pooling.py 58.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from ...fluid.layer_helper import LayerHelper
from .. import functional as F
Z
zhiboniu 已提交
17
from .. import Layer
18

19 20
__all__ = []

21

Z
zhiboniu 已提交
22
class AvgPool1D(Layer):
W
Wei Shengyu 已提交
23
    r"""
24
    This operation applies a 1D average pooling over an input signal composed
25
    of several input planes, based on the input, output_size, return_mask parameters.
26 27 28 29 30
    Input(X) and output(Out) are in NCL format, where N is batch
    size, C is the number of channels, L is the length of the feature.
    The output tensor shape will be [N, C, output_size].

    The output value of the layer with input size (N, C, L),
W
Wei Shengyu 已提交
31
    output (N, C, :math:`L_{out}`) and kernel_size ksize can be precisely described as
32 33 34 35
    For average pool1d:

    ..  math::

W
Wei Shengyu 已提交
36
        Output(N_i, C_i, l) = \frac{Input[N_i, C_i, stride \times l:stride \times l+k]}{ksize}
37

W
Wei Shengyu 已提交
38 39
    Parameters:
        kernel_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
40
            it must contain an integer.
W
Wei Shengyu 已提交
41 42 43
        stride(int|list|tuple, optional): The pool stride size. If pool stride size is a tuple or list,
            it must contain an integer. Default None, then stride will be equal to the kernel_size.
        padding(str|int|list|tuple, optional): The padding size. Padding could be in one of the following forms.
44 45 46 47 48 49
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
W
Wei Shengyu 已提交
50 51 52 53 54
        exclusive(bool, optional): Whether to exclude padding points in average pooling mode, default is `True`.
        ceil_mode(bool, optional): ${ceil_mode_comment}Whether to use the ceil function to calculate output height
            and width. If it is set to False, the floor function will be used. The default value is False.
        name(str, optional): For eed to detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no nset and None by default.
55 56

    Returns:
W
Wei Shengyu 已提交
57
        A callable object of AvgPool1D.
58 59 60 61 62

    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ValueError: If `padding` is a list or tuple but its length greater than 1.
63
        ShapeError: If the input is not a 3-D tensor.
64 65
        ShapeError: If the output's shape calculated is not greater than 0.

66
    Shape:
W
Wei Shengyu 已提交
67 68 69 70
        - x(Tensor): The input tensor of avg pool1d operator, which is a 3-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of avg pool1d  operator, which is a 3-D tensor.
          The data type is same as input x.
71

72 73 74
    Examples:

        .. code-block:: python
75

W
Wei Shengyu 已提交
76 77 78
            import paddle
            import paddle.nn as nn
            import numpy as np
79

W
Wei Shengyu 已提交
80 81 82 83
            data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
            AvgPool1D = nn.AvgPool1D(kernel_size=2, stride=2, padding=0)
            pool_out = AvgPool1D(data)
            # pool_out shape: [1, 3, 16]
84 85 86 87 88 89 90

    """

    def __init__(self,
                 kernel_size,
                 stride=None,
                 padding=0,
91
                 exclusive=True,
92 93
                 ceil_mode=False,
                 name=None):
C
cnn 已提交
94
        super(AvgPool1D, self).__init__()
95 96 97 98
        self.kernel_size = kernel_size
        self.stride = stride
        self.padding = padding
        self.ceil_mode = ceil_mode
99
        self.exclusive = exclusive
100 101 102 103
        self.name = name

    def forward(self, x):
        out = F.avg_pool1d(x, self.kernel_size, self.stride, self.padding,
104
                           self.exclusive, self.ceil_mode, self.name)
105 106
        return out

107 108 109 110
    def extra_repr(self):
        return 'kernel_size={kernel_size}, stride={stride}, padding={padding}'.format(
            **self.__dict__)

111

Z
zhiboniu 已提交
112
class AvgPool2D(Layer):
113
    r"""
114 115 116 117
    This operation applies 2D average pooling over input features based on the input,
    and kernel_size, stride, padding parameters. Input(X) and Output(Out) are
    in NCHW format, where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
118

119
    Example:
W
Wei Shengyu 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
        Input:
            X shape: :math:`(N, C, :math:`H_{in}`, :math:`W_{in}`)`
        Attr:
            kernel_size: ksize

        Output:
            Out shape: :math:`(N, C, :math:`H_{out}`, :math:`W_{out}`)`

        ..  math::

            Output(N_i, C_j, h, w)  = \frac{\sum_{m=0}^{ksize[0]-1} \sum_{n=0}^{ksize[1]-1}
                Input(N_i, C_j, stride[0] \times h + m, stride[1] \times w + n)}{ksize[0] * ksize[1]}

    Parameters:
        kernel_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
135 136
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
W
Wei Shengyu 已提交
137
        stride(int|list|tuple, optional): The pool stride size. If pool stride size is a tuple or list,
138 139
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
W
Wei Shengyu 已提交
140 141
            Default None, then stride will be equal to the kernel_size.
        padding(str|int|list|tuple, optional): The padding size. Padding could be in one of the following forms.
142 143 144 145 146 147
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
W
Wei Shengyu 已提交
148 149 150 151 152 153 154 155 156 157
        ceil_mode(bool, optional): When True, will use `ceil` instead of `floor` to compute the output shape.
        exclusive(bool, optional): Whether to exclude padding points in average pooling
            mode, default is `true`.
        divisor_override(float, optional): If specified, it will be used as divisor, otherwise kernel_size will be
            used. Default None.
        data_format(str, optional): The data format of the input and output data. An optional string from: `"NCHW"`,
            `"NDHW"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
158

159
    Shape:
W
Wei Shengyu 已提交
160 161 162 163
        - x(Tensor): The input tensor of avg pool2d operator, which is a 4-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of avg pool2d  operator, which is a 4-D tensor.
          The data type is same as input x.
164

W
Wei Shengyu 已提交
165 166
    Returns:
        A callable object of AvgPool2D.
167 168 169 170 171 172
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
    Examples:
        .. code-block:: python
173

W
Wei Shengyu 已提交
174 175 176
            import paddle
            import paddle.nn as nn
            import numpy as np
177

W
Wei Shengyu 已提交
178 179 180
            # max pool2d
            input = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32]).astype(np.float32))
            AvgPool2D = nn.AvgPool2D(kernel_size=2,
181
                                stride=2, padding=0)
W
Wei Shengyu 已提交
182 183
            output = AvgPool2D(input)
            # output.shape [1, 3, 16, 16]
184 185 186 187 188 189 190 191

    """

    def __init__(self,
                 kernel_size,
                 stride=None,
                 padding=0,
                 ceil_mode=False,
192
                 exclusive=True,
193 194
                 divisor_override=None,
                 data_format="NCHW",
195
                 name=None):
C
cnn 已提交
196
        super(AvgPool2D, self).__init__()
197
        self.ksize = kernel_size
198 199 200
        self.stride = stride
        self.padding = padding
        self.ceil_mode = ceil_mode
201
        self.exclusive = exclusive
202 203
        self.divisor = divisor_override
        self.data_format = data_format
204 205
        self.name = name

206
    def forward(self, x):
207 208 209 210 211 212 213 214 215
        return F.avg_pool2d(x,
                            kernel_size=self.ksize,
                            stride=self.stride,
                            padding=self.padding,
                            ceil_mode=self.ceil_mode,
                            exclusive=self.exclusive,
                            divisor_override=self.divisor,
                            data_format=self.data_format,
                            name=self.name)
216

217 218 219 220
    def extra_repr(self):
        return 'kernel_size={ksize}, stride={stride}, padding={padding}'.format(
            **self.__dict__)

221

Z
zhiboniu 已提交
222
class AvgPool3D(Layer):
223
    """
224 225 226 227
    This operation applies 3D max pooling over input features based on the input,
    and kernel_size, stride, padding parameters. Input(X) and Output(Out) are
    in NCDHW format, where N is batch size, C is the number of channels,
    H is the height of the feature,  D is the depth of the feature, and W is the width of the feature.
228

W
Wei Shengyu 已提交
229 230
    Parameters:
        kernel_size(int|list|tuple): The pool kernel size. If pool kernel size
231 232 233
            is a tuple or list, it must contain three integers,
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
W
Wei Shengyu 已提交
234
        stride(int|list|tuple, optional): The pool stride size. If pool stride size is a tuple or list,
235 236
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
            Otherwise, the pool stride size will be a cube of an int.
W
Wei Shengyu 已提交
237 238
            Default None, then stride will be equal to the kernel_size.
        padding(str|int|list|tuple, optional): The padding size. Padding could be in one of the following forms.
239 240 241 242 243 244
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
W
Wei Shengyu 已提交
245 246 247 248 249 250 251
        ceil_mode(bool, optional): ${ceil_mode_comment}
        exclusive(bool, optional): Whether to exclude padding points in average pooling mode, default is True.
        divisor_override(int|float, optional): if specified, it will be used as divisor, otherwise kernel_size will
            be used. Default None.
        data_format(str, optional): The data format of the input and output data. An optional string from: `"NCDHW"`,
             `"NDHWC"`. The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
             `[batch_size, input_channels, input_depth, input_height, input_width]`.
252
        name(str, optional): For detailed information, please refer
W
Wei Shengyu 已提交
253 254
             to :ref:`api_guide_Name`. Usually name is no need to set and
             None by default.
255

W
Wei Shengyu 已提交
256 257
    Returns:
        A callable object of AvgPool3D.
258
    Raises:
259 260 261 262 263
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.

    Shape:
W
Wei Shengyu 已提交
264 265 266 267
        - x(Tensor): The input tensor of avg pool3d operator, which is a 5-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of avg pool3d  operator, which is a 5-D tensor.
          The data type is same as input x.
268 269
    Examples:
        .. code-block:: python
270

W
Wei Shengyu 已提交
271 272 273
            import paddle
            import paddle.nn as nn
            import numpy as np
274

W
Wei Shengyu 已提交
275 276 277
            # avg pool3d
            input = paddle.to_tensor(np.random.uniform(-1, 1, [1, 2, 3, 32, 32]).astype(np.float32))
            AvgPool3D = nn.AvgPool3D(kernel_size=2,
278
                                   stride=2, padding=0)
W
Wei Shengyu 已提交
279 280
            output = AvgPool3D(input)
            # output.shape [1, 2, 3, 16, 16]
281

282 283
    """

284 285
    def __init__(self,
                 kernel_size,
W
Wei Shengyu 已提交
286
                 stride=None,
287 288
                 padding=0,
                 ceil_mode=False,
289
                 exclusive=True,
290 291 292
                 divisor_override=None,
                 data_format="NCDHW",
                 name=None):
C
cnn 已提交
293
        super(AvgPool3D, self).__init__()
294 295 296 297
        self.ksize = kernel_size
        self.stride = stride
        self.padding = padding
        self.ceil_mode = ceil_mode
298
        self.exclusive = exclusive
299 300
        self.divisor = divisor_override
        self.data_format = data_format
301 302
        self.name = name

303
    def forward(self, x):
304 305 306 307 308 309 310 311 312
        return F.avg_pool3d(x,
                            kernel_size=self.ksize,
                            stride=self.stride,
                            padding=self.padding,
                            ceil_mode=self.ceil_mode,
                            exclusive=self.exclusive,
                            divisor_override=self.divisor,
                            data_format=self.data_format,
                            name=self.name)
313

314 315 316 317
    def extra_repr(self):
        return 'kernel_size={ksize}, stride={stride}, padding={padding}'.format(
            **self.__dict__)

318

Z
zhiboniu 已提交
319
class MaxPool1D(Layer):
320
    """
W
Wei Shengyu 已提交
321 322 323 324 325
    This operation applies 1D max pooling over input signal
    composed of several input planes based on the input,
    and kernel_size, stride, padding parameters. Input(X) and Output(Out) are
    in NCL format, where N is batch size, C is the number of channels,
    L is the length of the feature.
326

327 328 329
    The output value of the layer with input size (N, C, L),
    output (N, C, L_{out}) and kernel_size k can be precisely described as
    For average pool1d:
330 331 332

    ..  math::

W
Wei Shengyu 已提交
333
        Output(N_i, C_i, l) =  max(Input[N_i, C_i, stride \times l:stride \times l+k])
334

W
Wei Shengyu 已提交
335 336
    Parameters:
        kernel_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
337
            it must contain an integer.
W
Wei Shengyu 已提交
338 339 340
        stride(int|list|tuple, optional): The pool stride size. If pool stride size is a tuple or list,
            it must contain an integer. Default None, then stride will be equal to the kernel_size.
        padding(str|int|list|tuple, optional): The padding size. Padding could be in one of the following forms.
341 342 343
            1. A string in ['valid', 'same'].
            2. An integer, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
W
Wei Shengyu 已提交
344 345
            4. A list[int] or tuple(int) whose length is 2, It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or(0,0).
346
            The default value is 0.
W
Wei Shengyu 已提交
347 348 349 350 351
        return_mask(bool, optional): Whether return the max indices along with the outputs. default is `False`.
        ceil_mode(bool, optional): Whether to use the ceil function to calculate output height and width.
            False is the default. If it is set to False, the floor function will be used. Default False.
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
352
    Returns:
W
Wei Shengyu 已提交
353
        A callable object of MaxPool1D.
354 355

    Raises:
356 357 358 359 360 361 362 363
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ValueError: If `padding` is a list or tuple but its length greater than 1.
        ShapeError: If the input is not a 3-D.
        ShapeError: If the output's shape calculated is not greater than 0.


    Shape:
W
Wei Shengyu 已提交
364 365 366 367
        - x(Tensor): The input tensor of max pool1d operator, which is a 3-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of max pool1d  operator, which is a 3-D tensor.
          The data type is same as input x.
368 369

    Examples:
370

371 372
        .. code-block:: python

W
Wei Shengyu 已提交
373 374 375
            import paddle
            import paddle.nn as nn
            import numpy as np
376

W
Wei Shengyu 已提交
377 378 379 380
            data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
            MaxPool1D = nn.MaxPool1D(kernel_size=2, stride=2, padding=0)
            pool_out = MaxPool1D(data)
            # pool_out shape: [1, 3, 16]
381

W
Wei Shengyu 已提交
382 383 384
            MaxPool1D = nn.MaxPool1D(kernel_size=2, stride=2, padding=0, return_mask=True)
            pool_out, indices = MaxPool1D(data)
            # pool_out shape: [1, 3, 16], indices shape: [1, 3, 16]
385 386 387

    """

388 389 390 391
    def __init__(self,
                 kernel_size,
                 stride=None,
                 padding=0,
392
                 return_mask=False,
393 394
                 ceil_mode=False,
                 name=None):
C
cnn 已提交
395
        super(MaxPool1D, self).__init__()
396 397 398 399
        self.kernel_size = kernel_size
        self.stride = stride
        self.padding = padding
        self.ceil_mode = ceil_mode
400
        self.return_mask = return_mask
401 402 403
        self.name = name

    def forward(self, input):
404
        out = F.max_pool1d(input, self.kernel_size, self.stride, self.padding,
405
                           self.return_mask, self.ceil_mode, self.name)
406
        return out
407

408 409 410 411
    def extra_repr(self):
        return 'kernel_size={kernel_size}, stride={stride}, padding={padding}'.format(
            **self.__dict__)

412

Z
zhiboniu 已提交
413
class MaxPool2D(Layer):
414
    r"""
415
    This operation applies 2D max pooling over input feature based on the input,
416 417 418 419 420
    and kernel_size, stride, padding parameters. Input(X) and Output(Out) are
    in NCHW format, where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.

    Example:
W
Wei Shengyu 已提交
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
        - Input:
            X shape: :math:`(N, C, H_{in}, W_{in})`
        - Attr:
            kernel_size: ksize

        - Output:
            Out shape: :math:`(N, C, H_{out}, W_{out})`

        ..  math::

            Output(N_i, C_j, h, w) = \max_{m=0, \ldots, ksize[0] -1} \max_{n=0, \ldots, ksize[1]-1}
                Input(N_i, C_j, stride[0] \times h + m, stride[1] \times w + n)

    Parameters:
        kernel_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
436 437
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
W
Wei Shengyu 已提交
438
        stride(int|list|tuple, optional): The pool stride size. If pool stride size is a tuple or list,
439
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
440
            Otherwise, the pool stride size will be a square of an int.
W
Wei Shengyu 已提交
441 442
            Default None, then stride will be equal to the kernel_size.
        padding(str|int|list|tuple, optional): The padding size. Padding could be in one of the following forms.
443 444 445
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
W
Wei Shengyu 已提交
446
            4. A list[int] or tuple(int) whose length is \4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
447 448
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
W
Wei Shengyu 已提交
449 450 451 452 453 454 455
        ceil_mode(bool, optional): when True, will use `ceil` instead of `floor` to compute the output shape
        return_mask(bool, optional): Whether to return the max indices along with the outputs.
        data_format(str, optional): The data format of the input and output data. An optional string from: `"NCHW"`, `"NDHW"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
456

W
Wei Shengyu 已提交
457 458
    Returns:
        A callable object of MaxPool2D.
459 460 461 462
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
463 464

    Shape:
W
Wei Shengyu 已提交
465 466 467 468
        - x(Tensor): The input tensor of max pool2d operator, which is a 4-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of max pool2d  operator, which is a 4-D tensor.
          The data type is same as input x.
469

470 471
    Examples:
        .. code-block:: python
472

W
Wei Shengyu 已提交
473 474 475
            import paddle
            import paddle.nn as nn
            import numpy as np
476

W
Wei Shengyu 已提交
477 478 479
            # max pool2d
            input = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32]).astype(np.float32))
            MaxPool2D = nn.MaxPool2D(kernel_size=2,
480
                                   stride=2, padding=0)
W
Wei Shengyu 已提交
481 482
            output = MaxPool2D(input)
            # output.shape [1, 3, 16, 16]
483

W
Wei Shengyu 已提交
484 485 486 487
            # for return_mask=True
            MaxPool2D = nn.MaxPool2D(kernel_size=2, stride=2, padding=0, return_mask=True)
            output, max_indices = MaxPool2D(input)
            # output.shape [1, 3, 16, 16], max_indices.shape [1, 3, 16, 16],
488 489 490 491 492 493
    """

    def __init__(self,
                 kernel_size,
                 stride=None,
                 padding=0,
494
                 return_mask=False,
495 496 497
                 ceil_mode=False,
                 data_format="NCHW",
                 name=None):
C
cnn 已提交
498
        super(MaxPool2D, self).__init__()
499 500 501
        self.ksize = kernel_size
        self.stride = stride
        self.padding = padding
502
        self.return_mask = return_mask
503 504 505 506 507
        self.ceil_mode = ceil_mode
        self.data_format = data_format
        self.name = name

    def forward(self, x):
508 509 510 511 512 513 514 515
        return F.max_pool2d(x,
                            kernel_size=self.ksize,
                            stride=self.stride,
                            padding=self.padding,
                            return_mask=self.return_mask,
                            ceil_mode=self.ceil_mode,
                            data_format=self.data_format,
                            name=self.name)
516

517 518 519 520
    def extra_repr(self):
        return 'kernel_size={ksize}, stride={stride}, padding={padding}'.format(
            **self.__dict__)

521

Z
zhiboniu 已提交
522
class MaxPool3D(Layer):
523
    """
524
    This operation applies 3D max pooling over input features based on the input,
525
    and kernel_size, stride, padding parameters. Input(X) and Output(Out) are
526 527
    in NCDHW format, where N is batch size, C is the number of channels,
    H is the height of the feature,  D is the depth of the feature, and W is the width of the feature.
528

W
Wei Shengyu 已提交
529 530
    Parameters:
        kernel_size(int|list|tuple): The pool kernel size. If the kernel size
531
            is a tuple or list, it must contain three integers,
532
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
533
            Otherwise, the pool kernel size will be the cube of an int.
W
Wei Shengyu 已提交
534
        stride(int|list|tuple, optional): The pool stride size. If pool stride size is a tuple or list,
535 536
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
            Otherwise, the pool stride size will be a cube of an int.
W
Wei Shengyu 已提交
537 538
            Default None, then stride will be equal to the kernel_size.
        padding(str|int|list|tuple, optional): The padding size. Padding could be in one of the following forms.
539 540 541
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
W
Wei Shengyu 已提交
542
            4. A list[int] or tuple(int) whose length is \6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
543 544
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
W
Wei Shengyu 已提交
545 546 547 548 549 550 551
        ceil_mode(bool, optional): ${ceil_mode_comment}
        return_mask(bool, optional): Whether to return the max indices along with the outputs.
        data_format(str, optional): The data format of the input and output data. An optional string from: `"NCDHW"`,
            `"NDHWC"`. The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
552 553


W
Wei Shengyu 已提交
554 555
    Returns:
        A callable object of MaxPool3D.
556 557 558 559
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
560 561

    Shape:
W
Wei Shengyu 已提交
562 563 564 565
        - x(Tensor): The input tensor of max pool3d operator, which is a 5-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of max pool3d  operator, which is a 5-D tensor.
          The data type is same as input x.
566

567 568
    Examples:
        .. code-block:: python
569

W
Wei Shengyu 已提交
570 571 572
            import paddle
            import paddle.nn as nn
            import numpy as np
573

W
Wei Shengyu 已提交
574 575 576
            # max pool3d
            input = paddle.to_tensor(np.random.uniform(-1, 1, [1, 2, 3, 32, 32]).astype(np.float32))
            MaxPool3D = nn.MaxPool3D(kernel_size=2,
577
                                   stride=2, padding=0)
W
Wei Shengyu 已提交
578 579
            output = MaxPool3D(input)
            # output.shape [1, 2, 3, 16, 16]
580

W
Wei Shengyu 已提交
581 582 583 584
            # for return_mask=True
            MaxPool3D = nn.MaxPool3D(kernel_size=2, stride=2, padding=0, return_mask=True)
            output, max_indices = MaxPool3D(input)
            # output.shape [1, 2, 3, 16, 16], max_indices.shape [1, 2, 3, 16, 16],
585 586 587 588
    """

    def __init__(self,
                 kernel_size,
P
parap1uie-s 已提交
589 590
                 stride=None,
                 padding=0,
591
                 return_mask=False,
592 593 594
                 ceil_mode=False,
                 data_format="NCDHW",
                 name=None):
C
cnn 已提交
595
        super(MaxPool3D, self).__init__()
596 597 598
        self.ksize = kernel_size
        self.stride = stride
        self.padding = padding
599
        self.return_mask = return_mask
600 601 602 603 604
        self.ceil_mode = ceil_mode
        self.data_format = data_format
        self.name = name

    def forward(self, x):
605 606 607 608 609 610 611 612
        return F.max_pool3d(x,
                            kernel_size=self.ksize,
                            stride=self.stride,
                            padding=self.padding,
                            return_mask=self.return_mask,
                            ceil_mode=self.ceil_mode,
                            data_format=self.data_format,
                            name=self.name)
613

614 615 616 617
    def extra_repr(self):
        return 'kernel_size={ksize}, stride={stride}, padding={padding}'.format(
            **self.__dict__)

618

Z
zhiboniu 已提交
619
class AdaptiveAvgPool1D(Layer):
620
    r"""
621 622

    This operation applies a 1D adaptive average pooling over an input signal composed
623
    of several input planes, based on the input, output_size, return_mask parameters.
624 625 626 627 628 629 630 631
    Input(X) and output(Out) are in NCL format, where N is batch
    size, C is the number of channels, L is the length of the feature.
    The output tensor shape will be [N, C, output_size].

    For average adaptive pool1d:

    ..  math::

W
Wei Shengyu 已提交
632
        lstart &= floor(i * L_{in} / L_{out})
633

W
Wei Shengyu 已提交
634
        lend &= ceil((i + 1) * L_{in} / L_{out})
635

W
Wei Shengyu 已提交
636
        Output(i) &= \frac{ \sum Input[lstart:lend]}{lend - lstart}
637

W
Wei Shengyu 已提交
638 639 640 641
    Parameters:
        output_size(int): The target output size. It must be an integer.
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
642

643
    Returns:
W
Wei Shengyu 已提交
644
        A callable object of AdaptiveAvgPool1D.
645

646
    Raises:
647
        ValueError: 'output_size' should be an integer.
648 649

    Shape:
W
Wei Shengyu 已提交
650 651 652 653
        - x(Tensor): 3-D tensor. The input tensor of adaptive avg pool1d operator, which is a 3-D tensor.
          The data type can be float32, float64.
        - output(Tensor): 3-D tensor. The output tensor of adaptive avg pool1d operator, which is a 3-D tensor.
          The data type is same as input x.
654

655 656
    Examples:
        .. code-block:: python
657

W
Wei Shengyu 已提交
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
            # average adaptive pool1d
            # suppose input data in shape of [N, C, L], `output_size` is m or [m],
            # output shape is [N, C, m], adaptive pool divide L dimension
            # of input data into m grids averagely and performs poolings in each
            # grid to get output.
            # adaptive max pool performs calculations as follow:
            #
            #     for i in range(m):
            #         lstart = floor(i * L / m)
            #         lend = ceil((i + 1) * L / m)
            #         output[:, :, i] = sum(input[:, :, lstart: lend])/(lend - lstart)
            #
            import paddle
            import paddle.nn as nn
            import numpy as np

            data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
            AdaptiveAvgPool1D = nn.AdaptiveAvgPool1D(output_size=16)
            pool_out = AdaptiveAvgPool1D(data)
            # pool_out shape: [1, 3, 16]
678 679
    """

680
    def __init__(self, output_size, name=None):
C
cnn 已提交
681
        super(AdaptiveAvgPool1D, self).__init__()
682
        self.output_size = output_size
683 684
        self.name = name

685 686 687
    def forward(self, input):
        return F.adaptive_avg_pool1d(input, self.output_size, self.name)

688 689 690
    def extra_repr(self):
        return 'output_size={}'.format(self.output_size)

691

Z
zhiboniu 已提交
692
class AdaptiveAvgPool2D(Layer):
693
    r"""
694 695 696 697 698 699 700 701

    This operation applies 2D adaptive avg pooling on input tensor. The h and w dimensions
    of the output tensor are determined by the parameter output_size.

    For avg adaptive pool2d:

    ..  math::

W
Wei Shengyu 已提交
702
        hstart &= floor(i * H_{in} / H_{out})
703

W
Wei Shengyu 已提交
704
        hend &= ceil((i + 1) * H_{in} / H_{out})
705

W
Wei Shengyu 已提交
706
        wstart &= floor(j * W_{in} / W_{out})
707

W
Wei Shengyu 已提交
708
        wend &= ceil((j + 1) * W_{in} / W_{out})
709

W
Wei Shengyu 已提交
710
        Output(i ,j) &= \frac{\sum Input[hstart:hend, wstart:wend]}{(hend - hstart) * (wend - wstart)}
711 712 713


    Parameters:
W
Wei Shengyu 已提交
714
        output_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
715 716
            it must contain two element, (H, W). H and W can be either a int, or None which means
            the size will be the same as that of the input.
W
Wei Shengyu 已提交
717
        data_format(str, optional): The data format of the input and output data. An optional string
718 719
            from: "NCHW", "NHWC". The default is "NCHW". When it is "NCHW", the data is stored in
            the order of: [batch_size, input_channels, input_height, input_width].
W
Wei Shengyu 已提交
720 721
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
722 723

    Shape:
W
Wei Shengyu 已提交
724 725 726 727
        - x(Tensor): The input tensor of adaptive avg pool2d operator, which is a 4-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of adaptive avg pool2d operator, which is a 4-D tensor.
          The data type is same as input x.
728 729

    Returns:
C
cnn 已提交
730
        A callable object of AdaptiveAvgPool2D.
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751

    Examples:
        .. code-block:: python

            # adaptive avg pool2d
            # suppose input data in shape of [N, C, H, W], `output_size` is [m, n],
            # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
            # of input data into m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(m):
            #         for j in range(n):
            #             hstart = floor(i * H / m)
            #             hend = ceil((i + 1) * H / m)
            #             wstart = floor(i * W / n)
            #             wend = ceil((i + 1) * W / n)
            #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
            #
            import paddle
            import numpy as np
752

753 754 755
            input_data = np.random.rand(2, 3, 32, 32)
            x = paddle.to_tensor(input_data)
            # x.shape is [2, 3, 32, 32]
C
cnn 已提交
756
            adaptive_avg_pool = paddle.nn.AdaptiveAvgPool2D(output_size=3)
757 758 759 760 761
            pool_out = adaptive_avg_pool(x = x)
            # pool_out.shape is [2, 3, 3, 3]
    """

    def __init__(self, output_size, data_format="NCHW", name=None):
C
cnn 已提交
762
        super(AdaptiveAvgPool2D, self).__init__()
763 764 765 766 767
        self._output_size = output_size
        self._data_format = data_format
        self._name = name

    def forward(self, x):
768 769 770 771
        return F.adaptive_avg_pool2d(x,
                                     output_size=self._output_size,
                                     data_format=self._data_format,
                                     name=self._name)
772

773 774 775
    def extra_repr(self):
        return 'output_size={}'.format(self._output_size)

776

Z
zhiboniu 已提交
777
class AdaptiveAvgPool3D(Layer):
778
    r"""
779 780 781 782 783 784 785 786

    This operation applies 3D adaptive avg pooling on input tensor. The h and w dimensions
    of the output tensor are determined by the parameter output_size.

    For avg adaptive pool3d:

    ..  math::

W
Wei Shengyu 已提交
787
        dstart &= floor(i * D_{in} / D_{out})
788

W
Wei Shengyu 已提交
789
        dend &= ceil((i + 1) * D_{in} / D_{out})
790

W
Wei Shengyu 已提交
791
        hstart &= floor(j * H_{in} / H_{out})
792

W
Wei Shengyu 已提交
793
        hend &= ceil((j + 1) * H_{in} / H_{out})
794

W
Wei Shengyu 已提交
795
        wstart &= floor(k * W_{in} / W_{out})
796

W
Wei Shengyu 已提交
797
        wend &= ceil((k + 1) * W_{in} / W_{out})
798

W
Wei Shengyu 已提交
799 800
        Output(i ,j, k) &= \frac{\sum Input[dstart:dend, hstart:hend, wstart:wend]}
            {(dend - dstart) * (hend - hstart) * (wend - wstart)}
801 802 803


    Parameters:
W
Wei Shengyu 已提交
804
        output_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
805 806
            it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means
            the size will be the same as that of the input.
W
Wei Shengyu 已提交
807
        data_format(str, optional): The data format of the input and output data. An optional string
808 809
            from: "NCDHW", "NDHWC". The default is "NCDHW". When it is "NCDHW", the data is stored in
            the order of: [batch_size, input_channels, input_depth, input_height, input_width].
W
Wei Shengyu 已提交
810 811
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
812
    Shape:
W
Wei Shengyu 已提交
813 814 815 816
        - x(Tensor): The input tensor of adaptive avg pool3d operator, which is a 5-D tensor.
          The data type can be float32, float64\.
        - output(Tensor): The output tensor of adaptive avg pool3d operator, which is a 5-D tensor.
          The data type is same as input x.
817 818

    Returns:
C
cnn 已提交
819
        A callable object of AdaptiveAvgPool3D.
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843

    Examples:
        .. code-block:: python

            # adaptive avg pool3d
            # suppose input data in shape of [N, C, D, H, W], `output_size` is [l, m, n],
            # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
            # of input data into l * m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(l):
            #         for j in range(m):
            #             for k in range(n):
            #                 dstart = floor(i * D / l)
            #                 dend = ceil((i + 1) * D / l)
            #                 hstart = floor(j * H / m)
            #                 hend = ceil((j + 1) * H / m)
            #                 wstart = floor(k * W / n)
            #                 wend = ceil((k + 1) * W / n)
            #                 output[:, :, i, j, k] =
            #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
            import paddle
            import numpy as np
844

845 846 847
            input_data = np.random.rand(2, 3, 8, 32, 32)
            x = paddle.to_tensor(input_data)
            # x.shape is [2, 3, 8, 32, 32]
C
cnn 已提交
848
            adaptive_avg_pool = paddle.nn.AdaptiveAvgPool3D(output_size=3)
849 850 851 852 853
            pool_out = adaptive_avg_pool(x = x)
            # pool_out = [2, 3, 3, 3, 3]
    """

    def __init__(self, output_size, data_format="NCDHW", name=None):
C
cnn 已提交
854
        super(AdaptiveAvgPool3D, self).__init__()
855 856 857 858 859
        self._output_size = output_size
        self._data_format = data_format
        self._name = name

    def forward(self, x):
860 861 862 863
        return F.adaptive_avg_pool3d(x,
                                     output_size=self._output_size,
                                     data_format=self._data_format,
                                     name=self._name)
864

865 866 867
    def extra_repr(self):
        return 'output_size={}'.format(self._output_size)

868

Z
zhiboniu 已提交
869
class AdaptiveMaxPool1D(Layer):
870 871 872
    """

    This operation applies a 1D adaptive max pooling over an input signal composed
873
    of several input planes, based on the input, output_size, return_mask parameters.
874 875 876 877 878 879 880 881
    Input(X) and output(Out) are in NCL format, where N is batch
    size, C is the number of channels, L is the length of the feature.
    The output tensor shape will be [N, C, output_size].

    For max adaptive pool1d:

    ..  math::

W
Wei Shengyu 已提交
882
        lstart &= floor(i * L_{in} / L_{out})
883

W
Wei Shengyu 已提交
884
        lend &= ceil((i + 1) * L_{in} / L_{out})
885

W
Wei Shengyu 已提交
886
        Output(i) &= max(Input[lstart:lend])
887

W
Wei Shengyu 已提交
888 889 890 891
    Parameters:
        output_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain one int.
        return_mask(bool, optional): If true, the index of max pooling point will be returned along
892
            with outputs. It cannot be set in average pooling type. Default False.
W
Wei Shengyu 已提交
893 894
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
895
    Returns:
W
Wei Shengyu 已提交
896
        A callable object of AdaptiveMaxPool1D.
897 898 899 900 901

    Raises:
        ValueError: 'pool_size' should be a integer or list or tuple with length as 1.

    Shape:
W
Wei Shengyu 已提交
902 903 904 905
        - x(Tensor): The input tensor of adaptive max pool1d operator, which is a 3-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of adaptive max pool1d operator, which is a 3-D tensor.
          The data type is same as input x.
906 907 908 909

    Examples:
        .. code-block:: python

W
Wei Shengyu 已提交
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
            # max adaptive pool1d
            # suppose input data in shape of [N, C, L], `output_size` is m or [m],
            # output shape is [N, C, m], adaptive pool divide L dimension
            # of input data into m grids averagely and performs poolings in each
            # grid to get output.
            # adaptive max pool performs calculations as follow:
            #
            #     for i in range(m):
            #         lstart = floor(i * L / m)
            #         lend = ceil((i + 1) * L / m)
            #         output[:, :, i] = max(input[:, :, lstart: lend])
            #
            import paddle
            import paddle.nn as nn
            import numpy as np

            data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
            AdaptiveMaxPool1D = nn.AdaptiveMaxPool1D(output_size=16)
            pool_out = AdaptiveMaxPool1D(data)
            # pool_out shape: [1, 3, 16]

            # for return_mask = true
            AdaptiveMaxPool1D = nn.AdaptiveMaxPool1D(output_size=16, return_mask=True)
            pool_out, indices = AdaptiveMaxPool1D(data)
            # pool_out shape: [1, 3, 16], indices shape: [1, 3, 16]
935 936 937

    """

938
    def __init__(self, output_size, return_mask=False, name=None):
C
cnn 已提交
939
        super(AdaptiveMaxPool1D, self).__init__()
940
        self.output_size = output_size
941
        self.return_mask = return_mask
942 943 944
        self.name = name

    def forward(self, input):
945 946
        return F.adaptive_max_pool1d(input, self.output_size, self.return_mask,
                                     self.name)
947

948 949 950 951
    def extra_repr(self):
        return 'output_size={}, return_mask={}'.format(self.output_size,
                                                       self.return_mask)

952

Z
zhiboniu 已提交
953
class AdaptiveMaxPool2D(Layer):
954 955
    """
    This operation applies 2D adaptive max pooling on input tensor. The h and w dimensions
W
Wei Shengyu 已提交
956 957
    of the output tensor are determined by the parameter output_size. The difference between adaptive pooling and
    pooling is adaptive one focus on the output size.
958

959
    For adaptive max pool2d:
960

961
    ..  math::
962

W
Wei Shengyu 已提交
963
        hstart &= floor(i * H_{in} / H_{out})
964

W
Wei Shengyu 已提交
965
        hend &= ceil((i + 1) * H_{in} / H_{out})
966

W
Wei Shengyu 已提交
967
        wstart &= floor(j * W_{in} / W_{out})
968

W
Wei Shengyu 已提交
969
        wend &= ceil((j + 1) * W_{in} / W_{out})
970

W
Wei Shengyu 已提交
971
        Output(i ,j) &= max(Input[hstart:hend, wstart:wend])
972

973
    Parameters:
W
Wei Shengyu 已提交
974 975 976 977 978 979 980
        output_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain
            two element, (H, W). H and W can be either a int, or None which means the size will be the same as that of
            the input.
        return_mask(bool, optional): If true, the index of max pooling point will be returned along with outputs.
            It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
981
    Shape:
W
Wei Shengyu 已提交
982 983 984 985
        - x(Tensor): The input tensor of adaptive max pool2d operator, which is a 4-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of adaptive max pool2d operator, which is a 4-D tensor.
          The data type is same as input x.
D
Double_V 已提交
986

987
    Returns:
C
cnn 已提交
988
        A callable object of AdaptiveMaxPool2D.
989 990
    Examples:
        .. code-block:: python
991

992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
            # adaptive max pool2d
            # suppose input data in shape of [N, C, H, W], `output_size` is [m, n],
            # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
            # of input data into m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive max pool performs calculations as follow:
            #
            #     for i in range(m):
            #         for j in range(n):
            #             hstart = floor(i * H / m)
            #             hend = ceil((i + 1) * H / m)
            #             wstart = floor(i * W / n)
            #             wend = ceil((i + 1) * W / n)
            #             output[:, :, i, j] = max(input[:, :, hstart: hend, wstart: wend])
            #
            import paddle
            import numpy as np
1009

1010 1011
            input_data = np.random.rand(2, 3, 32, 32)
            x = paddle.to_tensor(input_data)
1012
            adaptive_max_pool = paddle.nn.AdaptiveMaxPool2D(output_size=3, return_mask=True)
1013 1014 1015
            pool_out, indices = adaptive_max_pool(x = x)
    """

1016
    def __init__(self, output_size, return_mask=False, name=None):
C
cnn 已提交
1017
        super(AdaptiveMaxPool2D, self).__init__()
1018
        self._output_size = output_size
1019
        self._return_mask = return_mask
1020 1021 1022
        self._name = name

    def forward(self, x):
1023 1024 1025 1026
        return F.adaptive_max_pool2d(x,
                                     output_size=self._output_size,
                                     return_mask=self._return_mask,
                                     name=self._name)
1027

1028 1029 1030 1031
    def extra_repr(self):
        return 'output_size={}, return_mask={}'.format(self._output_size,
                                                       self._return_mask)

1032

Z
zhiboniu 已提交
1033
class AdaptiveMaxPool3D(Layer):
1034
    """
W
Wei Shengyu 已提交
1035 1036 1037
    This operation applies 3D adaptive max pooling on input tensor. The h and w dimensions of the output tensor are
    determined by the parameter output_size. The difference between adaptive pooling and pooling is adaptive one focus
    on the output size.
1038

1039
    For adaptive max pool3d:
1040

1041
    ..  math::
1042

W
Wei Shengyu 已提交
1043
        dstart &= floor(i * D_{in} / D_{out})
1044

W
Wei Shengyu 已提交
1045
        dend &= ceil((i + 1) * D_{in} / D_{out})
1046

W
Wei Shengyu 已提交
1047
        hstart &= floor(j * H_{in} / H_{out})
1048

W
Wei Shengyu 已提交
1049
        hend &= ceil((j + 1) * H_{in} / H_{out})
1050

W
Wei Shengyu 已提交
1051
        wstart &= floor(k * W_{in} / W_{out})
1052

W
Wei Shengyu 已提交
1053
        wend &= ceil((k + 1) * W_{in} / W_{out})
1054

W
Wei Shengyu 已提交
1055
        Output(i ,j, k) &= max(Input[dstart:dend, hstart:hend, wstart:wend])
1056

1057
    Parameters:
W
Wei Shengyu 已提交
1058 1059 1060 1061 1062 1063 1064
        output_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain
            three elements, (D, H, W). D, H and W can be either a int, or None which means the size will be the same as
            that of the input.
        return_mask(bool, optional): If true, the index of max pooling point will be returned along with outputs.
            Default False.
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
1065
    Shape:
W
Wei Shengyu 已提交
1066 1067 1068 1069 1070
        - x(Tensor): The input tensor of adaptive max pool3d operator, which is a 5-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of adaptive max pool3d operator, which is a 5-D tensor.
          The data type is same as input x.

1071
    Returns:
C
cnn 已提交
1072
        A callable object of AdaptiveMaxPool3D.
1073 1074
    Examples:
        .. code-block:: python
1075

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
            # adaptive max pool3d
            # suppose input data in shape of [N, C, D, H, W], `output_size` is [l, m, n],
            # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
            # of input data into l * m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive max pool performs calculations as follow:
            #
            #     for i in range(l):
            #         for j in range(m):
            #             for k in range(n):
            #                 dstart = floor(i * D / l)
            #                 dend = ceil((i + 1) * D / l)
            #                 hstart = floor(j * H / m)
            #                 hend = ceil((j + 1) * H / m)
            #                 wstart = floor(k * W / n)
            #                 wend = ceil((k + 1) * W / n)
            #                 output[:, :, i, j, k] =
            #                     max(input[:, :, dstart:dend, hstart: hend, wstart: wend])
            import paddle
            import numpy as np
1096

1097 1098
            input_data = np.random.rand(2, 3, 8, 32, 32)
            x = paddle.to_tensor(input_data)
C
cnn 已提交
1099
            pool = paddle.nn.AdaptiveMaxPool3D(output_size=4)
1100 1101
            out = pool(x)
            # out shape: [2, 3, 4, 4, 4]
1102
            pool = paddle.nn.AdaptiveMaxPool3D(output_size=3, return_mask=True)
1103
            out, indices = pool(x)
1104
            # out shape: [2, 3, 4, 4, 4], indices shape: [2, 3, 4, 4, 4]
D
Double_V 已提交
1105

1106 1107
    """

1108
    def __init__(self, output_size, return_mask=False, name=None):
C
cnn 已提交
1109
        super(AdaptiveMaxPool3D, self).__init__()
1110
        self._output_size = output_size
1111
        self._return_mask = return_mask
1112 1113 1114
        self._name = name

    def forward(self, x):
1115 1116 1117 1118
        return F.adaptive_max_pool3d(x,
                                     output_size=self._output_size,
                                     return_mask=self._return_mask,
                                     name=self._name)
1119 1120 1121 1122

    def extra_repr(self):
        return 'output_size={}, return_mask={}'.format(self._output_size,
                                                       self._return_mask)
1123 1124


1125
class MaxUnPool1D(Layer):
1126
    r"""
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
    This API implements max unpooling 1d opereation.

    `max_unpool1d` accepts the output of `max_pool1d` as input, 
    including the indices of the maximum value and calculate the partial inverse. 
    All non-maximum values ​​are set to zero.

    - Input: :math:`(N, C, L_{in})`
    - Output: :math:`(N, C, L_{out})`, where
    
    .. math::
        L_{out} = (L_{in} - 1) * stride - 2 * padding + kernel\_size

    or as given by :attr:`output_size` in the call operator.
    
    Parameters:
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        padding (int | tuple): Padding that was added to the input.
        output_size(list|tuple, optional): The target output size. If output_size is not specified, 
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, stride, padding).
        data_format (string): The data format of the input and output data.
                        The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_length]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.


    Returns:
        A callable object of MaxUnPool1D.

    Examples:
        .. code-block:: python
        
            import paddle
            import paddle.nn.functional as F
            import numpy as np

            data = paddle.rand(shape=[1, 3, 16])
            pool_out, indices = F.max_pool1d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
            # pool_out shape: [1, 3, 8],  indices shape: [1, 3, 8]
            Unpool1D = paddle.nn.MaxUnPool1D(kernel_size=2, padding=0)
            unpool_out = Unpool1D(pool_out, indices)
            # unpool_out shape: [1, 3, 16]

    """

    def __init__(self,
                 kernel_size,
                 stride=None,
                 padding=0,
                 data_format="NCL",
                 output_size=None,
                 name=None):
        super(MaxUnPool1D, self).__init__()
        self.ksize = kernel_size
        self.stride = stride
        self.padding = padding
        self.data_format = data_format
        self.output_size = output_size
        self.name = name

    def forward(self, x, indices):
1193 1194 1195 1196 1197 1198 1199 1200
        return F.max_unpool1d(x,
                              indices,
                              kernel_size=self.ksize,
                              stride=self.stride,
                              padding=self.padding,
                              data_format=self.data_format,
                              output_size=self.output_size,
                              name=self.name)
1201 1202 1203 1204 1205

    def extra_repr(self):
        return 'output_size={}'.format(self.output_size)


1206
class MaxUnPool2D(Layer):
1207
    r"""
1208 1209
    This API implements max unpooling 2d opereation.

1210 1211 1212
    'max_unpool2d' accepts the output of 'max_unpool2d' as input
    Including the indices of the maximum value and calculating the partial inverse
    All non-maximum values ​​are set to zero.
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
    

    Parameters:
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        kernel_size (int|tuple): Size of the max unpooling window.
        padding (int | tuple): Padding that was added to the input.
        output_size(list|tuple, optional): The target output size. If output_size is not specified, 
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, padding).
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.


        - Input: :math:`(N, C, H_{in}, W_{in})`
        - Output: :math:`(N, C, H_{out}, W_{out})`, where

          .. math::
            H_{out} = (H_{in} - 1) \times \text{stride[0]} - 2 \times \text{padding[0]} + \text{kernel\_size[0]}

          .. math::
            W_{out} = (W_{in} - 1) \times \text{stride[1]} - 2 \times \text{padding[1]} + \text{kernel\_size[1]}

          or as given by :attr:`output_size` in the call operator

    Returns:
        A callable object of MaxUnPool2D.

            

    Examples:
        .. code-block:: python
        
        import paddle
        import paddle.nn.functional as F

X
xiaoting 已提交
1252
        data = paddle.rand(shape=[1,1,6,6])
1253 1254 1255
        pool_out, indices = F.max_pool2d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
        # pool_out shape: [1, 1, 3, 3],  indices shape: [1, 1, 3, 3]
        Unpool2D = paddle.nn.MaxUnPool2D(kernel_size=2, padding=0)
X
xiaoting 已提交
1256
        unpool_out = Unpool2D(pool_out, indices)
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
        # unpool_out shape: [1, 1, 6, 6]

    """

    def __init__(self,
                 kernel_size,
                 stride=None,
                 padding=0,
                 data_format="NCHW",
                 output_size=None,
                 name=None):
        super(MaxUnPool2D, self).__init__()
        self.ksize = kernel_size
        self.stride = stride
        self.padding = padding
        self.data_format = data_format
        self.output_size = output_size
        self.name = name

    def forward(self, x, indices):
1277 1278 1279 1280 1281 1282 1283 1284
        return F.max_unpool2d(x,
                              indices,
                              kernel_size=self.ksize,
                              stride=self.stride,
                              padding=self.padding,
                              data_format=self.data_format,
                              output_size=self.output_size,
                              name=self.name)
1285 1286 1287

    def extra_repr(self):
        return 'output_size={}'.format(self.output_size)
1288 1289 1290


class MaxUnPool3D(Layer):
1291
    r"""
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
    This API implements max unpooling 3d opereation.

    `max_unpool3d` accepts the output of `max_pool3d` as input, 
    including the indices of the maximum value and calculate the partial inverse. 
    All non-maximum values ​​are set to zero.

    - Input: :math:`(N, C, D_{in}, H_{in}, W_{in})`
    - Output: :math:`(N, C, D_{out}, H_{out}, W_{out})`, where
    
    .. math::
        D_{out} = (D_{in} - 1) * stride[0] - 2 * padding[0] + kernel\_size[0]

    .. math::
        H_{out} = (H_{in} - 1) * stride[1] - 2 * padding[1] + kernel\_size[1]

    .. math::
        W_{out} = (W_{in} - 1) * stride[2] - 2 * padding[2] + kernel\_size[2]

    or as given by :attr:`output_size` in the call operator

    
    Parameters:
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        padding (int | tuple): Padding that was added to the input.
        output_size(list|tuple, optional): The target output size. If output_size is not specified, 
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, stride, padding).
        data_format (string): The data format of the input and output data.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.


    Returns:
        A callable object of MaxUnPool3D.

    Examples:
        .. code-block:: python
        
            import paddle
            import paddle.nn.functional as F
            import numpy as np

            data = paddle.rand(shape=[1, 1, 4, 4, 6])
            pool_out, indices = F.max_pool3d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
            # pool_out shape: [1, 1, 2, 2, 3],  indices shape: [1, 1, 2, 2, 3]
            Unpool3D = paddle.nn.MaxUnPool3D(kernel_size=2, padding=0)
            unpool_out = Unpool3D(pool_out, indices)
            # unpool_out shape: [1, 1, 4, 4, 6]

    """

    def __init__(self,
                 kernel_size,
                 stride=None,
                 padding=0,
                 data_format="NCDHW",
                 output_size=None,
                 name=None):
        super(MaxUnPool3D, self).__init__()
        self.ksize = kernel_size
        self.stride = stride
        self.padding = padding
        self.data_format = data_format
        self.output_size = output_size
        self.name = name

    def forward(self, x, indices):
1365 1366 1367 1368 1369 1370 1371 1372
        return F.max_unpool3d(x,
                              indices,
                              kernel_size=self.ksize,
                              stride=self.stride,
                              padding=self.padding,
                              data_format=self.data_format,
                              output_size=self.output_size,
                              name=self.name)
1373 1374 1375

    def extra_repr(self):
        return 'output_size={}'.format(self.output_size)