
648
        A callable object for computing 1D adaptive average pooling.
649

650 651
    Examples:
        .. code-block:: python
652

W
Wei Shengyu 已提交
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
            # average adaptive pool1d
            # suppose input data in shape of [N, C, L], `output_size` is m or [m],
            # output shape is [N, C, m], adaptive pool divide L dimension
            # of input data into m grids averagely and performs poolings in each
            # grid to get output.
            # adaptive max pool performs calculations as follow:
            #
            #     for i in range(m):
            #         lstart = floor(i * L / m)
            #         lend = ceil((i + 1) * L / m)
            #         output[:, :, i] = sum(input[:, :, lstart: lend])/(lend - lstart)
            #
            import paddle
            import paddle.nn as nn

668
            data = paddle.uniform([1, 3, 32], dtype="float32", min=-1, max=1)
W
Wei Shengyu 已提交
669 670 671
            AdaptiveAvgPool1D = nn.AdaptiveAvgPool1D(output_size=16)
            pool_out = AdaptiveAvgPool1D(data)
            # pool_out shape: [1, 3, 16]
672 673
    """

674
    def __init__(self, output_size, name=None):
675
        super().__init__()
676
        self.output_size = output_size
677 678
        self.name = name

679 680 681
    def forward(self, input):
        return F.adaptive_avg_pool1d(input, self.output_size, self.name)

682 683 684
    def extra_repr(self):
        return 'output_size={}'.format(self.output_size)

685

Z
zhiboniu 已提交
686
class AdaptiveAvgPool2D(Layer):
687
    r"""
688 689 690 691 692 693 694 695

    This operation applies 2D adaptive avg pooling on input tensor. The h and w dimensions
    of the output tensor are determined by the parameter output_size.

    For avg adaptive pool2d:

    ..  math::

W
Wei Shengyu 已提交
696
        hstart &= floor(i * H_{in} / H_{out})
697

W
Wei Shengyu 已提交
698
        hend &= ceil((i + 1) * H_{in} / H_{out})
699

W
Wei Shengyu 已提交
700
        wstart &= floor(j * W_{in} / W_{out})
701

W
Wei Shengyu 已提交
702
        wend &= ceil((j + 1) * W_{in} / W_{out})
703

W
Wei Shengyu 已提交
704
        Output(i ,j) &= \frac{\sum Input[hstart:hend, wstart:wend]}{(hend - hstart) * (wend - wstart)}
705 706 707


    Parameters:
W
Wei Shengyu 已提交
708
        output_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
709 710
            it must contain two element, (H, W). H and W can be either a int, or None which means
            the size will be the same as that of the input.
W
Wei Shengyu 已提交
711
        data_format(str, optional): The data format of the input and output data. An optional string
712 713
            from: "NCHW", "NHWC". The default is "NCHW". When it is "NCHW", the data is stored in
            the order of: [batch_size, input_channels, input_height, input_width].
W
Wei Shengyu 已提交
714 715
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
716 717

    Shape:
W
Wei Shengyu 已提交
718 719 720 721
        - x(Tensor): The input tensor of adaptive avg pool2d operator, which is a 4-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of adaptive avg pool2d operator, which is a 4-D tensor.
          The data type is same as input x.
722 723

    Returns:
C
cnn 已提交
724
        A callable object of AdaptiveAvgPool2D.
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744

    Examples:
        .. code-block:: python

            # adaptive avg pool2d
            # suppose input data in shape of [N, C, H, W], `output_size` is [m, n],
            # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
            # of input data into m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(m):
            #         for j in range(n):
            #             hstart = floor(i * H / m)
            #             hend = ceil((i + 1) * H / m)
            #             wstart = floor(i * W / n)
            #             wend = ceil((i + 1) * W / n)
            #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
            #
            import paddle
745

746 747
            x = paddle.rand([2, 3, 32, 32])

C
cnn 已提交
748
            adaptive_avg_pool = paddle.nn.AdaptiveAvgPool2D(output_size=3)
749 750 751 752 753
            pool_out = adaptive_avg_pool(x = x)
            # pool_out.shape is [2, 3, 3, 3]
    """

    def __init__(self, output_size, data_format="NCHW", name=None):
754
        super().__init__()
755 756 757 758 759
        self._output_size = output_size
        self._data_format = data_format
        self._name = name

    def forward(self, x):
760 761 762 763 764 765
        return F.adaptive_avg_pool2d(
            x,
            output_size=self._output_size,
            data_format=self._data_format,
            name=self._name,
        )
766

767 768 769
    def extra_repr(self):
        return 'output_size={}'.format(self._output_size)

770

Z
zhiboniu 已提交
771
class AdaptiveAvgPool3D(Layer):
772
    r"""
773 774 775 776 777 778 779 780

    This operation applies 3D adaptive avg pooling on input tensor. The h and w dimensions
    of the output tensor are determined by the parameter output_size.

    For avg adaptive pool3d:

    ..  math::

W
Wei Shengyu 已提交
781
        dstart &= floor(i * D_{in} / D_{out})
782

W
Wei Shengyu 已提交
783
        dend &= ceil((i + 1) * D_{in} / D_{out})
784

W
Wei Shengyu 已提交
785
        hstart &= floor(j * H_{in} / H_{out})
786

W
Wei Shengyu 已提交
787
        hend &= ceil((j + 1) * H_{in} / H_{out})
788

W
Wei Shengyu 已提交
789
        wstart &= floor(k * W_{in} / W_{out})
790

W
Wei Shengyu 已提交
791
        wend &= ceil((k + 1) * W_{in} / W_{out})
792

W
Wei Shengyu 已提交
793 794
        Output(i ,j, k) &= \frac{\sum Input[dstart:dend, hstart:hend, wstart:wend]}
            {(dend - dstart) * (hend - hstart) * (wend - wstart)}
795 796 797


    Parameters:
W
Wei Shengyu 已提交
798
        output_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
799 800
            it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means
            the size will be the same as that of the input.
W
Wei Shengyu 已提交
801
        data_format(str, optional): The data format of the input and output data. An optional string
802 803
            from: "NCDHW", "NDHWC". The default is "NCDHW". When it is "NCDHW", the data is stored in
            the order of: [batch_size, input_channels, input_depth, input_height, input_width].
W
Wei Shengyu 已提交
804 805
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
806
    Shape:
W
Wei Shengyu 已提交
807 808 809 810
        - x(Tensor): The input tensor of adaptive avg pool3d operator, which is a 5-D tensor.
          The data type can be float32, float64\.
        - output(Tensor): The output tensor of adaptive avg pool3d operator, which is a 5-D tensor.
          The data type is same as input x.
811 812

    Returns:
C
cnn 已提交
813
        A callable object of AdaptiveAvgPool3D.
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836

    Examples:
        .. code-block:: python

            # adaptive avg pool3d
            # suppose input data in shape of [N, C, D, H, W], `output_size` is [l, m, n],
            # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
            # of input data into l * m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(l):
            #         for j in range(m):
            #             for k in range(n):
            #                 dstart = floor(i * D / l)
            #                 dend = ceil((i + 1) * D / l)
            #                 hstart = floor(j * H / m)
            #                 hend = ceil((j + 1) * H / m)
            #                 wstart = floor(k * W / n)
            #                 wend = ceil((k + 1) * W / n)
            #                 output[:, :, i, j, k] =
            #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
            import paddle
837

838 839
            x = paddle.rand([2, 3, 8, 32, 32])

C
cnn 已提交
840
            adaptive_avg_pool = paddle.nn.AdaptiveAvgPool3D(output_size=3)
841 842 843 844 845
            pool_out = adaptive_avg_pool(x = x)
            # pool_out = [2, 3, 3, 3, 3]
    """

    def __init__(self, output_size, data_format="NCDHW", name=None):
846
        super().__init__()
847 848 849 850 851
        self._output_size = output_size
        self._data_format = data_format
        self._name = name

    def forward(self, x):
852 853 854 855 856 857
        return F.adaptive_avg_pool3d(
            x,
            output_size=self._output_size,
            data_format=self._data_format,
            name=self._name,
        )
858

859 860 861
    def extra_repr(self):
        return 'output_size={}'.format(self._output_size)

862

Z
zhiboniu 已提交
863
class AdaptiveMaxPool1D(Layer):
864 865 866
    """

    This operation applies a 1D adaptive max pooling over an input signal composed
867
    of several input planes, based on the input, output_size, return_mask parameters.
868 869 870 871 872 873 874 875
    Input(X) and output(Out) are in NCL format, where N is batch
    size, C is the number of channels, L is the length of the feature.
    The output tensor shape will be [N, C, output_size].

    For max adaptive pool1d:

    ..  math::

W
Wei Shengyu 已提交
876
        lstart &= floor(i * L_{in} / L_{out})
877

W
Wei Shengyu 已提交
878
        lend &= ceil((i + 1) * L_{in} / L_{out})
879

W
Wei Shengyu 已提交
880
        Output(i) &= max(Input[lstart:lend])
881

W
Wei Shengyu 已提交
882 883 884 885
    Parameters:
        output_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain one int.
        return_mask(bool, optional): If true, the index of max pooling point will be returned along
886
            with outputs. It cannot be set in average pooling type. Default False.
W
Wei Shengyu 已提交
887 888
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
889
    Returns:
W
Wei Shengyu 已提交
890
        A callable object of AdaptiveMaxPool1D.
891 892

    Shape:
W
Wei Shengyu 已提交
893 894 895 896
        - x(Tensor): The input tensor of adaptive max pool1d operator, which is a 3-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of adaptive max pool1d operator, which is a 3-D tensor.
          The data type is same as input x.
897 898 899 900

    Examples:
        .. code-block:: python

W
Wei Shengyu 已提交
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
            # max adaptive pool1d
            # suppose input data in shape of [N, C, L], `output_size` is m or [m],
            # output shape is [N, C, m], adaptive pool divide L dimension
            # of input data into m grids averagely and performs poolings in each
            # grid to get output.
            # adaptive max pool performs calculations as follow:
            #
            #     for i in range(m):
            #         lstart = floor(i * L / m)
            #         lend = ceil((i + 1) * L / m)
            #         output[:, :, i] = max(input[:, :, lstart: lend])
            #
            import paddle
            import paddle.nn as nn

916
            data = paddle.uniform([1, 3, 32], dtype="float32", min=-1, max=1)
W
Wei Shengyu 已提交
917 918 919 920 921 922 923 924
            AdaptiveMaxPool1D = nn.AdaptiveMaxPool1D(output_size=16)
            pool_out = AdaptiveMaxPool1D(data)
            # pool_out shape: [1, 3, 16]

            # for return_mask = true
            AdaptiveMaxPool1D = nn.AdaptiveMaxPool1D(output_size=16, return_mask=True)
            pool_out, indices = AdaptiveMaxPool1D(data)
            # pool_out shape: [1, 3, 16], indices shape: [1, 3, 16]
925 926 927

    """

928
    def __init__(self, output_size, return_mask=False, name=None):
929
        super().__init__()
930
        self.output_size = output_size
931
        self.return_mask = return_mask
932 933 934
        self.name = name

    def forward(self, input):
935 936 937
        return F.adaptive_max_pool1d(
            input, self.output_size, self.return_mask, self.name
        )
938

939
    def extra_repr(self):
940 941 942
        return 'output_size={}, return_mask={}'.format(
            self.output_size, self.return_mask
        )
943

944

Z
zhiboniu 已提交
945
class AdaptiveMaxPool2D(Layer):
946 947
    """
    This operation applies 2D adaptive max pooling on input tensor. The h and w dimensions
W
Wei Shengyu 已提交
948 949
    of the output tensor are determined by the parameter output_size. The difference between adaptive pooling and
    pooling is adaptive one focus on the output size.
950

951
    For adaptive max pool2d:
952

953
    ..  math::
954

W
Wei Shengyu 已提交
955
        hstart &= floor(i * H_{in} / H_{out})
956

W
Wei Shengyu 已提交
957
        hend &= ceil((i + 1) * H_{in} / H_{out})
958

W
Wei Shengyu 已提交
959
        wstart &= floor(j * W_{in} / W_{out})
960

W
Wei Shengyu 已提交
961
        wend &= ceil((j + 1) * W_{in} / W_{out})
962

W
Wei Shengyu 已提交
963
        Output(i ,j) &= max(Input[hstart:hend, wstart:wend])
964

965
    Parameters:
W
Wei Shengyu 已提交
966 967 968 969 970 971 972
        output_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain
            two element, (H, W). H and W can be either a int, or None which means the size will be the same as that of
            the input.
        return_mask(bool, optional): If true, the index of max pooling point will be returned along with outputs.
            It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
973
    Shape:
W
Wei Shengyu 已提交
974 975 976 977
        - x(Tensor): The input tensor of adaptive max pool2d operator, which is a 4-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of adaptive max pool2d operator, which is a 4-D tensor.
          The data type is same as input x.
D
Double_V 已提交
978

979
    Returns:
C
cnn 已提交
980
        A callable object of AdaptiveMaxPool2D.
981 982
    Examples:
        .. code-block:: python
983

984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
            # adaptive max pool2d
            # suppose input data in shape of [N, C, H, W], `output_size` is [m, n],
            # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
            # of input data into m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive max pool performs calculations as follow:
            #
            #     for i in range(m):
            #         for j in range(n):
            #             hstart = floor(i * H / m)
            #             hend = ceil((i + 1) * H / m)
            #             wstart = floor(i * W / n)
            #             wend = ceil((i + 1) * W / n)
            #             output[:, :, i, j] = max(input[:, :, hstart: hend, wstart: wend])
            #
            import paddle
1000

1001 1002
            x = paddle.rand([2, 3, 32, 32])

1003
            adaptive_max_pool = paddle.nn.AdaptiveMaxPool2D(output_size=3, return_mask=True)
1004 1005 1006
            pool_out, indices = adaptive_max_pool(x = x)
    """

1007
    def __init__(self, output_size, return_mask=False, name=None):
1008
        super().__init__()
1009
        self._output_size = output_size
1010
        self._return_mask = return_mask
1011 1012 1013
        self._name = name

    def forward(self, x):
1014 1015 1016 1017 1018 1019
        return F.adaptive_max_pool2d(
            x,
            output_size=self._output_size,
            return_mask=self._return_mask,
            name=self._name,
        )
1020

1021
    def extra_repr(self):
1022 1023 1024
        return 'output_size={}, return_mask={}'.format(
            self._output_size, self._return_mask
        )
1025

1026

Z
zhiboniu 已提交
1027
class AdaptiveMaxPool3D(Layer):
1028
    """
W
Wei Shengyu 已提交
1029 1030 1031
    This operation applies 3D adaptive max pooling on input tensor. The h and w dimensions of the output tensor are
    determined by the parameter output_size. The difference between adaptive pooling and pooling is adaptive one focus
    on the output size.
1032

1033
    For adaptive max pool3d:
1034

1035
    ..  math::
1036

W
Wei Shengyu 已提交
1037
        dstart &= floor(i * D_{in} / D_{out})
1038

W
Wei Shengyu 已提交
1039
        dend &= ceil((i + 1) * D_{in} / D_{out})
1040

W
Wei Shengyu 已提交
1041
        hstart &= floor(j * H_{in} / H_{out})
1042

W
Wei Shengyu 已提交
1043
        hend &= ceil((j + 1) * H_{in} / H_{out})
1044

W
Wei Shengyu 已提交
1045
        wstart &= floor(k * W_{in} / W_{out})
1046

W
Wei Shengyu 已提交
1047
        wend &= ceil((k + 1) * W_{in} / W_{out})
1048

W
Wei Shengyu 已提交
1049
        Output(i ,j, k) &= max(Input[dstart:dend, hstart:hend, wstart:wend])
1050

1051
    Parameters:
W
Wei Shengyu 已提交
1052 1053 1054 1055 1056 1057 1058
        output_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain
            three elements, (D, H, W). D, H and W can be either a int, or None which means the size will be the same as
            that of the input.
        return_mask(bool, optional): If true, the index of max pooling point will be returned along with outputs.
            Default False.
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
1059
    Shape:
W
Wei Shengyu 已提交
1060 1061 1062 1063 1064
        - x(Tensor): The input tensor of adaptive max pool3d operator, which is a 5-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of adaptive max pool3d operator, which is a 5-D tensor.
          The data type is same as input x.

1065
    Returns:
C
cnn 已提交
1066
        A callable object of AdaptiveMaxPool3D.
1067 1068
    Examples:
        .. code-block:: python
1069

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
            # adaptive max pool3d
            # suppose input data in shape of [N, C, D, H, W], `output_size` is [l, m, n],
            # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
            # of input data into l * m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive max pool performs calculations as follow:
            #
            #     for i in range(l):
            #         for j in range(m):
            #             for k in range(n):
            #                 dstart = floor(i * D / l)
            #                 dend = ceil((i + 1) * D / l)
            #                 hstart = floor(j * H / m)
            #                 hend = ceil((j + 1) * H / m)
            #                 wstart = floor(k * W / n)
            #                 wend = ceil((k + 1) * W / n)
            #                 output[:, :, i, j, k] =
            #                     max(input[:, :, dstart:dend, hstart: hend, wstart: wend])
            import paddle
1089

1090
            x = paddle.rand([2, 3, 8, 32, 32])
C
cnn 已提交
1091
            pool = paddle.nn.AdaptiveMaxPool3D(output_size=4)
1092 1093
            out = pool(x)
            # out shape: [2, 3, 4, 4, 4]
1094
            pool = paddle.nn.AdaptiveMaxPool3D(output_size=3, return_mask=True)
1095
            out, indices = pool(x)
1096
            # out shape: [2, 3, 4, 4, 4], indices shape: [2, 3, 4, 4, 4]
D
Double_V 已提交
1097

1098 1099
    """

1100
    def __init__(self, output_size, return_mask=False, name=None):
1101
        super().__init__()
1102
        self._output_size = output_size
1103
        self._return_mask = return_mask
1104 1105 1106
        self._name = name

    def forward(self, x):
1107 1108 1109 1110 1111 1112
        return F.adaptive_max_pool3d(
            x,
            output_size=self._output_size,
            return_mask=self._return_mask,
            name=self._name,
        )
1113 1114

    def extra_repr(self):
1115 1116 1117
        return 'output_size={}, return_mask={}'.format(
            self._output_size, self._return_mask
        )
1118 1119


1120
class MaxUnPool1D(Layer):
1121
    r"""
1122 1123
    This API implements max unpooling 1d opereation.

1124 1125
    `max_unpool1d` accepts the output of `max_pool1d` as input,
    including the indices of the maximum value and calculate the partial inverse.
1126 1127 1128 1129
    All non-maximum values ​​are set to zero.

    - Input: :math:`(N, C, L_{in})`
    - Output: :math:`(N, C, L_{out})`, where
1130

1131 1132 1133 1134
    .. math::
        L_{out} = (L_{in} - 1) * stride - 2 * padding + kernel\_size

    or as given by :attr:`output_size` in the call operator.
1135

1136 1137 1138 1139 1140 1141
    Parameters:
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        padding (int | tuple): Padding that was added to the input.
1142
        output_size(list|tuple, optional): The target output size. If output_size is not specified,
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, stride, padding).
        data_format (string): The data format of the input and output data.
                        The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_length]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.


    Returns:
        A callable object of MaxUnPool1D.

    Examples:
        .. code-block:: python
1158

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
            import paddle
            import paddle.nn.functional as F

            data = paddle.rand(shape=[1, 3, 16])
            pool_out, indices = F.max_pool1d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
            # pool_out shape: [1, 3, 8],  indices shape: [1, 3, 8]
            Unpool1D = paddle.nn.MaxUnPool1D(kernel_size=2, padding=0)
            unpool_out = Unpool1D(pool_out, indices)
            # unpool_out shape: [1, 3, 16]

    """

1171 1172 1173 1174 1175 1176 1177 1178 1179
    def __init__(
        self,
        kernel_size,
        stride=None,
        padding=0,
        data_format="NCL",
        output_size=None,
        name=None,
    ):
1180
        super().__init__()
1181 1182 1183 1184 1185 1186 1187 1188
        self.ksize = kernel_size
        self.stride = stride
        self.padding = padding
        self.data_format = data_format
        self.output_size = output_size
        self.name = name

    def forward(self, x, indices):
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
        return F.max_unpool1d(
            x,
            indices,
            kernel_size=self.ksize,
            stride=self.stride,
            padding=self.padding,
            data_format=self.data_format,
            output_size=self.output_size,
            name=self.name,
        )
1199 1200 1201 1202 1203

    def extra_repr(self):
        return 'output_size={}'.format(self.output_size)


1204
class MaxUnPool2D(Layer):
1205
    r"""
1206 1207
    This API implements max unpooling 2d opereation.

1208 1209 1210
    'max_unpool2d' accepts the output of 'max_unpool2d' as input
    Including the indices of the maximum value and calculating the partial inverse
    All non-maximum values ​​are set to zero.
1211

1212 1213 1214 1215 1216 1217 1218 1219

    Parameters:
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        kernel_size (int|tuple): Size of the max unpooling window.
        padding (int | tuple): Padding that was added to the input.
1220
        output_size(list|tuple, optional): The target output size. If output_size is not specified,
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, padding).
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.


        - Input: :math:`(N, C, H_{in}, W_{in})`
        - Output: :math:`(N, C, H_{out}, W_{out})`, where

          .. math::
            H_{out} = (H_{in} - 1) \times \text{stride[0]} - 2 \times \text{padding[0]} + \text{kernel\_size[0]}

          .. math::
            W_{out} = (W_{in} - 1) \times \text{stride[1]} - 2 \times \text{padding[1]} + \text{kernel\_size[1]}

          or as given by :attr:`output_size` in the call operator

    Returns:
        A callable object of MaxUnPool2D.

1242

1243 1244 1245

    Examples:
        .. code-block:: python
1246

1247 1248 1249
        import paddle
        import paddle.nn.functional as F

X
xiaoting 已提交
1250
        data = paddle.rand(shape=[1,1,6,6])
1251 1252 1253
        pool_out, indices = F.max_pool2d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
        # pool_out shape: [1, 1, 3, 3],  indices shape: [1, 1, 3, 3]
        Unpool2D = paddle.nn.MaxUnPool2D(kernel_size=2, padding=0)
X
xiaoting 已提交
1254
        unpool_out = Unpool2D(pool_out, indices)
1255 1256 1257 1258
        # unpool_out shape: [1, 1, 6, 6]

    """

1259 1260 1261 1262 1263 1264 1265 1266 1267
    def __init__(
        self,
        kernel_size,
        stride=None,
        padding=0,
        data_format="NCHW",
        output_size=None,
        name=None,
    ):
1268
        super().__init__()
1269 1270 1271 1272 1273 1274 1275 1276
        self.ksize = kernel_size
        self.stride = stride
        self.padding = padding
        self.data_format = data_format
        self.output_size = output_size
        self.name = name

    def forward(self, x, indices):
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
        return F.max_unpool2d(
            x,
            indices,
            kernel_size=self.ksize,
            stride=self.stride,
            padding=self.padding,
            data_format=self.data_format,
            output_size=self.output_size,
            name=self.name,
        )
1287 1288 1289

    def extra_repr(self):
        return 'output_size={}'.format(self.output_size)
1290 1291 1292


class MaxUnPool3D(Layer):
1293
    r"""
1294 1295
    This API implements max unpooling 3d opereation.

1296 1297
    `max_unpool3d` accepts the output of `max_pool3d` as input,
    including the indices of the maximum value and calculate the partial inverse.
1298 1299 1300 1301
    All non-maximum values ​​are set to zero.

    - Input: :math:`(N, C, D_{in}, H_{in}, W_{in})`
    - Output: :math:`(N, C, D_{out}, H_{out}, W_{out})`, where
1302

1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
    .. math::
        D_{out} = (D_{in} - 1) * stride[0] - 2 * padding[0] + kernel\_size[0]

    .. math::
        H_{out} = (H_{in} - 1) * stride[1] - 2 * padding[1] + kernel\_size[1]

    .. math::
        W_{out} = (W_{in} - 1) * stride[2] - 2 * padding[2] + kernel\_size[2]

    or as given by :attr:`output_size` in the call operator

1314

1315 1316 1317 1318 1319 1320
    Parameters:
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        padding (int | tuple): Padding that was added to the input.
1321
        output_size(list|tuple, optional): The target output size. If output_size is not specified,
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, stride, padding).
        data_format (string): The data format of the input and output data.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.


    Returns:
        A callable object of MaxUnPool3D.

    Examples:
        .. code-block:: python
1337

1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
            import paddle
            import paddle.nn.functional as F

            data = paddle.rand(shape=[1, 1, 4, 4, 6])
            pool_out, indices = F.max_pool3d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
            # pool_out shape: [1, 1, 2, 2, 3],  indices shape: [1, 1, 2, 2, 3]
            Unpool3D = paddle.nn.MaxUnPool3D(kernel_size=2, padding=0)
            unpool_out = Unpool3D(pool_out, indices)
            # unpool_out shape: [1, 1, 4, 4, 6]

    """

1350 1351 1352 1353 1354 1355 1356 1357 1358
    def __init__(
        self,
        kernel_size,
        stride=None,
        padding=0,
        data_format="NCDHW",
        output_size=None,
        name=None,
    ):
1359
        super().__init__()
1360 1361 1362 1363 1364 1365 1366 1367
        self.ksize = kernel_size
        self.stride = stride
        self.padding = padding
        self.data_format = data_format
        self.output_size = output_size
        self.name = name

    def forward(self, x, indices):
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
        return F.max_unpool3d(
            x,
            indices,
            kernel_size=self.ksize,
            stride=self.stride,
            padding=self.padding,
            data_format=self.data_format,
            output_size=self.output_size,
            name=self.name,
        )
1378 1379 1380

    def extra_repr(self):
        return 'output_size={}'.format(self.output_size)