pooling.py 58.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from ...fluid.layer_helper import LayerHelper
from .. import functional as F
Z
zhiboniu 已提交
17
from .. import Layer
18

19 20
__all__ = []

21

Z
zhiboniu 已提交
22
class AvgPool1D(Layer):
W
Wei Shengyu 已提交
23
    r"""
24
    This operation applies a 1D average pooling over an input signal composed
25
    of several input planes, based on the input, output_size, return_mask parameters.
26 27 28 29 30
    Input(X) and output(Out) are in NCL format, where N is batch
    size, C is the number of channels, L is the length of the feature.
    The output tensor shape will be [N, C, output_size].

    The output value of the layer with input size (N, C, L),
W
Wei Shengyu 已提交
31
    output (N, C, :math:`L_{out}`) and kernel_size ksize can be precisely described as
32 33 34 35
    For average pool1d:

    ..  math::

W
Wei Shengyu 已提交
36
        Output(N_i, C_i, l) = \frac{Input[N_i, C_i, stride \times l:stride \times l+k]}{ksize}
37

W
Wei Shengyu 已提交
38 39
    Parameters:
        kernel_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
40
            it must contain an integer.
W
Wei Shengyu 已提交
41 42 43
        stride(int|list|tuple, optional): The pool stride size. If pool stride size is a tuple or list,
            it must contain an integer. Default None, then stride will be equal to the kernel_size.
        padding(str|int|list|tuple, optional): The padding size. Padding could be in one of the following forms.
44 45 46 47 48 49
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
W
Wei Shengyu 已提交
50 51 52 53 54
        exclusive(bool, optional): Whether to exclude padding points in average pooling mode, default is `True`.
        ceil_mode(bool, optional): ${ceil_mode_comment}Whether to use the ceil function to calculate output height
            and width. If it is set to False, the floor function will be used. The default value is False.
        name(str, optional): For eed to detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no nset and None by default.
55 56

    Returns:
W
Wei Shengyu 已提交
57
        A callable object of AvgPool1D.
58 59 60 61 62

    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ValueError: If `padding` is a list or tuple but its length greater than 1.
63
        ShapeError: If the input is not a 3-D tensor.
64 65
        ShapeError: If the output's shape calculated is not greater than 0.

66
    Shape:
W
Wei Shengyu 已提交
67 68 69 70
        - x(Tensor): The input tensor of avg pool1d operator, which is a 3-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of avg pool1d  operator, which is a 3-D tensor.
          The data type is same as input x.
71

72 73 74
    Examples:

        .. code-block:: python
75

W
Wei Shengyu 已提交
76 77 78
            import paddle
            import paddle.nn as nn
            import numpy as np
79

W
Wei Shengyu 已提交
80 81 82 83
            data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
            AvgPool1D = nn.AvgPool1D(kernel_size=2, stride=2, padding=0)
            pool_out = AvgPool1D(data)
            # pool_out shape: [1, 3, 16]
84 85 86 87 88 89 90

    """

    def __init__(self,
                 kernel_size,
                 stride=None,
                 padding=0,
91
                 exclusive=True,
92 93
                 ceil_mode=False,
                 name=None):
C
cnn 已提交
94
        super(AvgPool1D, self).__init__()
95 96 97 98
        self.kernel_size = kernel_size
        self.stride = stride
        self.padding = padding
        self.ceil_mode = ceil_mode
99
        self.exclusive = exclusive
100 101 102 103
        self.name = name

    def forward(self, x):
        out = F.avg_pool1d(x, self.kernel_size, self.stride, self.padding,
104
                           self.exclusive, self.ceil_mode, self.name)
105 106
        return out

107 108 109 110
    def extra_repr(self):
        return 'kernel_size={kernel_size}, stride={stride}, padding={padding}'.format(
            **self.__dict__)

111

Z
zhiboniu 已提交
112
class AvgPool2D(Layer):
113
    r"""
114 115 116 117
    This operation applies 2D average pooling over input features based on the input,
    and kernel_size, stride, padding parameters. Input(X) and Output(Out) are
    in NCHW format, where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
118

119
    Example:
W
Wei Shengyu 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
        Input:
            X shape: :math:`(N, C, :math:`H_{in}`, :math:`W_{in}`)`
        Attr:
            kernel_size: ksize

        Output:
            Out shape: :math:`(N, C, :math:`H_{out}`, :math:`W_{out}`)`

        ..  math::

            Output(N_i, C_j, h, w)  = \frac{\sum_{m=0}^{ksize[0]-1} \sum_{n=0}^{ksize[1]-1}
                Input(N_i, C_j, stride[0] \times h + m, stride[1] \times w + n)}{ksize[0] * ksize[1]}

    Parameters:
        kernel_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
135 136
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
W
Wei Shengyu 已提交
137
        stride(int|list|tuple, optional): The pool stride size. If pool stride size is a tuple or list,
138 139
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
W
Wei Shengyu 已提交
140 141
            Default None, then stride will be equal to the kernel_size.
        padding(str|int|list|tuple, optional): The padding size. Padding could be in one of the following forms.
142 143 144 145 146 147
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
W
Wei Shengyu 已提交
148 149 150 151 152 153 154 155 156 157
        ceil_mode(bool, optional): When True, will use `ceil` instead of `floor` to compute the output shape.
        exclusive(bool, optional): Whether to exclude padding points in average pooling
            mode, default is `true`.
        divisor_override(float, optional): If specified, it will be used as divisor, otherwise kernel_size will be
            used. Default None.
        data_format(str, optional): The data format of the input and output data. An optional string from: `"NCHW"`,
            `"NDHW"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
158

159
    Shape:
W
Wei Shengyu 已提交
160 161 162 163
        - x(Tensor): The input tensor of avg pool2d operator, which is a 4-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of avg pool2d  operator, which is a 4-D tensor.
          The data type is same as input x.
164

W
Wei Shengyu 已提交
165 166
    Returns:
        A callable object of AvgPool2D.
167 168 169 170 171 172
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
    Examples:
        .. code-block:: python
173

W
Wei Shengyu 已提交
174 175 176
            import paddle
            import paddle.nn as nn
            import numpy as np
177

W
Wei Shengyu 已提交
178 179 180
            # max pool2d
            input = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32]).astype(np.float32))
            AvgPool2D = nn.AvgPool2D(kernel_size=2,
181
                                stride=2, padding=0)
W
Wei Shengyu 已提交
182 183
            output = AvgPool2D(input)
            # output.shape [1, 3, 16, 16]
184 185 186 187 188 189 190 191

    """

    def __init__(self,
                 kernel_size,
                 stride=None,
                 padding=0,
                 ceil_mode=False,
192
                 exclusive=True,
193 194
                 divisor_override=None,
                 data_format="NCHW",
195
                 name=None):
C
cnn 已提交
196
        super(AvgPool2D, self).__init__()
197
        self.ksize = kernel_size
198 199 200
        self.stride = stride
        self.padding = padding
        self.ceil_mode = ceil_mode
201
        self.exclusive = exclusive
202 203
        self.divisor = divisor_override
        self.data_format = data_format
204 205
        self.name = name

206
    def forward(self, x):
207 208 209 210 211 212 213 214 215
        return F.avg_pool2d(x,
                            kernel_size=self.ksize,
                            stride=self.stride,
                            padding=self.padding,
                            ceil_mode=self.ceil_mode,
                            exclusive=self.exclusive,
                            divisor_override=self.divisor,
                            data_format=self.data_format,
                            name=self.name)
216

217 218 219 220
    def extra_repr(self):
        return 'kernel_size={ksize}, stride={stride}, padding={padding}'.format(
            **self.__dict__)

221

Z
zhiboniu 已提交
222
class AvgPool3D(Layer):
223
    """
224 225 226 227
    This operation applies 3D max pooling over input features based on the input,
    and kernel_size, stride, padding parameters. Input(X) and Output(Out) are
    in NCDHW format, where N is batch size, C is the number of channels,
    H is the height of the feature,  D is the depth of the feature, and W is the width of the feature.
228

W
Wei Shengyu 已提交
229 230
    Parameters:
        kernel_size(int|list|tuple): The pool kernel size. If pool kernel size
231 232 233
            is a tuple or list, it must contain three integers,
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
W
Wei Shengyu 已提交
234
        stride(int|list|tuple, optional): The pool stride size. If pool stride size is a tuple or list,
235 236
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
            Otherwise, the pool stride size will be a cube of an int.
W
Wei Shengyu 已提交
237 238
            Default None, then stride will be equal to the kernel_size.
        padding(str|int|list|tuple, optional): The padding size. Padding could be in one of the following forms.
239 240 241 242 243 244
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
W
Wei Shengyu 已提交
245 246 247 248 249 250 251
        ceil_mode(bool, optional): ${ceil_mode_comment}
        exclusive(bool, optional): Whether to exclude padding points in average pooling mode, default is True.
        divisor_override(int|float, optional): if specified, it will be used as divisor, otherwise kernel_size will
            be used. Default None.
        data_format(str, optional): The data format of the input and output data. An optional string from: `"NCDHW"`,
             `"NDHWC"`. The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
             `[batch_size, input_channels, input_depth, input_height, input_width]`.
252
        name(str, optional): For detailed information, please refer
W
Wei Shengyu 已提交
253 254
             to :ref:`api_guide_Name`. Usually name is no need to set and
             None by default.
255

W
Wei Shengyu 已提交
256 257
    Returns:
        A callable object of AvgPool3D.
258
    Raises:
259 260 261 262 263
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.

    Shape:
W
Wei Shengyu 已提交
264 265 266 267
        - x(Tensor): The input tensor of avg pool3d operator, which is a 5-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of avg pool3d  operator, which is a 5-D tensor.
          The data type is same as input x.
268 269
    Examples:
        .. code-block:: python
270

W
Wei Shengyu 已提交
271 272 273
            import paddle
            import paddle.nn as nn
            import numpy as np
274

W
Wei Shengyu 已提交
275 276 277
            # avg pool3d
            input = paddle.to_tensor(np.random.uniform(-1, 1, [1, 2, 3, 32, 32]).astype(np.float32))
            AvgPool3D = nn.AvgPool3D(kernel_size=2,
278
                                   stride=2, padding=0)
W
Wei Shengyu 已提交
279 280
            output = AvgPool3D(input)
            # output.shape [1, 2, 3, 16, 16]
281

282 283
    """

284 285
    def __init__(self,
                 kernel_size,
W
Wei Shengyu 已提交
286
                 stride=None,
287 288
                 padding=0,
                 ceil_mode=False,
289
                 exclusive=True,
290 291 292
                 divisor_override=None,
                 data_format="NCDHW",
                 name=None):
C
cnn 已提交
293
        super(AvgPool3D, self).__init__()
294 295 296 297
        self.ksize = kernel_size
        self.stride = stride
        self.padding = padding
        self.ceil_mode = ceil_mode
298
        self.exclusive = exclusive
299 300
        self.divisor = divisor_override
        self.data_format = data_format
301 302
        self.name = name

303
    def forward(self, x):
304 305 306 307 308 309 310 311 312
        return F.avg_pool3d(x,
                            kernel_size=self.ksize,
                            stride=self.stride,
                            padding=self.padding,
                            ceil_mode=self.ceil_mode,
                            exclusive=self.exclusive,
                            divisor_override=self.divisor,
                            data_format=self.data_format,
                            name=self.name)
313

314 315 316 317
    def extra_repr(self):
        return 'kernel_size={ksize}, stride={stride}, padding={padding}'.format(
            **self.__dict__)

318

Z
zhiboniu 已提交
319
class MaxPool1D(Layer):
320
    """
W
Wei Shengyu 已提交
321 322 323 324 325
    This operation applies 1D max pooling over input signal
    composed of several input planes based on the input,
    and kernel_size, stride, padding parameters. Input(X) and Output(Out) are
    in NCL format, where N is batch size, C is the number of channels,
    L is the length of the feature.
326

327 328 329
    The output value of the layer with input size (N, C, L),
    output (N, C, L_{out}) and kernel_size k can be precisely described as
    For average pool1d:
330 331 332

    ..  math::

W
Wei Shengyu 已提交
333
        Output(N_i, C_i, l) =  max(Input[N_i, C_i, stride \times l:stride \times l+k])
334

W
Wei Shengyu 已提交
335 336
    Parameters:
        kernel_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
337
            it must contain an integer.
W
Wei Shengyu 已提交
338 339 340
        stride(int|list|tuple, optional): The pool stride size. If pool stride size is a tuple or list,
            it must contain an integer. Default None, then stride will be equal to the kernel_size.
        padding(str|int|list|tuple, optional): The padding size. Padding could be in one of the following forms.
341 342 343
            1. A string in ['valid', 'same'].
            2. An integer, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
W
Wei Shengyu 已提交
344 345
            4. A list[int] or tuple(int) whose length is 2, It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or(0,0).
346
            The default value is 0.
W
Wei Shengyu 已提交
347 348 349 350 351
        return_mask(bool, optional): Whether return the max indices along with the outputs. default is `False`.
        ceil_mode(bool, optional): Whether to use the ceil function to calculate output height and width.
            False is the default. If it is set to False, the floor function will be used. Default False.
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
352
    Returns:
W
Wei Shengyu 已提交
353
        A callable object of MaxPool1D.
354 355

    Raises:
356 357 358 359 360 361 362 363
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ValueError: If `padding` is a list or tuple but its length greater than 1.
        ShapeError: If the input is not a 3-D.
        ShapeError: If the output's shape calculated is not greater than 0.


    Shape:
W
Wei Shengyu 已提交
364 365 366 367
        - x(Tensor): The input tensor of max pool1d operator, which is a 3-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of max pool1d  operator, which is a 3-D tensor.
          The data type is same as input x.
368 369

    Examples:
370

371 372
        .. code-block:: python

W
Wei Shengyu 已提交
373 374 375
            import paddle
            import paddle.nn as nn
            import numpy as np
376

W
Wei Shengyu 已提交
377 378 379 380
            data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
            MaxPool1D = nn.MaxPool1D(kernel_size=2, stride=2, padding=0)
            pool_out = MaxPool1D(data)
            # pool_out shape: [1, 3, 16]
381

W
Wei Shengyu 已提交
382 383 384
            MaxPool1D = nn.MaxPool1D(kernel_size=2, stride=2, padding=0, return_mask=True)
            pool_out, indices = MaxPool1D(data)
            # pool_out shape: [1, 3, 16], indices shape: [1, 3, 16]
385 386 387

    """

388 389 390 391
    def __init__(self,
                 kernel_size,
                 stride=None,
                 padding=0,
392
                 return_mask=False,
393 394
                 ceil_mode=False,
                 name=None):
C
cnn 已提交
395
        super(MaxPool1D, self).__init__()
396 397 398 399
        self.kernel_size = kernel_size
        self.stride = stride
        self.padding = padding
        self.ceil_mode = ceil_mode
400
        self.return_mask = return_mask
401 402 403
        self.name = name

    def forward(self, input):
404
        out = F.max_pool1d(input, self.kernel_size, self.stride, self.padding,
405
                           self.return_mask, self.ceil_mode, self.name)
406
        return out
407

408 409 410 411
    def extra_repr(self):
        return 'kernel_size={kernel_size}, stride={stride}, padding={padding}'.format(
            **self.__dict__)

412

Z
zhiboniu 已提交
413
class MaxPool2D(Layer):
414
    r"""
415
    This operation applies 2D max pooling over input feature based on the input,
416 417 418 419 420
    and kernel_size, stride, padding parameters. Input(X) and Output(Out) are
    in NCHW format, where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.

    Example:
W
Wei Shengyu 已提交
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
        - Input:
            X shape: :math:`(N, C, H_{in}, W_{in})`
        - Attr:
            kernel_size: ksize

        - Output:
            Out shape: :math:`(N, C, H_{out}, W_{out})`

        ..  math::

            Output(N_i, C_j, h, w) = \max_{m=0, \ldots, ksize[0] -1} \max_{n=0, \ldots, ksize[1]-1}
                Input(N_i, C_j, stride[0] \times h + m, stride[1] \times w + n)

    Parameters:
        kernel_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
436 437
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
W
Wei Shengyu 已提交
438
        stride(int|list|tuple, optional): The pool stride size. If pool stride size is a tuple or list,
439
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
440
            Otherwise, the pool stride size will be a square of an int.
W
Wei Shengyu 已提交
441 442
            Default None, then stride will be equal to the kernel_size.
        padding(str|int|list|tuple, optional): The padding size. Padding could be in one of the following forms.
443 444 445
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
W
Wei Shengyu 已提交
446
            4. A list[int] or tuple(int) whose length is \4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
447 448
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
W
Wei Shengyu 已提交
449 450 451 452 453 454 455
        ceil_mode(bool, optional): when True, will use `ceil` instead of `floor` to compute the output shape
        return_mask(bool, optional): Whether to return the max indices along with the outputs.
        data_format(str, optional): The data format of the input and output data. An optional string from: `"NCHW"`, `"NDHW"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
456

W
Wei Shengyu 已提交
457 458
    Returns:
        A callable object of MaxPool2D.
459 460 461 462
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
463 464

    Shape:
W
Wei Shengyu 已提交
465 466 467 468
        - x(Tensor): The input tensor of max pool2d operator, which is a 4-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of max pool2d  operator, which is a 4-D tensor.
          The data type is same as input x.
469

470 471
    Examples:
        .. code-block:: python
472

W
Wei Shengyu 已提交
473 474 475
            import paddle
            import paddle.nn as nn
            import numpy as np
476

W
Wei Shengyu 已提交
477 478 479
            # max pool2d
            input = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32]).astype(np.float32))
            MaxPool2D = nn.MaxPool2D(kernel_size=2,
480
                                   stride=2, padding=0)
W
Wei Shengyu 已提交
481 482
            output = MaxPool2D(input)
            # output.shape [1, 3, 16, 16]
483

W
Wei Shengyu 已提交
484 485 486 487
            # for return_mask=True
            MaxPool2D = nn.MaxPool2D(kernel_size=2, stride=2, padding=0, return_mask=True)
            output, max_indices = MaxPool2D(input)
            # output.shape [1, 3, 16, 16], max_indices.shape [1, 3, 16, 16],
488 489 490 491 492 493
    """

    def __init__(self,
                 kernel_size,
                 stride=None,
                 padding=0,
494
                 return_mask=False,
495 496 497
                 ceil_mode=False,
                 data_format="NCHW",
                 name=None):
C
cnn 已提交
498
        super(MaxPool2D, self).__init__()
499 500 501
        self.ksize = kernel_size
        self.stride = stride
        self.padding = padding
502
        self.return_mask = return_mask
503 504 505 506 507
        self.ceil_mode = ceil_mode
        self.data_format = data_format
        self.name = name

    def forward(self, x):
508 509 510 511 512 513 514 515
        return F.max_pool2d(x,
                            kernel_size=self.ksize,
                            stride=self.stride,
                            padding=self.padding,
                            return_mask=self.return_mask,
                            ceil_mode=self.ceil_mode,
                            data_format=self.data_format,
                            name=self.name)
516

517 518 519 520
    def extra_repr(self):
        return 'kernel_size={ksize}, stride={stride}, padding={padding}'.format(
            **self.__dict__)

521

Z
zhiboniu 已提交
522
class MaxPool3D(Layer):
523
    """
524
    This operation applies 3D max pooling over input features based on the input,
525
    and kernel_size, stride, padding parameters. Input(X) and Output(Out) are
526 527
    in NCDHW format, where N is batch size, C is the number of channels,
    H is the height of the feature,  D is the depth of the feature, and W is the width of the feature.
528

W
Wei Shengyu 已提交
529 530
    Parameters:
        kernel_size(int|list|tuple): The pool kernel size. If the kernel size
531
            is a tuple or list, it must contain three integers,
532
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
533
            Otherwise, the pool kernel size will be the cube of an int.
W
Wei Shengyu 已提交
534
        stride(int|list|tuple, optional): The pool stride size. If pool stride size is a tuple or list,
535 536
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
            Otherwise, the pool stride size will be a cube of an int.
W
Wei Shengyu 已提交
537 538
            Default None, then stride will be equal to the kernel_size.
        padding(str|int|list|tuple, optional): The padding size. Padding could be in one of the following forms.
539 540 541
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
W
Wei Shengyu 已提交
542
            4. A list[int] or tuple(int) whose length is \6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
543 544
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
W
Wei Shengyu 已提交
545 546 547 548 549 550 551
        ceil_mode(bool, optional): ${ceil_mode_comment}
        return_mask(bool, optional): Whether to return the max indices along with the outputs.
        data_format(str, optional): The data format of the input and output data. An optional string from: `"NCDHW"`,
            `"NDHWC"`. The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
552 553


W
Wei Shengyu 已提交
554 555
    Returns:
        A callable object of MaxPool3D.
556 557 558 559
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
560 561

    Shape:
W
Wei Shengyu 已提交
562 563 564 565
        - x(Tensor): The input tensor of max pool3d operator, which is a 5-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of max pool3d  operator, which is a 5-D tensor.
          The data type is same as input x.
566

567 568
    Examples:
        .. code-block:: python
569

W
Wei Shengyu 已提交
570 571 572
            import paddle
            import paddle.nn as nn
            import numpy as np
573

W
Wei Shengyu 已提交
574 575 576
            # max pool3d
            input = paddle.to_tensor(np.random.uniform(-1, 1, [1, 2, 3, 32, 32]).astype(np.float32))
            MaxPool3D = nn.MaxPool3D(kernel_size=2,
577
                                   stride=2, padding=0)
W
Wei Shengyu 已提交
578 579
            output = MaxPool3D(input)
            # output.shape [1, 2, 3, 16, 16]
580

W
Wei Shengyu 已提交
581 582 583 584
            # for return_mask=True
            MaxPool3D = nn.MaxPool3D(kernel_size=2, stride=2, padding=0, return_mask=True)
            output, max_indices = MaxPool3D(input)
            # output.shape [1, 2, 3, 16, 16], max_indices.shape [1, 2, 3, 16, 16],
585 586 587 588
    """

    def __init__(self,
                 kernel_size,
P
parap1uie-s 已提交
589 590
                 stride=None,
                 padding=0,
591
                 return_mask=False,
592 593 594
                 ceil_mode=False,
                 data_format="NCDHW",
                 name=None):
C
cnn 已提交
595
        super(MaxPool3D, self).__init__()
596 597 598
        self.ksize = kernel_size
        self.stride = stride
        self.padding = padding
599
        self.return_mask = return_mask
600 601 602 603 604
        self.ceil_mode = ceil_mode
        self.data_format = data_format
        self.name = name

    def forward(self, x):
605 606 607 608 609 610 611 612
        return F.max_pool3d(x,
                            kernel_size=self.ksize,
                            stride=self.stride,
                            padding=self.padding,
                            return_mask=self.return_mask,
                            ceil_mode=self.ceil_mode,
                            data_format=self.data_format,
                            name=self.name)
613

614 615 616 617
    def extra_repr(self):
        return 'kernel_size={ksize}, stride={stride}, padding={padding}'.format(
            **self.__dict__)

618

Z
zhiboniu 已提交
619
class AdaptiveAvgPool1D(Layer):
620
    r"""
621

622 623 624 625 626
    A 1D adaptive average pooling over an input signal composed
    of several input planes, based on :attr:`output_size`.
    Input and output are in NCL format, where N is batch
    size, C is the number of channels and L is the length of the feature.
    The shape of output will be :math:`[N, C, output\_size]`.
627

628
    The formulation for average adaptive pool1d is
629 630 631

    ..  math::

632
        lstart &= \lfloor i * L_{in} / L_{out}\rfloor,
633

634
        lend &= \lceil(i + 1) * L_{in} / L_{out}\rceil,
635

636
        Output(i) &= \frac{\sum Input[lstart:lend]}{lend - lstart}.
637

W
Wei Shengyu 已提交
638
    Parameters:
639 640
        output_size(int): The target output size. Its data type must be int.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
641

642
    Returns:
643
        A callable object for computing 1D adaptive average pooling.
644

645 646
    Examples:
        .. code-block:: python
647
            :name: AdaptiveAvgPool1D-example
W
Wei Shengyu 已提交
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
            # average adaptive pool1d
            # suppose input data in shape of [N, C, L], `output_size` is m or [m],
            # output shape is [N, C, m], adaptive pool divide L dimension
            # of input data into m grids averagely and performs poolings in each
            # grid to get output.
            # adaptive max pool performs calculations as follow:
            #
            #     for i in range(m):
            #         lstart = floor(i * L / m)
            #         lend = ceil((i + 1) * L / m)
            #         output[:, :, i] = sum(input[:, :, lstart: lend])/(lend - lstart)
            #
            import paddle
            import paddle.nn as nn
            import numpy as np

            data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
            AdaptiveAvgPool1D = nn.AdaptiveAvgPool1D(output_size=16)
            pool_out = AdaptiveAvgPool1D(data)
            # pool_out shape: [1, 3, 16]
668 669
    """

670
    def __init__(self, output_size, name=None):
C
cnn 已提交
671
        super(AdaptiveAvgPool1D, self).__init__()
672
        self.output_size = output_size
673 674
        self.name = name

675 676 677
    def forward(self, input):
        return F.adaptive_avg_pool1d(input, self.output_size, self.name)

678 679 680
    def extra_repr(self):
        return 'output_size={}'.format(self.output_size)

681

Z
zhiboniu 已提交
682
class AdaptiveAvgPool2D(Layer):
683
    r"""
684 685 686 687 688 689 690 691

    This operation applies 2D adaptive avg pooling on input tensor. The h and w dimensions
    of the output tensor are determined by the parameter output_size.

    For avg adaptive pool2d:

    ..  math::

W
Wei Shengyu 已提交
692
        hstart &= floor(i * H_{in} / H_{out})
693

W
Wei Shengyu 已提交
694
        hend &= ceil((i + 1) * H_{in} / H_{out})
695

W
Wei Shengyu 已提交
696
        wstart &= floor(j * W_{in} / W_{out})
697

W
Wei Shengyu 已提交
698
        wend &= ceil((j + 1) * W_{in} / W_{out})
699

W
Wei Shengyu 已提交
700
        Output(i ,j) &= \frac{\sum Input[hstart:hend, wstart:wend]}{(hend - hstart) * (wend - wstart)}
701 702 703


    Parameters:
W
Wei Shengyu 已提交
704
        output_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
705 706
            it must contain two element, (H, W). H and W can be either a int, or None which means
            the size will be the same as that of the input.
W
Wei Shengyu 已提交
707
        data_format(str, optional): The data format of the input and output data. An optional string
708 709
            from: "NCHW", "NHWC". The default is "NCHW". When it is "NCHW", the data is stored in
            the order of: [batch_size, input_channels, input_height, input_width].
W
Wei Shengyu 已提交
710 711
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
712 713

    Shape:
W
Wei Shengyu 已提交
714 715 716 717
        - x(Tensor): The input tensor of adaptive avg pool2d operator, which is a 4-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of adaptive avg pool2d operator, which is a 4-D tensor.
          The data type is same as input x.
718 719

    Returns:
C
cnn 已提交
720
        A callable object of AdaptiveAvgPool2D.
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741

    Examples:
        .. code-block:: python

            # adaptive avg pool2d
            # suppose input data in shape of [N, C, H, W], `output_size` is [m, n],
            # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
            # of input data into m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(m):
            #         for j in range(n):
            #             hstart = floor(i * H / m)
            #             hend = ceil((i + 1) * H / m)
            #             wstart = floor(i * W / n)
            #             wend = ceil((i + 1) * W / n)
            #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
            #
            import paddle
            import numpy as np
742

743 744 745
            input_data = np.random.rand(2, 3, 32, 32)
            x = paddle.to_tensor(input_data)
            # x.shape is [2, 3, 32, 32]
C
cnn 已提交
746
            adaptive_avg_pool = paddle.nn.AdaptiveAvgPool2D(output_size=3)
747 748 749 750 751
            pool_out = adaptive_avg_pool(x = x)
            # pool_out.shape is [2, 3, 3, 3]
    """

    def __init__(self, output_size, data_format="NCHW", name=None):
C
cnn 已提交
752
        super(AdaptiveAvgPool2D, self).__init__()
753 754 755 756 757
        self._output_size = output_size
        self._data_format = data_format
        self._name = name

    def forward(self, x):
758 759 760 761
        return F.adaptive_avg_pool2d(x,
                                     output_size=self._output_size,
                                     data_format=self._data_format,
                                     name=self._name)
762

763 764 765
    def extra_repr(self):
        return 'output_size={}'.format(self._output_size)

766

Z
zhiboniu 已提交
767
class AdaptiveAvgPool3D(Layer):
768
    r"""
769 770 771 772 773 774 775 776

    This operation applies 3D adaptive avg pooling on input tensor. The h and w dimensions
    of the output tensor are determined by the parameter output_size.

    For avg adaptive pool3d:

    ..  math::

W
Wei Shengyu 已提交
777
        dstart &= floor(i * D_{in} / D_{out})
778

W
Wei Shengyu 已提交
779
        dend &= ceil((i + 1) * D_{in} / D_{out})
780

W
Wei Shengyu 已提交
781
        hstart &= floor(j * H_{in} / H_{out})
782

W
Wei Shengyu 已提交
783
        hend &= ceil((j + 1) * H_{in} / H_{out})
784

W
Wei Shengyu 已提交
785
        wstart &= floor(k * W_{in} / W_{out})
786

W
Wei Shengyu 已提交
787
        wend &= ceil((k + 1) * W_{in} / W_{out})
788

W
Wei Shengyu 已提交
789 790
        Output(i ,j, k) &= \frac{\sum Input[dstart:dend, hstart:hend, wstart:wend]}
            {(dend - dstart) * (hend - hstart) * (wend - wstart)}
791 792 793


    Parameters:
W
Wei Shengyu 已提交
794
        output_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
795 796
            it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means
            the size will be the same as that of the input.
W
Wei Shengyu 已提交
797
        data_format(str, optional): The data format of the input and output data. An optional string
798 799
            from: "NCDHW", "NDHWC". The default is "NCDHW". When it is "NCDHW", the data is stored in
            the order of: [batch_size, input_channels, input_depth, input_height, input_width].
W
Wei Shengyu 已提交
800 801
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
802
    Shape:
W
Wei Shengyu 已提交
803 804 805 806
        - x(Tensor): The input tensor of adaptive avg pool3d operator, which is a 5-D tensor.
          The data type can be float32, float64\.
        - output(Tensor): The output tensor of adaptive avg pool3d operator, which is a 5-D tensor.
          The data type is same as input x.
807 808

    Returns:
C
cnn 已提交
809
        A callable object of AdaptiveAvgPool3D.
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833

    Examples:
        .. code-block:: python

            # adaptive avg pool3d
            # suppose input data in shape of [N, C, D, H, W], `output_size` is [l, m, n],
            # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
            # of input data into l * m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(l):
            #         for j in range(m):
            #             for k in range(n):
            #                 dstart = floor(i * D / l)
            #                 dend = ceil((i + 1) * D / l)
            #                 hstart = floor(j * H / m)
            #                 hend = ceil((j + 1) * H / m)
            #                 wstart = floor(k * W / n)
            #                 wend = ceil((k + 1) * W / n)
            #                 output[:, :, i, j, k] =
            #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
            import paddle
            import numpy as np
834

835 836 837
            input_data = np.random.rand(2, 3, 8, 32, 32)
            x = paddle.to_tensor(input_data)
            # x.shape is [2, 3, 8, 32, 32]
C
cnn 已提交
838
            adaptive_avg_pool = paddle.nn.AdaptiveAvgPool3D(output_size=3)
839 840 841 842 843
            pool_out = adaptive_avg_pool(x = x)
            # pool_out = [2, 3, 3, 3, 3]
    """

    def __init__(self, output_size, data_format="NCDHW", name=None):
C
cnn 已提交
844
        super(AdaptiveAvgPool3D, self).__init__()
845 846 847 848 849
        self._output_size = output_size
        self._data_format = data_format
        self._name = name

    def forward(self, x):
850 851 852 853
        return F.adaptive_avg_pool3d(x,
                                     output_size=self._output_size,
                                     data_format=self._data_format,
                                     name=self._name)
854

855 856 857
    def extra_repr(self):
        return 'output_size={}'.format(self._output_size)

858

Z
zhiboniu 已提交
859
class AdaptiveMaxPool1D(Layer):
860 861 862
    """

    This operation applies a 1D adaptive max pooling over an input signal composed
863
    of several input planes, based on the input, output_size, return_mask parameters.
864 865 866 867 868 869 870 871
    Input(X) and output(Out) are in NCL format, where N is batch
    size, C is the number of channels, L is the length of the feature.
    The output tensor shape will be [N, C, output_size].

    For max adaptive pool1d:

    ..  math::

W
Wei Shengyu 已提交
872
        lstart &= floor(i * L_{in} / L_{out})
873

W
Wei Shengyu 已提交
874
        lend &= ceil((i + 1) * L_{in} / L_{out})
875

W
Wei Shengyu 已提交
876
        Output(i) &= max(Input[lstart:lend])
877

W
Wei Shengyu 已提交
878 879 880 881
    Parameters:
        output_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain one int.
        return_mask(bool, optional): If true, the index of max pooling point will be returned along
882
            with outputs. It cannot be set in average pooling type. Default False.
W
Wei Shengyu 已提交
883 884
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
885
    Returns:
W
Wei Shengyu 已提交
886
        A callable object of AdaptiveMaxPool1D.
887 888 889 890 891

    Raises:
        ValueError: 'pool_size' should be a integer or list or tuple with length as 1.

    Shape:
W
Wei Shengyu 已提交
892 893 894 895
        - x(Tensor): The input tensor of adaptive max pool1d operator, which is a 3-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of adaptive max pool1d operator, which is a 3-D tensor.
          The data type is same as input x.
896 897 898 899

    Examples:
        .. code-block:: python

W
Wei Shengyu 已提交
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
            # max adaptive pool1d
            # suppose input data in shape of [N, C, L], `output_size` is m or [m],
            # output shape is [N, C, m], adaptive pool divide L dimension
            # of input data into m grids averagely and performs poolings in each
            # grid to get output.
            # adaptive max pool performs calculations as follow:
            #
            #     for i in range(m):
            #         lstart = floor(i * L / m)
            #         lend = ceil((i + 1) * L / m)
            #         output[:, :, i] = max(input[:, :, lstart: lend])
            #
            import paddle
            import paddle.nn as nn
            import numpy as np

            data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
            AdaptiveMaxPool1D = nn.AdaptiveMaxPool1D(output_size=16)
            pool_out = AdaptiveMaxPool1D(data)
            # pool_out shape: [1, 3, 16]

            # for return_mask = true
            AdaptiveMaxPool1D = nn.AdaptiveMaxPool1D(output_size=16, return_mask=True)
            pool_out, indices = AdaptiveMaxPool1D(data)
            # pool_out shape: [1, 3, 16], indices shape: [1, 3, 16]
925 926 927

    """

928
    def __init__(self, output_size, return_mask=False, name=None):
C
cnn 已提交
929
        super(AdaptiveMaxPool1D, self).__init__()
930
        self.output_size = output_size
931
        self.return_mask = return_mask
932 933 934
        self.name = name

    def forward(self, input):
935 936
        return F.adaptive_max_pool1d(input, self.output_size, self.return_mask,
                                     self.name)
937

938 939 940 941
    def extra_repr(self):
        return 'output_size={}, return_mask={}'.format(self.output_size,
                                                       self.return_mask)

942

Z
zhiboniu 已提交
943
class AdaptiveMaxPool2D(Layer):
944 945
    """
    This operation applies 2D adaptive max pooling on input tensor. The h and w dimensions
W
Wei Shengyu 已提交
946 947
    of the output tensor are determined by the parameter output_size. The difference between adaptive pooling and
    pooling is adaptive one focus on the output size.
948

949
    For adaptive max pool2d:
950

951
    ..  math::
952

W
Wei Shengyu 已提交
953
        hstart &= floor(i * H_{in} / H_{out})
954

W
Wei Shengyu 已提交
955
        hend &= ceil((i + 1) * H_{in} / H_{out})
956

W
Wei Shengyu 已提交
957
        wstart &= floor(j * W_{in} / W_{out})
958

W
Wei Shengyu 已提交
959
        wend &= ceil((j + 1) * W_{in} / W_{out})
960

W
Wei Shengyu 已提交
961
        Output(i ,j) &= max(Input[hstart:hend, wstart:wend])
962

963
    Parameters:
W
Wei Shengyu 已提交
964 965 966 967 968 969 970
        output_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain
            two element, (H, W). H and W can be either a int, or None which means the size will be the same as that of
            the input.
        return_mask(bool, optional): If true, the index of max pooling point will be returned along with outputs.
            It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
971
    Shape:
W
Wei Shengyu 已提交
972 973 974 975
        - x(Tensor): The input tensor of adaptive max pool2d operator, which is a 4-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of adaptive max pool2d operator, which is a 4-D tensor.
          The data type is same as input x.
D
Double_V 已提交
976

977
    Returns:
C
cnn 已提交
978
        A callable object of AdaptiveMaxPool2D.
979 980
    Examples:
        .. code-block:: python
981

982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
            # adaptive max pool2d
            # suppose input data in shape of [N, C, H, W], `output_size` is [m, n],
            # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
            # of input data into m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive max pool performs calculations as follow:
            #
            #     for i in range(m):
            #         for j in range(n):
            #             hstart = floor(i * H / m)
            #             hend = ceil((i + 1) * H / m)
            #             wstart = floor(i * W / n)
            #             wend = ceil((i + 1) * W / n)
            #             output[:, :, i, j] = max(input[:, :, hstart: hend, wstart: wend])
            #
            import paddle
            import numpy as np
999

1000 1001
            input_data = np.random.rand(2, 3, 32, 32)
            x = paddle.to_tensor(input_data)
1002
            adaptive_max_pool = paddle.nn.AdaptiveMaxPool2D(output_size=3, return_mask=True)
1003 1004 1005
            pool_out, indices = adaptive_max_pool(x = x)
    """

1006
    def __init__(self, output_size, return_mask=False, name=None):
C
cnn 已提交
1007
        super(AdaptiveMaxPool2D, self).__init__()
1008
        self._output_size = output_size
1009
        self._return_mask = return_mask
1010 1011 1012
        self._name = name

    def forward(self, x):
1013 1014 1015 1016
        return F.adaptive_max_pool2d(x,
                                     output_size=self._output_size,
                                     return_mask=self._return_mask,
                                     name=self._name)
1017

1018 1019 1020 1021
    def extra_repr(self):
        return 'output_size={}, return_mask={}'.format(self._output_size,
                                                       self._return_mask)

1022

Z
zhiboniu 已提交
1023
class AdaptiveMaxPool3D(Layer):
1024
    """
W
Wei Shengyu 已提交
1025 1026 1027
    This operation applies 3D adaptive max pooling on input tensor. The h and w dimensions of the output tensor are
    determined by the parameter output_size. The difference between adaptive pooling and pooling is adaptive one focus
    on the output size.
1028

1029
    For adaptive max pool3d:
1030

1031
    ..  math::
1032

W
Wei Shengyu 已提交
1033
        dstart &= floor(i * D_{in} / D_{out})
1034

W
Wei Shengyu 已提交
1035
        dend &= ceil((i + 1) * D_{in} / D_{out})
1036

W
Wei Shengyu 已提交
1037
        hstart &= floor(j * H_{in} / H_{out})
1038

W
Wei Shengyu 已提交
1039
        hend &= ceil((j + 1) * H_{in} / H_{out})
1040

W
Wei Shengyu 已提交
1041
        wstart &= floor(k * W_{in} / W_{out})
1042

W
Wei Shengyu 已提交
1043
        wend &= ceil((k + 1) * W_{in} / W_{out})
1044

W
Wei Shengyu 已提交
1045
        Output(i ,j, k) &= max(Input[dstart:dend, hstart:hend, wstart:wend])
1046

1047
    Parameters:
W
Wei Shengyu 已提交
1048 1049 1050 1051 1052 1053 1054
        output_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain
            three elements, (D, H, W). D, H and W can be either a int, or None which means the size will be the same as
            that of the input.
        return_mask(bool, optional): If true, the index of max pooling point will be returned along with outputs.
            Default False.
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
1055
    Shape:
W
Wei Shengyu 已提交
1056 1057 1058 1059 1060
        - x(Tensor): The input tensor of adaptive max pool3d operator, which is a 5-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of adaptive max pool3d operator, which is a 5-D tensor.
          The data type is same as input x.

1061
    Returns:
C
cnn 已提交
1062
        A callable object of AdaptiveMaxPool3D.
1063 1064
    Examples:
        .. code-block:: python
1065

1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
            # adaptive max pool3d
            # suppose input data in shape of [N, C, D, H, W], `output_size` is [l, m, n],
            # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
            # of input data into l * m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive max pool performs calculations as follow:
            #
            #     for i in range(l):
            #         for j in range(m):
            #             for k in range(n):
            #                 dstart = floor(i * D / l)
            #                 dend = ceil((i + 1) * D / l)
            #                 hstart = floor(j * H / m)
            #                 hend = ceil((j + 1) * H / m)
            #                 wstart = floor(k * W / n)
            #                 wend = ceil((k + 1) * W / n)
            #                 output[:, :, i, j, k] =
            #                     max(input[:, :, dstart:dend, hstart: hend, wstart: wend])
            import paddle
            import numpy as np
1086

1087 1088
            input_data = np.random.rand(2, 3, 8, 32, 32)
            x = paddle.to_tensor(input_data)
C
cnn 已提交
1089
            pool = paddle.nn.AdaptiveMaxPool3D(output_size=4)
1090 1091
            out = pool(x)
            # out shape: [2, 3, 4, 4, 4]
1092
            pool = paddle.nn.AdaptiveMaxPool3D(output_size=3, return_mask=True)
1093
            out, indices = pool(x)
1094
            # out shape: [2, 3, 4, 4, 4], indices shape: [2, 3, 4, 4, 4]
D
Double_V 已提交
1095

1096 1097
    """

1098
    def __init__(self, output_size, return_mask=False, name=None):
C
cnn 已提交
1099
        super(AdaptiveMaxPool3D, self).__init__()
1100
        self._output_size = output_size
1101
        self._return_mask = return_mask
1102 1103 1104
        self._name = name

    def forward(self, x):
1105 1106 1107 1108
        return F.adaptive_max_pool3d(x,
                                     output_size=self._output_size,
                                     return_mask=self._return_mask,
                                     name=self._name)
1109 1110 1111 1112

    def extra_repr(self):
        return 'output_size={}, return_mask={}'.format(self._output_size,
                                                       self._return_mask)
1113 1114


1115
class MaxUnPool1D(Layer):
1116
    r"""
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
    This API implements max unpooling 1d opereation.

    `max_unpool1d` accepts the output of `max_pool1d` as input, 
    including the indices of the maximum value and calculate the partial inverse. 
    All non-maximum values ​​are set to zero.

    - Input: :math:`(N, C, L_{in})`
    - Output: :math:`(N, C, L_{out})`, where
    
    .. math::
        L_{out} = (L_{in} - 1) * stride - 2 * padding + kernel\_size

    or as given by :attr:`output_size` in the call operator.
    
    Parameters:
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        padding (int | tuple): Padding that was added to the input.
        output_size(list|tuple, optional): The target output size. If output_size is not specified, 
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, stride, padding).
        data_format (string): The data format of the input and output data.
                        The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_length]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.


    Returns:
        A callable object of MaxUnPool1D.

    Examples:
        .. code-block:: python
        
            import paddle
            import paddle.nn.functional as F
            import numpy as np

            data = paddle.rand(shape=[1, 3, 16])
            pool_out, indices = F.max_pool1d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
            # pool_out shape: [1, 3, 8],  indices shape: [1, 3, 8]
            Unpool1D = paddle.nn.MaxUnPool1D(kernel_size=2, padding=0)
            unpool_out = Unpool1D(pool_out, indices)
            # unpool_out shape: [1, 3, 16]

    """

    def __init__(self,
                 kernel_size,
                 stride=None,
                 padding=0,
                 data_format="NCL",
                 output_size=None,
                 name=None):
        super(MaxUnPool1D, self).__init__()
        self.ksize = kernel_size
        self.stride = stride
        self.padding = padding
        self.data_format = data_format
        self.output_size = output_size
        self.name = name

    def forward(self, x, indices):
1183 1184 1185 1186 1187 1188 1189 1190
        return F.max_unpool1d(x,
                              indices,
                              kernel_size=self.ksize,
                              stride=self.stride,
                              padding=self.padding,
                              data_format=self.data_format,
                              output_size=self.output_size,
                              name=self.name)
1191 1192 1193 1194 1195

    def extra_repr(self):
        return 'output_size={}'.format(self.output_size)


1196
class MaxUnPool2D(Layer):
1197
    r"""
1198 1199
    This API implements max unpooling 2d opereation.

1200 1201 1202
    'max_unpool2d' accepts the output of 'max_unpool2d' as input
    Including the indices of the maximum value and calculating the partial inverse
    All non-maximum values ​​are set to zero.
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
    

    Parameters:
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        kernel_size (int|tuple): Size of the max unpooling window.
        padding (int | tuple): Padding that was added to the input.
        output_size(list|tuple, optional): The target output size. If output_size is not specified, 
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, padding).
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.


        - Input: :math:`(N, C, H_{in}, W_{in})`
        - Output: :math:`(N, C, H_{out}, W_{out})`, where

          .. math::
            H_{out} = (H_{in} - 1) \times \text{stride[0]} - 2 \times \text{padding[0]} + \text{kernel\_size[0]}

          .. math::
            W_{out} = (W_{in} - 1) \times \text{stride[1]} - 2 \times \text{padding[1]} + \text{kernel\_size[1]}

          or as given by :attr:`output_size` in the call operator

    Returns:
        A callable object of MaxUnPool2D.

            

    Examples:
        .. code-block:: python
        
        import paddle
        import paddle.nn.functional as F

X
xiaoting 已提交
1242
        data = paddle.rand(shape=[1,1,6,6])
1243 1244 1245
        pool_out, indices = F.max_pool2d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
        # pool_out shape: [1, 1, 3, 3],  indices shape: [1, 1, 3, 3]
        Unpool2D = paddle.nn.MaxUnPool2D(kernel_size=2, padding=0)
X
xiaoting 已提交
1246
        unpool_out = Unpool2D(pool_out, indices)
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
        # unpool_out shape: [1, 1, 6, 6]

    """

    def __init__(self,
                 kernel_size,
                 stride=None,
                 padding=0,
                 data_format="NCHW",
                 output_size=None,
                 name=None):
        super(MaxUnPool2D, self).__init__()
        self.ksize = kernel_size
        self.stride = stride
        self.padding = padding
        self.data_format = data_format
        self.output_size = output_size
        self.name = name

    def forward(self, x, indices):
1267 1268 1269 1270 1271 1272 1273 1274
        return F.max_unpool2d(x,
                              indices,
                              kernel_size=self.ksize,
                              stride=self.stride,
                              padding=self.padding,
                              data_format=self.data_format,
                              output_size=self.output_size,
                              name=self.name)
1275 1276 1277

    def extra_repr(self):
        return 'output_size={}'.format(self.output_size)
1278 1279 1280


class MaxUnPool3D(Layer):
1281
    r"""
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
    This API implements max unpooling 3d opereation.

    `max_unpool3d` accepts the output of `max_pool3d` as input, 
    including the indices of the maximum value and calculate the partial inverse. 
    All non-maximum values ​​are set to zero.

    - Input: :math:`(N, C, D_{in}, H_{in}, W_{in})`
    - Output: :math:`(N, C, D_{out}, H_{out}, W_{out})`, where
    
    .. math::
        D_{out} = (D_{in} - 1) * stride[0] - 2 * padding[0] + kernel\_size[0]

    .. math::
        H_{out} = (H_{in} - 1) * stride[1] - 2 * padding[1] + kernel\_size[1]

    .. math::
        W_{out} = (W_{in} - 1) * stride[2] - 2 * padding[2] + kernel\_size[2]

    or as given by :attr:`output_size` in the call operator

    
    Parameters:
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        padding (int | tuple): Padding that was added to the input.
        output_size(list|tuple, optional): The target output size. If output_size is not specified, 
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, stride, padding).
        data_format (string): The data format of the input and output data.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.


    Returns:
        A callable object of MaxUnPool3D.

    Examples:
        .. code-block:: python
        
            import paddle
            import paddle.nn.functional as F
            import numpy as np

            data = paddle.rand(shape=[1, 1, 4, 4, 6])
            pool_out, indices = F.max_pool3d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
            # pool_out shape: [1, 1, 2, 2, 3],  indices shape: [1, 1, 2, 2, 3]
            Unpool3D = paddle.nn.MaxUnPool3D(kernel_size=2, padding=0)
            unpool_out = Unpool3D(pool_out, indices)
            # unpool_out shape: [1, 1, 4, 4, 6]

    """

    def __init__(self,
                 kernel_size,
                 stride=None,
                 padding=0,
                 data_format="NCDHW",
                 output_size=None,
                 name=None):
        super(MaxUnPool3D, self).__init__()
        self.ksize = kernel_size
        self.stride = stride
        self.padding = padding
        self.data_format = data_format
        self.output_size = output_size
        self.name = name

    def forward(self, x, indices):
1355 1356 1357 1358 1359 1360 1361 1362
        return F.max_unpool3d(x,
                              indices,
                              kernel_size=self.ksize,
                              stride=self.stride,
                              padding=self.padding,
                              data_format=self.data_format,
                              output_size=self.output_size,
                              name=self.name)
1363 1364 1365

    def extra_repr(self):
        return 'output_size={}'.format(self.output_size)