fused_transformer.py 63.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
from paddle.incubate.nn import functional as incubate_f
from paddle.nn import Layer
import paddle
17 18 19 20
from paddle.nn.layer.transformer import (
    _convert_attention_mask,
    _convert_param_attr_to_list,
)
21
from paddle.nn.initializer import Constant
22 23 24 25 26
from paddle.fluid.dygraph import no_grad
from paddle.fluid.framework import convert_np_dtype_to_dtype_, _non_static_mode
from paddle.fluid.core import VarDesc
from paddle.fluid import core
import numpy as np
27

28

29 30 31 32 33 34 35
# for distributed tensor model parallel
def _set_var_distributed(var):
    if var is None:
        return

    var.is_distributed = True

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
    if not _non_static_mode():
        # NOTE: use current_block and find_var_recursive to support while_loop
        startup_block = paddle.static.default_startup_program().current_block()
        main_block = paddle.static.default_main_program().current_block()
        startup_block._find_var_recursive(var.name).is_distributed = True
        main_block._find_var_recursive(var.name).is_distributed = True


def _to_dtype(t, dtype):
    # this function is a prune of Layer._transform function to fix fused op under amp.decorator(O2)
    if not paddle.is_floating_point(t):
        return t

    if type(dtype) is not VarDesc.VarType:
        dtype = convert_np_dtype_to_dtype_(dtype)

    if t.place.is_gpu_place():
        size_dtype = core.size_of_dtype(dtype)
        waiting_alloc_memory = (
55 56
            ((np.prod(t.shape) * size_dtype) / 256 + 1) * 256 * 1.2
        )
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
        gpu_memory_available = core.gpu_memory_available()
        if gpu_memory_available < waiting_alloc_memory:
            t_used = t._copy_to(paddle.CPUPlace(), False)
            t.value().get_tensor()._clear()
        else:
            t_used = t
    else:
        t_used = t

    if dtype is not None and dtype != t_used.dtype:
        with paddle.fluid.framework._dygraph_place_guard(place=t_used.place):
            t_casted = t_used.cast(dtype=dtype)
    else:
        t_casted = t_used

    new_t = t_casted

    dst_tensor = t.value().get_tensor()
    src_tensor = new_t.value().get_tensor()
    dst_tensor._share_data_with(src_tensor)

    return t
79 80


81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
class FusedBiasDropoutResidualLayerNorm(Layer):
    """
    Applies fused_bias_dropout_residual_layer_norm operation.

    Parameters:
        embed_dim (int): The expected feature size in the input and output.
        dropout_rate (float, optional): The dropout probability used on attention
            weights to drop some attention targets for the dropout after attention.
            0 for no dropout. Default 0.5.
        bias_attr (ParamAttr|bool, optional): To specify the bias parameter property.
            Default: None, which means the default bias parameter property is used.
            If it is set to False, this layer will not have trainable bias parameter.
            See usage for details in :code:`ParamAttr`.
        epsilon (float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.

    Examples:

        .. code-block:: python

            # required: gpu
            import paddle
            # input: [batch_size, seq_len, embed_dim]
            x = paddle.rand((2, 4, 128))
            # residual: [batch_size, seq_len, embed_dim]
            residual = paddle.rand((2, 4, 128))
            fused_bias_dropout_residual_ln = paddle.incubate.nn.FusedBiasDropoutResidualLayerNorm(128)
            output = fused_bias_dropout_residual_ln(x, residual)  # [2, 4, 128]
    """

111 112 113 114 115 116 117 118 119
    def __init__(
        self,
        embed_dim,
        dropout_rate=0.5,
        weight_attr=None,
        bias_attr=None,
        epsilon=1e-5,
        name=None,
    ):
120
        super().__init__()
121 122 123 124
        assert embed_dim > 0, (
            "Expected embed_dim to be greater than 0, "
            "but recieved {}".format(embed_dim)
        )
125 126 127 128
        self._dtype = self._helper.get_default_dtype()
        self._bias_attr = bias_attr
        self._weight_attr = weight_attr
        self.embed_dim = embed_dim
129 130 131 132 133 134
        self.linear_bias = self.create_parameter(
            shape=[embed_dim],
            attr=self._bias_attr,
            dtype=self._dtype,
            is_bias=True,
        )
135 136 137
        self.ln_scale = self.create_parameter(
            attr=self._weight_attr,
            shape=[embed_dim],
138 139 140 141 142
            default_initializer=Constant(value=1.0),
        )
        self.ln_bias = self.create_parameter(
            attr=self._bias_attr, shape=[embed_dim], is_bias=True
        )
143 144 145 146 147 148 149 150 151 152
        self.dropout_rate = dropout_rate
        self._epsilon = epsilon

        self.name = name

    def forward(self, x, residual):
        """
        Applies fused_bias_dropout_residual_layer_norm operation.

        Parameters:
153 154 155 156 157 158
            x (Tensor): The input tensor. It is a tensor with shape
                `[batch_size, seq_len, embed_dim]`. The data type should be
                float32 or float64.
            residual (Tensor, optional): The residual tensor. It is a tensor
                with shape `[batch_size, value_length, vdim]`. The data type
                should be float32 or float64.
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174

        Returns:
            Tensor|tuple: It is a tensor that has the same shape and data type \
                as `x`.
        """

        out = incubate_f.fused_bias_dropout_residual_layer_norm(
            x=x,
            residual=residual,
            bias=self.linear_bias,
            ln_scale=self.ln_scale,
            ln_bias=self.ln_bias,
            dropout_rate=self.dropout_rate,
            ln_epsilon=self._epsilon,
            training=self.training,
            mode='upscale_in_train',
175 176
            name=self.name,
        )
177 178 179 180 181
        return out

    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'embed_dim={}, seq_len={}, dropout_rate={}, epsilon={}, dtype={}{}'.format(
182 183 184 185 186 187 188
            self.embed_dim,
            self.seq_len,
            self.dropout_rate,
            self._epsilon,
            self._dtype,
            name_str,
        )
189 190


191 192
class FusedMultiHeadAttention(Layer):
    """
193
    Attention mapps queries and a set of key-value pairs to outputs, and
194 195 196 197
    Multi-Head Attention performs multiple parallel attention to jointly attending
    to information from different representation subspaces.
    Please refer to `Attention Is All You Need <https://arxiv.org/pdf/1706.03762.pdf>`_
    for more details.
198

199 200 201
    Parameters:
        embed_dim (int): The expected feature size in the input and output.
        num_heads (int): The number of heads in multi-head attention.
202
        dropout_rate (float, optional): The dropout probability used on attention
203
            weights to drop some attention targets for the dropout after attention.
204 205
            0 for no dropout. Default 0.5.
        attn_dropout_rate (float, optional): The dropout probability used on attention
206
            weights to drop some attention targets for the dropout in attention.
207
            0 for no dropout. Default 0.5.
208 209 210 211
        kdim (int, optional): The feature size in key. If None, assumed equal to
            `embed_dim`. Default None.
        vdim (int, optional): The feature size in value. If None, assumed equal to
            `embed_dim`. Default None.
212
        normalize_before (bool, optional): Indicate  whether it is pre_layer_norm
213
            (True) or post_layer_norm architecture (False). Default False.
214
        need_weights (bool, optional): Indicate whether to return the attention
215
            weights. Now, only False is supported. Default False.
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
        qkv_weight_attr(ParamAttr, optional): To specify the weight parameter property
            for QKV projection computation. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        qkv_bias_attr(ParamAttr|bool, optional): To specify the bias parameter property
            for QKV projection computation. The `False` value means the corresponding layer
            would not have trainable bias parameter. Default: None, which means the
            default bias parameter property is used. See usage for details in :code:`ParamAttr`.
        linear_weight_attr(ParamAttr, optional): To specify the weight parameter property
            for linear projection computation. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        linear_bias_attr(ParamAttr|bool, optional): To specify the bias parameter property
            for linear projection computation. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
        pre_ln_scale_attr(ParamAttr, optional): To specify the weight parameter property
            for pre_layer_norm computation. Otherwise, all layers both use it as
            `attr` to create parameters. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        pre_ln_bias_attr(ParamAttr|bool, optional): To specify the bias parameter property
            for pre_layer_norm computation. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ln_scale_attr(ParamAttr, optional): To specify the weight parameter property
            for post_layer_norm computation. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ln_bias_attr(ParamAttr|bool, optional): To specify the bias parameter property
            for post_layer_norm computation. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
L
Li Min 已提交
245 246
        epsilon (float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
247 248
        nranks (int, optional): Distributed tensor model parallel nranks. Default is 1, means not using tensor parallel.
        ring_id (int, optional): For distributed tensor model parallel. Default is -1, means not using tensor parallel.
249

250
    Examples:
251

252
        .. code-block:: python
253 254

            # required: gpu
255
            import paddle
256
            # input: [batch_size, sequence_length, embed_dim]
257 258 259
            query = paddle.rand((2, 4, 128))
            # self attention mask: [batch_size, num_heads, query_len, query_len]
            attn_mask = paddle.rand((2, 2, 4, 4))
260
            multi_head_attn = paddle.incubate.nn.FusedMultiHeadAttention(128, 2)
261 262 263
            output = multi_head_attn(query, None, None, attn_mask=attn_mask)  # [2, 4, 128]
    """

264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
    def __init__(
        self,
        embed_dim,
        num_heads,
        dropout_rate=0.5,
        attn_dropout_rate=0.5,
        kdim=None,
        vdim=None,
        normalize_before=False,
        need_weights=False,
        qkv_weight_attr=None,
        qkv_bias_attr=None,
        linear_weight_attr=None,
        linear_bias_attr=None,
        pre_ln_scale_attr=None,
        pre_ln_bias_attr=None,
        ln_scale_attr=None,
        ln_bias_attr=None,
        epsilon=1e-5,
        nranks=1,
        ring_id=-1,
        name=None,
    ):
287
        super().__init__()
288

289 290 291 292 293 294 295 296 297
        assert embed_dim > 0, (
            "Expected embed_dim to be greater than 0, "
            "but received {}".format(embed_dim)
        )
        assert (
            num_heads > 0
        ), "Expected nhead to be greater than 0, " "but received {}".format(
            num_heads
        )
298 299 300

        self.normalize_before = normalize_before
        self._dtype = self._helper.get_default_dtype()
301
        self._epsilon = epsilon
302
        self._ring_id = ring_id
303

304 305
        self.embed_dim = embed_dim
        self.num_heads = num_heads
306
        self.head_dim = embed_dim // num_heads
307 308 309
        self.kdim = kdim
        self.vdim = vdim
        self.need_weights = need_weights
310 311 312
        assert (
            self.head_dim * num_heads == embed_dim
        ), "embed_dim must be divisible by num_heads"
313 314 315 316 317
        assert need_weights is False, "Only support need_weight is False now."

        # tensor model parallel
        assert num_heads % nranks == 0
        num_heads = num_heads // nranks
318 319 320

        self.qkv_weight = self.create_parameter(
            shape=[3, num_heads, self.head_dim, embed_dim],
321
            attr=qkv_weight_attr,
322
            dtype=self._dtype,
323 324
            is_bias=False,
        )
325 326
        self.qkv_bias = self.create_parameter(
            shape=[3, num_heads, self.head_dim],
327
            attr=qkv_bias_attr,
328
            dtype=self._dtype,
329 330
            is_bias=True,
        )
331 332 333 334
        self.linear_weight = self.create_parameter(
            shape=[num_heads * self.head_dim, embed_dim],
            attr=linear_weight_attr,
            dtype=self._dtype,
335 336 337 338 339 340 341 342
            is_bias=False,
        )
        self.linear_bias = self.create_parameter(
            shape=[embed_dim],
            attr=linear_bias_attr,
            dtype=self._dtype,
            is_bias=True,
        )
343

344 345 346 347 348 349 350 351 352 353 354 355 356
        # tensor model parallel
        if nranks > 1:
            assert ring_id != -1
            # column parallel
            _set_var_distributed(self.qkv_weight)
            _set_var_distributed(self.qkv_bias)
            # row parallel
            _set_var_distributed(self.linear_weight)

        if normalize_before:
            self.pre_ln_scale = self.create_parameter(
                attr=pre_ln_scale_attr,
                shape=[embed_dim],
357 358 359 360 361
                default_initializer=Constant(value=1.0),
            )
            self.pre_ln_bias = self.create_parameter(
                attr=pre_ln_bias_attr, shape=[embed_dim], is_bias=True
            )
362 363 364 365 366 367 368 369
            self.ln_scale = None
            self.ln_bias = None
        else:
            self.pre_ln_scale = None
            self.pre_ln_bias = None
            self.ln_scale = self.create_parameter(
                attr=ln_scale_attr,
                shape=[embed_dim],
370 371 372 373 374
                default_initializer=Constant(value=1.0),
            )
            self.ln_bias = self.create_parameter(
                attr=ln_bias_attr, shape=[embed_dim], is_bias=True
            )
375 376 377 378 379

        self.dropout_rate = dropout_rate
        self.attn_dropout_rate = attn_dropout_rate

        self.name = name
380 381 382 383 384

    def forward(self, query, key=None, value=None, attn_mask=None, cache=None):
        """
        Applies multi-head attention to map queries and a set of key-value pairs
        to outputs.
385

386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
        Parameters:
            query (Tensor): The queries for multi-head attention. It is a
                tensor with shape `[batch_size, query_length, embed_dim]`. The
                data type should be float32 or float64.
            key (Tensor, optional): The keys for multi-head attention. It is
                a tensor with shape `[batch_size, key_length, kdim]`. The
                data type should be float32 or float64. If None, use `query` as
                `key`. Default None.
            value (Tensor, optional): The values for multi-head attention. It
                is a tensor with shape `[batch_size, value_length, vdim]`.
                The data type should be float32 or float64. If None, use `query` as
                `value`. Default None.
            attn_mask (Tensor, optional): A tensor used in multi-head attention
                to prevents attention to some unwanted positions, usually the
                paddings or the subsequent positions. It is a tensor with shape
                broadcasted to `[batch_size, n_head, sequence_length, sequence_length]`.
402 403 404 405 406
                When the data type is bool, the unwanted positions have `False`
                values and the others have `True` values. When the data type is
                int, the unwanted positions have 0 values and the others have 1
                values. When the data type is float, the unwanted positions have
                `-INF` values and the others have 0 values. It can be None when
407 408
                nothing wanted or needed to be prevented attention to. Default None.
            cache (MultiHeadAttention.Cache|MultiHeadAttention.StaticCache, optional):
409
                Now, only None is supported. Default None.
410

411 412
        Returns:
            Tensor|tuple: It is a tensor that has the same shape and data type \
413
                as `query`, representing attention output.
414
        """
415 416 417 418 419 420 421 422 423 424 425 426 427
        if attn_mask is not None:
            # Support bool or int mask
            attn_mask = _convert_attention_mask(attn_mask, query.dtype)

        out = incubate_f.fused_multi_head_attention(
            x=query,
            qkv_weight=self.qkv_weight,
            linear_weight=self.linear_weight,
            pre_layer_norm=self.normalize_before,
            pre_ln_scale=self.pre_ln_scale,
            pre_ln_bias=self.pre_ln_bias,
            ln_scale=self.ln_scale,
            ln_bias=self.ln_bias,
428
            pre_ln_epsilon=self._epsilon,
429 430
            qkv_bias=self.qkv_bias,
            linear_bias=self.linear_bias,
431
            cache_kv=cache,
432 433 434
            attn_mask=attn_mask,
            dropout_rate=self.dropout_rate,
            attn_dropout_rate=self.attn_dropout_rate,
435 436
            ln_epsilon=self._epsilon,
            training=self.training,
437
            ring_id=self._ring_id,
438 439
            name=self.name,
        )
440
        return out
441

442 443 444
    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'embed_dim={}, num_heads={}, dropout_rate={}, attn_dropout_rate={}, epsilon={}, kdim={}, vdim={}, normalize_before={}, need_weights={}, dtype={}{}'.format(
445 446 447 448 449 450 451 452 453 454 455 456
            self.embed_dim,
            self.num_heads,
            self.dropout_rate,
            self.attn_dropout_rate,
            self._epsilon,
            self.kdim,
            self.vdim,
            self.normalize_before,
            self.need_weights,
            self._dtype,
            name_str,
        )
457

458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
    def _amp_decorate(self, dtype):
        # tmp fix for amp.decorator(O2)
        layer_norm_params_id = []
        if self.normalize_before:
            layer_norm_params_id.append(id(self.pre_ln_scale))
            layer_norm_params_id.append(id(self.pre_ln_bias))
        else:
            layer_norm_params_id.append(id(self.ln_scale))
            layer_norm_params_id.append(id(self.ln_bias))

        for key, param in self._parameters.items():
            if id(param) in layer_norm_params_id:
                continue
            if param is not None:
                with no_grad():
                    param_applied = _to_dtype(param, dtype)

        self._dtype = dtype

477 478

class FusedFeedForward(Layer):
479 480 481 482 483 484
    """
    Parameters:
        d_model (int): The expected feature size in the input and output.
        dim_feedforward (int): The hidden layer size.
        dropout_rate (float, optional): The dropout probability used in pre-process
            and post-precess. Default 0.1
485 486
        epsilon (float, optional): he small value added to the variance to prevent
            division by zero. Default: 1e-05.
487 488 489 490 491
        activation (str, optional): The activation function. Default relu.
        act_dropout_rate (float, optional): The dropout probability after activition.
            If None, use the value of `dropout_rate`. Default None
        normalize_before (bool, optional): Indicate whether to put layer normalization
            into, preprocessing or postprocessing. Default False
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
        linear1_weight_attr(ParamAttr, optional): To specify the weight parameter property
            for FFN first linear. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        linear1_bias_attr(ParamAttr|bool, optional): To specify the bias parameter property
            for FFN first linear. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
        linear2_weight_attr(ParamAttr, optional): To specify the weight parameter property
            for FFN second linear. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        linear2_bias_attr(ParamAttr|bool, optional): To specify the bias parameter property
            for FFN second linear. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ln1_scale_attr(ParamAttr, optional): To specify the weight parameter property
            for FFN pre_layer_norm. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ln1_bias_attr(ParamAttr|bool, optional): To specify the bias parameter property
            for FFN pre_layer_norm. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ln2_scale_attr(ParamAttr, optional): To specify the weight parameter property
            for FFN post_layer_norm. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ln2_bias_attr(ParamAttr|bool, optional): To specify the bias parameter property
            for FFN layer_norm. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
        nranks (int, optional): Distributed tensor model parallel nranks. Default is 1, means not using tensor parallel.
        ring_id (int, optional): For distributed tensor model parallel. Default is -1, means not using tensor parallel.
        name (str, optional): The default value is None.  Normally there is no need for user to set
            this property. For more information, please refer to :ref:`api_guide_Name`.
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538

    Examples:
        .. code-block:: python

            # required: gpu
            import paddle
            from paddle.incubate.nn import FusedFeedForward

            fused_feedforward_layer = FusedFeedForward(8, 8)
            x = paddle.rand((1, 8, 8))
            out = fused_feedforward_layer(x)
            print(out.numpy().shape)
            # (1, 8, 8)
    """

539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
    def __init__(
        self,
        d_model,
        dim_feedforward,
        dropout_rate=0.1,
        epsilon=1e-05,
        activation="relu",
        act_dropout_rate=None,
        normalize_before=False,
        linear1_weight_attr=None,
        linear1_bias_attr=None,
        linear2_weight_attr=None,
        linear2_bias_attr=None,
        ln1_scale_attr=None,
        ln1_bias_attr=None,
        ln2_scale_attr=None,
        ln2_bias_attr=None,
        nranks=1,
        ring_id=-1,
        name=None,
    ):
560

561
        super().__init__()
562 563 564 565 566 567 568 569 570 571
        assert (
            d_model > 0
        ), "Expected d_model to be greater than 0, but received {}".format(
            d_model
        )
        assert (
            dim_feedforward > 0
        ), "Expected dim_feedforward to be greater than 0, but received {}".format(
            dim_feedforward
        )
572 573 574

        self._dtype = self._helper.get_default_dtype()
        self._d_model = d_model
575 576 577

        assert dim_feedforward % nranks == 0
        dim_feedforward = dim_feedforward // nranks
578 579
        self._dim_feedforward = dim_feedforward
        self._dropout_rate = dropout_rate
580 581 582
        self._act_dropout_rate = (
            dropout_rate if act_dropout_rate is None else act_dropout_rate
        )
583 584
        self._act_method = activation
        self._normalize_before = normalize_before
585
        self._epsilon = epsilon
586
        self._ring_id = ring_id
587 588 589

        self._linear1_weight = self.create_parameter(
            shape=[d_model, dim_feedforward],
590
            attr=linear1_weight_attr,
591
            dtype=self._dtype,
592 593 594 595 596 597 598 599
            is_bias=False,
        )
        self._linear1_bias = self.create_parameter(
            shape=[dim_feedforward],
            attr=linear1_bias_attr,
            dtype=self._dtype,
            is_bias=True,
        )
600 601 602

        self._linear2_weight = self.create_parameter(
            shape=[dim_feedforward, d_model],
603
            attr=linear2_weight_attr,
604
            dtype=self._dtype,
605 606
            is_bias=False,
        )
607

608 609 610 611 612 613
        self._linear2_bias = self.create_parameter(
            shape=[d_model],
            attr=linear2_bias_attr,
            dtype=self._dtype,
            is_bias=True,
        )
614

615 616 617 618 619 620 621 622 623 624 625 626
        if nranks > 1:
            assert ring_id != -1
            # column parallel
            _set_var_distributed(self._linear1_weight)
            _set_var_distributed(self._linear1_bias)
            _set_var_distributed(self._linear2_weight)

        if normalize_before:
            self._ln1_scale = self.create_parameter(
                shape=[d_model],
                attr=ln1_scale_attr,
                is_bias=False,
627 628 629 630 631
                default_initializer=Constant(1.0),
            )
            self._ln1_bias = self.create_parameter(
                shape=[d_model], attr=ln1_bias_attr, is_bias=True
            )
632 633 634 635 636 637 638 639 640
            self._ln2_scale = None
            self._ln2_bias = None
        else:
            self._ln1_scale = None
            self._ln1_bias = None
            self._ln2_scale = self.create_parameter(
                shape=[d_model],
                attr=ln2_scale_attr,
                is_bias=False,
641 642 643 644 645
                default_initializer=Constant(1.0),
            )
            self._ln2_bias = self.create_parameter(
                shape=[d_model], attr=ln2_bias_attr, is_bias=True
            )
646

647
        self.name = name
648 649

    def forward(self, src, cache=None):
650
        out = incubate_f.fused_feedforward(
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
            src,
            self._linear1_weight,
            self._linear2_weight,
            self._linear1_bias,
            self._linear2_bias,
            self._ln1_scale,
            self._ln1_bias,
            self._ln2_scale,
            self._ln2_bias,
            dropout1_rate=self._act_dropout_rate,
            dropout2_rate=self._dropout_rate,
            activation=self._act_method,
            ln1_epsilon=self._epsilon,
            ln2_epsilon=self._epsilon,
            pre_layer_norm=self._normalize_before,
            training=self.training,
667
            ring_id=self._ring_id,
668 669
            name=self.name,
        )
670
        return out
671

672 673 674
    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'd_model={}, dim_feedforward={}, dropout_rate={}, epsilon={}, activation={}, act_dropout_rate={}, normalize_before={}, dtype={}{}'.format(
675 676 677 678 679 680 681 682 683 684
            self._d_model,
            self._dim_feedforward,
            self._dropout_rate,
            self._epsilon,
            self._act_method,
            self._act_dropout_rate,
            self._normalize_before,
            self._dtype,
            name_str,
        )
685

686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
    def _amp_decorate(self, dtype):
        # tmp fix for amp.decorator(O2)
        layer_norm_params_id = []
        if self._normalize_before:
            layer_norm_params_id.append(id(self._ln1_scale))
            layer_norm_params_id.append(id(self._ln1_bias))
        else:
            layer_norm_params_id.append(id(self._ln2_scale))
            layer_norm_params_id.append(id(self._ln2_bias))

        for key, param in self._parameters.items():
            if id(param) in layer_norm_params_id:
                continue
            if param is not None:
                with no_grad():
                    param_applied = _to_dtype(param, dtype)

        self._dtype = dtype

705 706 707

class FusedTransformerEncoderLayer(Layer):
    """
708
    FusedTransformerEncoderLayer is composed of two sub-layers which are self (multi-head)
709 710 711 712 713 714 715 716 717 718
    attention and feedforward network. Before and after each sub-layer, pre-process
    and post-precess would be applied on the input and output accordingly. If
    `normalize_before` is True, pre-process is layer normalization and post-precess
    includes dropout, residual connection. Otherwise, no pre-process and post-precess
    includes dropout, residual connection, layer normalization.

    Parameters:
        d_model (int): The expected feature size in the input and output.
        nhead (int): The number of heads in multi-head attention(MHA).
        dim_feedforward (int): The hidden layer size in the feedforward network(FFN).
719
        dropout_rate (float, optional): The dropout probability used in pre-process
720 721 722
            and post-precess of MHA and FFN sub-layer. Default 0.1
        activation (str, optional): The activation function in the feedforward
            network. Default relu.
723
        attn_dropout_rate (float, optional): The dropout probability used
724 725
            in MHA to drop some attention target. If None, use the value of
            `dropout`. Default None
726
        act_dropout_rate (float, optional): The dropout probability used after FFN
727 728 729 730 731 732 733 734 735 736 737
            activition.  If None, use the value of `dropout`. Default None
        normalize_before (bool, optional): Indicate whether to put layer normalization
            into preprocessing of MHA and FFN sub-layers. If True, pre-process is layer
            normalization and post-precess includes dropout, residual connection.
            Otherwise, no pre-process and post-precess includes dropout, residual
            connection, layer normalization. Default False
        weight_attr(ParamAttr|list|tuple, optional): To specify the weight parameter property.
            If it is a list/tuple, `weight_attr[0]` would be used as `weight_attr` for
            MHA, and `weight_attr[1]` would be used as `weight_attr` for linear in FFN.
            Otherwise, MHA and FFN both use it as `weight_attr` to create parameters.
            Default: None, which means the default weight parameter property is used.
738
            See usage for details in :code:`ParamAttr` .
739 740 741 742 743 744 745
        bias_attr (ParamAttr|list|tuple|bool, optional): To specify the bias parameter property.
            If it is a list/tuple, `bias_attr[0]` would be used as `bias_attr` for
            MHA, and `bias_attr[1]` would be used as `bias_attr` for linear in FFN.
            Otherwise, MHA and FFN both use it as `bias_attr` to create parameters.
            The `False` value means the corresponding layer would not have trainable
            bias parameter. See usage for details in :code:`ParamAttr` . Default: None,
            which means the default bias parameter property is used.
746

747 748 749 750

    Examples:

        .. code-block:: python
751

752
            # required: gpu
753
            import paddle
754
            from paddle.incubate.nn import FusedTransformerEncoderLayer
755 756 757 758 759

            # encoder input: [batch_size, src_len, d_model]
            enc_input = paddle.rand((2, 4, 128))
            # self attention mask: [batch_size, n_head, src_len, src_len]
            attn_mask = paddle.rand((2, 2, 4, 4))
760
            encoder_layer = FusedTransformerEncoderLayer(128, 2, 512)
761 762 763
            enc_output = encoder_layer(enc_input, attn_mask)  # [2, 4, 128]
    """

764 765 766 767 768 769 770 771 772 773 774 775 776
    def __init__(
        self,
        d_model,
        nhead,
        dim_feedforward,
        dropout_rate=0.1,
        activation="relu",
        attn_dropout_rate=None,
        act_dropout_rate=None,
        normalize_before=False,
        weight_attr=None,
        bias_attr=None,
    ):
777 778 779 780
        self._config = locals()
        self._config.pop("self")
        self._config.pop("__class__", None)  # py3

781
        super().__init__()
782 783 784 785 786 787 788 789 790 791
        assert (
            d_model > 0
        ), "Expected d_model to be greater than 0, " "but received {}".format(
            d_model
        )
        assert (
            nhead > 0
        ), "Expected nhead to be greater than 0, " "but received {}".format(
            nhead
        )
792 793
        assert dim_feedforward > 0, (
            "Expected dim_feedforward to be greater than 0, "
794 795 796 797 798 799 800 801
            "but received {}".format(dim_feedforward)
        )
        attn_dropout_rate = (
            dropout_rate if attn_dropout_rate is None else attn_dropout_rate
        )
        act_dropout_rate = (
            dropout_rate if act_dropout_rate is None else act_dropout_rate
        )
802 803 804 805 806 807 808 809
        self.normalize_before = normalize_before

        weight_attrs = _convert_param_attr_to_list(weight_attr, 2)
        bias_attrs = _convert_param_attr_to_list(bias_attr, 2)

        self.fused_attn = FusedMultiHeadAttention(
            d_model,
            nhead,
810 811 812
            dropout_rate=dropout_rate,
            attn_dropout_rate=attn_dropout_rate,
            normalize_before=self.normalize_before,
813 814 815 816 817 818 819
            qkv_weight_attr=weight_attrs[0],
            qkv_bias_attr=bias_attrs[0],
            linear_weight_attr=weight_attrs[0],
            linear_bias_attr=bias_attrs[0],
            pre_ln_scale_attr=weight_attrs[0],
            pre_ln_bias_attr=bias_attrs[0],
            ln_scale_attr=weight_attrs[0],
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
            ln_bias_attr=bias_attrs[0],
        )

        self.ffn = FusedFeedForward(
            d_model,
            dim_feedforward,
            dropout_rate=dropout_rate,
            activation=activation,
            act_dropout_rate=act_dropout_rate,
            normalize_before=self.normalize_before,
            linear1_weight_attr=weight_attrs[1],
            linear1_bias_attr=bias_attrs[1],
            linear2_weight_attr=weight_attrs[1],
            linear2_bias_attr=bias_attrs[1],
        )
835 836 837 838 839 840 841 842 843 844 845 846

    def forward(self, src, src_mask=None, cache=None):
        """
        Applies a Transformer encoder layer on the input.
        Parameters:
            src (Tensor): The input of Transformer encoder layer. It is
                a tensor with shape `[batch_size, sequence_length, d_model]`.
                The data type should be float32 or float64.
            src_mask (Tensor, optional): A tensor used in multi-head attention
                to prevents attention to some unwanted positions, usually the
                paddings or the subsequent positions. It is a tensor with shape
                broadcasted to `[batch_size, n_head, sequence_length, sequence_length]`.
847 848 849 850 851
                When the data type is bool, the unwanted positions have `False`
                values and the others have `True` values. When the data type is
                int, the unwanted positions have 0 values and the others have 1
                values. When the data type is float, the unwanted positions have
                `-INF` values and the others have 0 values. It can be None when
852 853 854 855 856 857 858 859 860 861 862 863 864 865
                nothing wanted or needed to be prevented attention to. Default None.
            cache (Tensor, optional): It is an instance of `MultiHeadAttention.Cache`.
                See `TransformerEncoderLayer.gen_cache` for more details. It is
                only used for inference and should be None for training. Default
                None.
        Returns:
            Tensor|tuple: It is a tensor that has the same shape and data type \
                as `enc_input`, representing the output of Transformer encoder \
                layer. Or a tuple if `cache` is not None, except for encoder \
                layer output, the tuple includes the new cache which is same \
                as input `cache` argument but `incremental_cache` has an \
                incremental length. See `MultiHeadAttention.gen_cache` and \
                `MultiHeadAttention.forward` for more details.
        """
866 867 868 869
        src_mask = _convert_attention_mask(src_mask, src.dtype)
        if cache is None:
            attn_out = self.fused_attn(src, attn_mask=src_mask)
        else:
870 871 872
            attn_out, incremental_cache = self.fused_attn(
                src, attn_mask=src_mask, cache=cache
            )
873 874 875 876

        ffn_out = self.ffn(attn_out)

        return ffn_out if cache is None else (ffn_out, incremental_cache)
877 878 879 880 881 882 883 884 885 886


class FusedTransformer(Layer):
    """
    A Transformer model composed of an instance of `TransformerEncoder` and an
    instance of `TransformerDecoder`. While the embedding layer and output layer
    are not included.

    Please refer to `Attention is all you need <http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf>`_ ,
    and see `TransformerEncoder` and `TransformerDecoder` for more details.
887

888 889 890 891
    Users can configurate the model architecture with corresponding parameters.
    Note the usage of `normalize_before` representing where to apply layer
    normalization (in pre-process or post-precess of multi-head attention or FFN),
    and some transformer like models are different on this, such as
892
    `BERT <https://arxiv.org/abs/1810.04805>`_ and `GPT2 <https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf>`_ .
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
    The default architecture here places layer normalization in post-process and
    applies another layer normalization on the output of last encoder/decoder layer.

    Parameters:
        d_model (int, optional): The expected feature size in the encoder/decoder input
            and output. Default 512
        nhead (int, optional): The number of heads in multi-head attention(MHA). Default 8
        num_encoder_layers (int, optional): The number of layers in encoder. Default 6
        num_decoder_layers (int, optional): The number of layers in decoder. Default 6
        dim_feedforward (int, optional): The hidden layer size in the feedforward network(FFN). Default 2048
        dropout (float, optional): The dropout probability used in pre-process
            and post-precess of MHA and FFN sub-layer. Default 0.1
        activation (str, optional): The activation function in the feedforward
            network. Default relu.
        attn_dropout (float, optional): The dropout probability used
            in MHA to drop some attention target. If None, use the value of
            `dropout`. Default None
        act_dropout (float, optional): The dropout probability used after FFN
            activition.  If None, use the value of `dropout`. Default None
        normalize_before (bool, optional): Indicate whether to put layer normalization
            into preprocessing of MHA and FFN sub-layers. If True, pre-process is layer
            normalization and post-precess includes dropout, residual connection.
            Otherwise, no pre-process and post-precess includes dropout, residual
            connection, layer normalization. Default False
        weight_attr(ParamAttr|list|tuple, optional): To specify the weight parameter property.
918 919 920 921 922 923 924 925 926 927
            If it is a list/tuple, the length of `weight_attr` could be 1, 2 or 3. If it is 3,
            `weight_attr[0]` would be used as `weight_attr` for self attention, `weight_attr[1]`
            would be used as `weight_attr` for cross attention of `TransformerDecoder`,
            and `weight_attr[2]` would be used as `weight_attr` for linear in FFN.
            If it is 2, `weight_attr[0]` would be used as `weight_attr` both for self attention
            and cross attntion and `weight_attr[1]` would be used as `weight_attr` for
            linear in FFN. If it is 1, `weight_attr[0]` would be used as `weight_attr`
            for self attention, cross attention and linear in FFN. Otherwise,
            the three sub-layers all uses it as `weight_attr` to create parameters.
            Default: None, which means the default weight parameter property is used.
928
            See usage for details
929
            in :code:`ParamAttr` .
930
        bias_attr (ParamAttr|list|tuple|bool, optional): To specify the bias parameter property.
931 932 933 934 935 936 937 938 939 940 941
            If it is a list/tuple, the length of `bias_attr` could be 1, 2 or 3. If it is 3,
            `bias_attr[0]` would be used as `bias_attr` for self attention, `bias_attr[1]`
            would be used as `bias_attr` for cross attention of `TransformerDecoder`,
            and `bias_attr[2]` would be used as `bias_attr` for linear in FFN.
            If it is 2, `bias_attr[0]` would be used as `bias_attr` both for self attention
            and cross attntion and `bias_attr[1]` would be used as `bias_attr` for
            linear in FFN. If it is 1, `bias_attr[0]` would be used as `bias_attr`
            for self attention, cross attention and linear in FFN. Otherwise,
            the three sub-layers all uses it as `bias_attr` to create parameters.
            The `False` value means the corresponding layer would not have trainable
            bias parameter. See usage for details in :code:`ParamAttr` .
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
            Default: None,which means the default bias parameter property is used.
        custom_encoder (Layer, optional): If custom encoder is provided, use it as the encoder.
            Default None
        custom_decoder (Layer, optional): If custom decoder is provided, use it as the decoder.
            Default None

    Examples:

        .. code-block:: python

            import paddle
            from paddle.nn import Transformer

            # src: [batch_size, tgt_len, d_model]
            enc_input = paddle.rand((2, 4, 128))
            # tgt: [batch_size, src_len, d_model]
            dec_input = paddle.rand((2, 6, 128))
            # src_mask: [batch_size, n_head, src_len, src_len]
            enc_self_attn_mask = paddle.rand((2, 2, 4, 4))
            # tgt_mask: [batch_size, n_head, tgt_len, tgt_len]
            dec_self_attn_mask = paddle.rand((2, 2, 6, 6))
            # memory_mask: [batch_size, n_head, tgt_len, src_len]
            cross_attn_mask = paddle.rand((2, 2, 6, 4))
            transformer = Transformer(128, 2, 4, 4, 512)
            output = transformer(enc_input,
                                 dec_input,
                                 enc_self_attn_mask,
                                 dec_self_attn_mask,
                                 cross_attn_mask)  # [2, 6, 128]
    """

973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
    def __init__(
        self,
        d_model=512,
        nhead=8,
        num_encoder_layers=6,
        num_decoder_layers=6,
        dim_feedforward=2048,
        dropout=0.1,
        activation="relu",
        attn_dropout=None,
        act_dropout=None,
        normalize_before=False,
        weight_attr=None,
        bias_attr=None,
        custom_encoder=None,
        custom_decoder=None,
    ):
990
        super().__init__()
991
        raise NotImplementedError()
992 993

    def forward(self, src, tgt, src_mask=None, tgt_mask=None, memory_mask=None):
994
        raise NotImplementedError()
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133


class FusedMultiTransformer(Layer):
    """
    FusedMultiTransformer is composed of multi transformer layers which contains two
    sub-layers which are self (multi-head) attention and feedforward network. The
    function of one transformer layer is consistent with the following pseudo code:

    .. code-block:: python

        if pre_layer_norm:
            out = layer_norm(x)
            out = qkv_linear(out) + qkv_bias
        else:
            out = qkv_linear(x) + qkv_bias
        out = transpose(out, perm=[2, 0, 3, 1, 4])
        # extract q, k and v from out.
        q = out[0:1, ::]
        k = out[1:2, ::]
        v = out[2:3, ::]
        out = q * k^t
        out = attn_mask + out
        out = softmax(out)
        out = dropout(out)
        out = out * v
        out = transpose(out, perm=[0, 2, 1, 3])
        out = linear(out)
        if pre_layer_norm:
            out = x + dropout(out + bias)
        else:
            out = layer_norm(x + dropout(out + bias))

        residual = out;
        if pre_layer_norm:
            out = ffn_layer_norm(out)
        out = ffn1_linear(out)
        out = dropout(activation(out + ffn1_bias))
        out = ffn2_linear(out)
        out = residual + dropout(out + ffn2_bias)
        if not pre_layer_norm:
            out = ffn_layer_norm(out)

    Parameters:
        embed_dim (int): The expected feature size in the input and output.
        num_heads (int): The number of heads in multi-head attention(MHA).
        dim_feedforward (int): The hidden layer size in the feedforward network(FFN).
        dropout_rate (float, optional): The dropout probability used in pre-process
            and post-precess of MHA and FFN sub-layer. Default 0.0
        activation (str, optional): The activation function in the feedforward
            network. Default "gelu".
        normalize_before (bool, optional): Indicate whether to put layer normalization
            into preprocessing of MHA and FFN sub-layers. If True, pre-process is layer
            normalization and post-precess includes dropout, residual connection.
            Otherwise, no pre-process and post-precess includes dropout, residual
            connection, layer normalization. Default True
        ln_scale_attrs(ParamAttr|list|tuple, optional): To specify the weight parameter property
            for Attention layer_norm. For Attention layer_norm weight, if it is a list/tuple, `attrs[0]`
            would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as
            `attr` for transformer layer 1,etc. Otherwise, all layers both use it as
            `attr` to create parameters. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ln_bias_attrs(ParamAttr|list|tuple|bool, optional): To specify the bias parameter property
            for Attention layer_norm. For Attention layer_norm bias, if it is a list/tuple, `attrs[0]`
            would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as
            `attr` for transformer layer 1,etc. Otherwise, all layers both use it as
            `attr` to create parameters. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
        qkv_weight_attrs(ParamAttr|list|tuple, optional): To specify the weight parameter property
            for Attention qkv computation. For Attention qkv weight, if it is a list/tuple, `attrs[0]`
            would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as
            `attr` for transformer layer 1,etc. Otherwise, all layers both use it as
            `attr` to create parameters. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        qkv_bias_attrs(ParamAttr|list|tuple|bool, optional): To specify the bias parameter property
            for Attention qkv computation. For Attention qkv bias, if it is a list/tuple, `attrs[0]`
            would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as
            `attr` for transformer layer 1,etc. Otherwise, all layers both use it as
            `attr` to create parameters. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
        linear_weight_attrs(ParamAttr|list|tuple, optional): To specify the weight parameter property
            for Attention linear. For Attention linear weight, if it is a list/tuple, `attrs[0]`
            would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as
            `attr` for transformer layer 1,etc. Otherwise, all layers both use it as
            `attr` to create parameters. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        linear_bias_attrs(ParamAttr|list|tuple|bool, optional): To specify the bias parameter property
            for Attention linear computation. For Attention linear bias, if it is a list/tuple, `attrs[0]`
            would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as
            `attr` for transformer layer 1,etc. Otherwise, all layers both use it as
            `attr` to create parameters. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ffn_ln_scale_attrs(ParamAttr|list|tuple, optional): To specify the weight parameter property
            for FFN layer_norm. For FFN layer_norm weight, if it is a list/tuple, `attrs[0]`
            would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as
            `attr` for transformer layer 1,etc. Otherwise, all layers both use it as
            `attr` to create parameters. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ffn_ln_bias_attrs(ParamAttr|list|tuple|bool, optional): To specify the bias parameter property
            for FFN layer_norm. For FFN layer_norm bias, if it is a list/tuple, `attrs[0]`
            would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as
            `attr` for transformer layer 1,etc. Otherwise, all layers both use it as
            `attr` to create parameters. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ffn1_weight_attrs(ParamAttr|list|tuple, optional): To specify the weight parameter property
            for FFN first linear. For FFN first linear weight, if it is a list/tuple, `attrs[0]`
            would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as
            `attr` for transformer layer 1,etc. Otherwise, all layers both use it as
            `attr` to create parameters. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ffn1_bias_attrs(ParamAttr|list|tuple|bool, optional): To specify the bias parameter property
            for FFN first linear. For FFN first linear bias, if it is a list/tuple, `attrs[0]`
            would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as
            `attr` for transformer layer 1,etc. Otherwise, all layers both use it as
            `attr` to create parameters. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ffn2_weight_attrs(ParamAttr|list|tuple, optional): To specify the weight parameter property
            for FFN second linear. For FFN second linear weight, if it is a list/tuple, `attrs[0]`
            would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as
            `attr` for transformer layer 1,etc. Otherwise, all layers both use it as
            `attr` to create parameters. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ffn2_bias_attrs(ParamAttr|list|tuple|bool, optional): To specify the bias parameter property
            for FFN second linear. For FFN second linear bias, if it is a list/tuple, `attrs[0]`
            would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as
            `attr` for transformer layer 1,etc. Otherwise, all layers both use it as
            `attr` to create parameters. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
        epsilon (float, optional): Small float value added to denominator of the layer_norm to
            avoid dividing by zero. Default: 1e-05.
        num_layers (int, optional): The number of layers of the transformer. If `qkv_weight_attrs`
            is a list or tuple, the number of layers is obtained from `qkv_weight_attrs`. num_layers
            only takes effect when `qkv_weight_attrs` is not a list or tuple. Default: -1.
        nranks (int, optional): Distributed tensor model parallel nranks. Default is 1, means not using mp.
1134 1135 1136
        trans_qkvw (bool, optional): Whether to transpose for weights of qkv.
            If true, the shape eights of qkv should be [3, num_head, dim_head, dim_embed].
            Otherwise the shape of weights of qkv should be [dim_embed, 3, num_head, dim_head]. Default: True.
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
        ring_id (int, optional): For distributed tensor model parallel. Default is -1, means not using mp.
        name (str, optional): The default value is None.  Normally there is no need for user to set
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Examples:

        .. code-block:: python

            # required: gpu
            import paddle
            from paddle.incubate.nn import FusedMultiTransformer

            # encoder input: [batch_size, src_len, d_model]
            enc_input = paddle.rand((2, 4, 128))
            # self attention mask: [batch_size, 1, src_len, src_len]
            attn_mask = paddle.rand((2, 1, 4, 4))
            encoder_layers = FusedMultiTransformer(128, 2, 512, num_layers=1)
            enc_output = encoder_layers(enc_input, attn_mask)  # [2, 4, 128]
    """

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
    def __init__(
        self,
        embed_dim,
        num_heads,
        dim_feedforward,
        dropout_rate=0.0,
        activation="gelu",
        normalize_before=True,
        ln_scale_attrs=None,
        ln_bias_attrs=None,
        qkv_weight_attrs=None,
        qkv_bias_attrs=None,
        linear_weight_attrs=None,
        linear_bias_attrs=None,
        ffn_ln_scale_attrs=None,
        ffn_ln_bias_attrs=None,
        ffn1_weight_attrs=None,
        ffn1_bias_attrs=None,
        ffn2_weight_attrs=None,
        ffn2_bias_attrs=None,
        epsilon=1e-5,
        num_layers=-1,
        nranks=1,
        trans_qkvw=True,
        ring_id=-1,
        name=None,
    ):
1184
        super().__init__()
1185

1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
        assert embed_dim > 0, (
            "Expected embed_dim to be greater than 0, "
            "but received {}".format(embed_dim)
        )
        assert (
            num_heads > 0
        ), "Expected nhead to be greater than 0, " "but received {}".format(
            num_heads
        )
        assert (
            dim_feedforward > 0
        ), "Expected dim_feedforward to be greater than 0, but received {}".format(
            dim_feedforward
        )
1200 1201 1202 1203

        self.normalize_before = normalize_before
        self._dtype = self._helper.get_default_dtype()
        self._epsilon = epsilon
1204
        self._trans_qkvw = trans_qkvw
1205 1206 1207 1208 1209
        self._ring_id = ring_id

        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.head_dim = embed_dim // num_heads
1210 1211 1212
        assert (
            self.head_dim * num_heads == embed_dim
        ), "embed_dim must be divisible by num_heads"
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257

        # tensor model parallel
        if nranks > 1:
            assert ring_id != -1
        assert num_heads % nranks == 0
        assert dim_feedforward % nranks == 0
        num_heads = num_heads // nranks
        dim_feedforward = dim_feedforward // nranks
        self._dim_feedforward = dim_feedforward

        if isinstance(qkv_weight_attrs, (list, tuple)):
            num_layers = len(qkv_weight_attrs)
        assert num_layers > 0

        self.ln_scales, self.ln_biases = [], []
        self.qkv_weights, self.qkv_biases = [], []
        self.linear_weights, self.linear_biases = [], []
        self.ffn_ln_scales, self.ffn_ln_biases = [], []
        self.ffn1_weights, self.ffn1_biases = [], []
        self.ffn2_weights, self.ffn2_biases = [], []

        def get_attr(attrs, idx):
            if isinstance(attrs, (list, tuple)):
                assert len(attrs) == num_layers
                return attrs[idx]
            return attrs

        for i in range(num_layers):
            ln_scale_attr = get_attr(ln_scale_attrs, i)
            ln_bias_attr = get_attr(ln_bias_attrs, i)
            qkv_weight_attr = get_attr(qkv_weight_attrs, i)
            qkv_bias_attr = get_attr(qkv_bias_attrs, i)
            linear_weight_attr = get_attr(linear_weight_attrs, i)
            linear_bias_attr = get_attr(linear_bias_attrs, i)

            ffn_ln_scale_attr = get_attr(ffn_ln_scale_attrs, i)
            ffn_ln_bias_attr = get_attr(ffn_ln_bias_attrs, i)
            ffn1_weight_attr = get_attr(ffn1_weight_attrs, i)
            ffn1_bias_attr = get_attr(ffn1_bias_attrs, i)
            ffn2_weight_attr = get_attr(ffn2_weight_attrs, i)
            ffn2_bias_attr = get_attr(ffn2_bias_attrs, i)

            ln_scale = self.create_parameter(
                attr=ln_scale_attr,
                shape=[embed_dim],
1258 1259 1260 1261 1262
                default_initializer=Constant(value=1.0),
            )
            ln_bias = self.create_parameter(
                attr=ln_bias_attr, shape=[embed_dim], is_bias=True
            )
1263
            qkv_weight = self.create_parameter(
1264
                shape=[3, num_heads, self.head_dim, embed_dim]
1265 1266
                if trans_qkvw
                else [embed_dim, 3, num_heads, self.head_dim],
1267 1268
                attr=qkv_weight_attr,
                dtype=self._dtype,
1269 1270
                is_bias=False,
            )
1271 1272 1273 1274
            qkv_bias = self.create_parameter(
                shape=[3, num_heads, self.head_dim],
                attr=qkv_bias_attr,
                dtype=self._dtype,
1275 1276
                is_bias=True,
            )
1277 1278 1279 1280
            linear_weight = self.create_parameter(
                shape=[num_heads * self.head_dim, embed_dim],
                attr=linear_weight_attr,
                dtype=self._dtype,
1281 1282 1283 1284 1285 1286 1287 1288
                is_bias=False,
            )
            linear_bias = self.create_parameter(
                shape=[embed_dim],
                attr=linear_bias_attr,
                dtype=self._dtype,
                is_bias=True,
            )
1289 1290 1291 1292 1293

            ffn_ln_scale = self.create_parameter(
                shape=[embed_dim],
                attr=ffn_ln_scale_attr,
                is_bias=False,
1294 1295 1296 1297 1298
                default_initializer=Constant(1.0),
            )
            ffn_ln_bias = self.create_parameter(
                shape=[embed_dim], attr=ffn_ln_bias_attr, is_bias=True
            )
1299 1300 1301 1302
            ffn1_weight = self.create_parameter(
                shape=[embed_dim, dim_feedforward],
                attr=ffn1_weight_attr,
                dtype=self._dtype,
1303 1304 1305 1306 1307 1308 1309 1310
                is_bias=False,
            )
            ffn1_bias = self.create_parameter(
                shape=[dim_feedforward],
                attr=ffn1_bias_attr,
                dtype=self._dtype,
                is_bias=True,
            )
1311 1312 1313 1314
            ffn2_weight = self.create_parameter(
                shape=[dim_feedforward, embed_dim],
                attr=ffn2_weight_attr,
                dtype=self._dtype,
1315 1316 1317 1318 1319 1320 1321 1322
                is_bias=False,
            )
            ffn2_bias = self.create_parameter(
                shape=[embed_dim],
                attr=ffn2_bias_attr,
                dtype=self._dtype,
                is_bias=True,
            )
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352

            # tensor model parallel
            if nranks > 1:
                # column parallel
                _set_var_distributed(qkv_weight)
                _set_var_distributed(qkv_bias)
                _set_var_distributed(ffn1_weight)
                _set_var_distributed(ffn1_bias)
                # row parallel
                _set_var_distributed(linear_weight)
                _set_var_distributed(ffn2_weight)

            self.ln_scales.append(ln_scale)
            self.ln_biases.append(ln_bias)
            self.qkv_weights.append(qkv_weight)
            self.qkv_biases.append(qkv_bias)
            self.linear_weights.append(linear_weight)
            self.linear_biases.append(linear_bias)

            self.ffn_ln_scales.append(ffn_ln_scale)
            self.ffn_ln_biases.append(ffn_ln_bias)
            self.ffn1_weights.append(ffn1_weight)
            self.ffn1_biases.append(ffn1_bias)
            self.ffn2_weights.append(ffn2_weight)
            self.ffn2_biases.append(ffn2_bias)

        self.dropout_rate = dropout_rate
        self.activation = activation
        self.name = name

1353 1354 1355
    def forward(
        self, src, attn_mask=None, caches=None, pre_caches=None, time_step=None
    ):
1356
        r"""
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
        Applies multi transformer layers on the input.

        Parameters:
            src (Tensor): The input of Transformer layers. It is
                a tensor with shape `[batch_size, sequence_length, d_model]`.
                The data type should be float16 or float32.
            attn_mask (Tensor, optional): A tensor used in multi-head attention
                to prevents attention to some unwanted positions, usually the
                paddings or the subsequent positions. It is a tensor with shape
                `[batch_size, 1, sequence_length, sequence_length]`. It can be
                None when nothing wanted or needed to be prevented attention to.
                Default None.
            caches (list(Tensor)|tuple(Tensor), optional): The cache structure
                tensors for the inference generation model. It is only used for
                inference and should be None for training. The shape is
                `[2, batch_size, num_head, max_seq_len, head_dim]`. Default None.
1373 1374
            pre_caches (list(Tensor)|tuple(Tensor), optional): The prefix caches
                for the generation model. The shape is `[2, bsz, num\_head, cache\_len, head\_dim]`. Default None.
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
            time_step (Tensor, optional): The time step tensor for the generation
                model. Which used in decode stage, to represent the time step,
                that is, the real seq_len of CacheKV. The shape is `[1]`, must be
                in CPUPlace. Default None.

        Returns:
            Tensor|tuple: If `caches` is None, return a tensor that has
            the same shape and data type with `src`, representing the output
            of Transformer layers. If `caches` is not None, return the
            tuple (output, caches), which output is the output of
            Transformer layers, caches is inplace with input `caches`.
        """

        if caches is not None:
            assert len(caches) == len(self.qkv_weights)
        out = incubate_f.fused_multi_transformer(
            src,
            self.ln_scales,
            self.ln_biases,
            self.qkv_weights,
            self.qkv_biases,
            self.linear_weights,
            self.linear_biases,
            self.ffn_ln_scales,
            self.ffn_ln_biases,
            self.ffn1_weights,
            self.ffn1_biases,
            self.ffn2_weights,
            self.ffn2_biases,
            pre_layer_norm=self.normalize_before,
            epsilon=self._epsilon,
            cache_kvs=caches,
1407
            pre_caches=pre_caches,
1408 1409 1410 1411 1412 1413
            time_step=time_step,
            attn_mask=attn_mask,
            dropout_rate=self.dropout_rate,
            activation=self.activation,
            training=self.training,
            mode='upscale_in_train',
1414
            trans_qkvw=self._trans_qkvw,
1415
            ring_id=self._ring_id,
1416 1417
            name=self.name,
        )
1418
        return out