fused_transformer.py 64.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16 17 18
from paddle.nn import functional as F
from paddle.incubate.nn import functional as incubate_f
from paddle.nn import Layer
from paddle.framework import ParamAttr
import paddle
19
from paddle.nn.layer.transformer import _convert_attention_mask, _convert_param_attr_to_list
20
from paddle.nn.initializer import Constant
21 22 23 24 25
from paddle.fluid.dygraph import no_grad
from paddle.fluid.framework import convert_np_dtype_to_dtype_, _non_static_mode
from paddle.fluid.core import VarDesc
from paddle.fluid import core
import numpy as np
26

27

28 29 30 31 32 33 34
# for distributed tensor model parallel
def _set_var_distributed(var):
    if var is None:
        return

    var.is_distributed = True

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
    if not _non_static_mode():
        # NOTE: use current_block and find_var_recursive to support while_loop
        startup_block = paddle.static.default_startup_program().current_block()
        main_block = paddle.static.default_main_program().current_block()
        startup_block._find_var_recursive(var.name).is_distributed = True
        main_block._find_var_recursive(var.name).is_distributed = True


def _to_dtype(t, dtype):
    # this function is a prune of Layer._transform function to fix fused op under amp.decorator(O2)
    if not paddle.is_floating_point(t):
        return t

    if type(dtype) is not VarDesc.VarType:
        dtype = convert_np_dtype_to_dtype_(dtype)

    if t.place.is_gpu_place():
        size_dtype = core.size_of_dtype(dtype)
        waiting_alloc_memory = (
            (np.prod(t.shape) * size_dtype) / 256 + 1) * 256 * 1.2
        gpu_memory_available = core.gpu_memory_available()
        if gpu_memory_available < waiting_alloc_memory:
            t_used = t._copy_to(paddle.CPUPlace(), False)
            t.value().get_tensor()._clear()
        else:
            t_used = t
    else:
        t_used = t

    if dtype is not None and dtype != t_used.dtype:
        with paddle.fluid.framework._dygraph_place_guard(place=t_used.place):
            t_casted = t_used.cast(dtype=dtype)
    else:
        t_casted = t_used

    new_t = t_casted

    dst_tensor = t.value().get_tensor()
    src_tensor = new_t.value().get_tensor()
    dst_tensor._share_data_with(src_tensor)

    return t
77 78


79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
class FusedBiasDropoutResidualLayerNorm(Layer):
    """
    Applies fused_bias_dropout_residual_layer_norm operation.

    Parameters:
        embed_dim (int): The expected feature size in the input and output.
        dropout_rate (float, optional): The dropout probability used on attention
            weights to drop some attention targets for the dropout after attention.
            0 for no dropout. Default 0.5.
        bias_attr (ParamAttr|bool, optional): To specify the bias parameter property.
            Default: None, which means the default bias parameter property is used.
            If it is set to False, this layer will not have trainable bias parameter.
            See usage for details in :code:`ParamAttr`.
        epsilon (float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.

    Examples:

        .. code-block:: python

            # required: gpu
            import paddle
            # input: [batch_size, seq_len, embed_dim]
            x = paddle.rand((2, 4, 128))
            # residual: [batch_size, seq_len, embed_dim]
            residual = paddle.rand((2, 4, 128))
            fused_bias_dropout_residual_ln = paddle.incubate.nn.FusedBiasDropoutResidualLayerNorm(128)
            output = fused_bias_dropout_residual_ln(x, residual)  # [2, 4, 128]
    """

    def __init__(self,
                 embed_dim,
                 dropout_rate=0.5,
                 weight_attr=None,
                 bias_attr=None,
                 epsilon=1e-5,
                 name=None):
        super(FusedBiasDropoutResidualLayerNorm, self).__init__()
        assert embed_dim > 0, ("Expected embed_dim to be greater than 0, "
                               "but recieved {}".format(embed_dim))
        self._dtype = self._helper.get_default_dtype()
        self._bias_attr = bias_attr
        self._weight_attr = weight_attr
        self.embed_dim = embed_dim
123 124 125 126
        self.linear_bias = self.create_parameter(shape=[embed_dim],
                                                 attr=self._bias_attr,
                                                 dtype=self._dtype,
                                                 is_bias=True)
127 128 129 130
        self.ln_scale = self.create_parameter(
            attr=self._weight_attr,
            shape=[embed_dim],
            default_initializer=Constant(value=1.0))
131 132 133
        self.ln_bias = self.create_parameter(attr=self._bias_attr,
                                             shape=[embed_dim],
                                             is_bias=True)
134 135 136 137 138 139 140 141 142 143
        self.dropout_rate = dropout_rate
        self._epsilon = epsilon

        self.name = name

    def forward(self, x, residual):
        """
        Applies fused_bias_dropout_residual_layer_norm operation.

        Parameters:
144 145 146 147 148 149
            x (Tensor): The input tensor. It is a tensor with shape
                `[batch_size, seq_len, embed_dim]`. The data type should be
                float32 or float64.
            residual (Tensor, optional): The residual tensor. It is a tensor
                with shape `[batch_size, value_length, vdim]`. The data type
                should be float32 or float64.
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

        Returns:
            Tensor|tuple: It is a tensor that has the same shape and data type \
                as `x`.
        """

        out = incubate_f.fused_bias_dropout_residual_layer_norm(
            x=x,
            residual=residual,
            bias=self.linear_bias,
            ln_scale=self.ln_scale,
            ln_bias=self.ln_bias,
            dropout_rate=self.dropout_rate,
            ln_epsilon=self._epsilon,
            training=self.training,
            mode='upscale_in_train',
            name=self.name)
        return out

    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'embed_dim={}, seq_len={}, dropout_rate={}, epsilon={}, dtype={}{}'.format(
            self.embed_dim, self.seq_len, self.dropout_rate, self._epsilon,
            self._dtype, name_str)


176 177
class FusedMultiHeadAttention(Layer):
    """
178
    Attention mapps queries and a set of key-value pairs to outputs, and
179 180 181 182
    Multi-Head Attention performs multiple parallel attention to jointly attending
    to information from different representation subspaces.
    Please refer to `Attention Is All You Need <https://arxiv.org/pdf/1706.03762.pdf>`_
    for more details.
183

184 185 186
    Parameters:
        embed_dim (int): The expected feature size in the input and output.
        num_heads (int): The number of heads in multi-head attention.
187
        dropout_rate (float, optional): The dropout probability used on attention
188
            weights to drop some attention targets for the dropout after attention.
189 190
            0 for no dropout. Default 0.5.
        attn_dropout_rate (float, optional): The dropout probability used on attention
191
            weights to drop some attention targets for the dropout in attention.
192
            0 for no dropout. Default 0.5.
193 194 195 196
        kdim (int, optional): The feature size in key. If None, assumed equal to
            `embed_dim`. Default None.
        vdim (int, optional): The feature size in value. If None, assumed equal to
            `embed_dim`. Default None.
197
        normalize_before (bool, optional): Indicate  whether it is pre_layer_norm
198
            (True) or post_layer_norm architecture (False). Default False.
199
        need_weights (bool, optional): Indicate whether to return the attention
200
            weights. Now, only False is supported. Default False.
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
        qkv_weight_attr(ParamAttr, optional): To specify the weight parameter property
            for QKV projection computation. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        qkv_bias_attr(ParamAttr|bool, optional): To specify the bias parameter property
            for QKV projection computation. The `False` value means the corresponding layer
            would not have trainable bias parameter. Default: None, which means the
            default bias parameter property is used. See usage for details in :code:`ParamAttr`.
        linear_weight_attr(ParamAttr, optional): To specify the weight parameter property
            for linear projection computation. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        linear_bias_attr(ParamAttr|bool, optional): To specify the bias parameter property
            for linear projection computation. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
        pre_ln_scale_attr(ParamAttr, optional): To specify the weight parameter property
            for pre_layer_norm computation. Otherwise, all layers both use it as
            `attr` to create parameters. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        pre_ln_bias_attr(ParamAttr|bool, optional): To specify the bias parameter property
            for pre_layer_norm computation. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ln_scale_attr(ParamAttr, optional): To specify the weight parameter property
            for post_layer_norm computation. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ln_bias_attr(ParamAttr|bool, optional): To specify the bias parameter property
            for post_layer_norm computation. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
L
Li Min 已提交
230 231
        epsilon (float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
232 233
        nranks (int, optional): Distributed tensor model parallel nranks. Default is 1, means not using tensor parallel.
        ring_id (int, optional): For distributed tensor model parallel. Default is -1, means not using tensor parallel.
234

235
    Examples:
236

237
        .. code-block:: python
238 239

            # required: gpu
240
            import paddle
241
            # input: [batch_size, sequence_length, embed_dim]
242 243 244
            query = paddle.rand((2, 4, 128))
            # self attention mask: [batch_size, num_heads, query_len, query_len]
            attn_mask = paddle.rand((2, 2, 4, 4))
245
            multi_head_attn = paddle.incubate.nn.FusedMultiHeadAttention(128, 2)
246 247 248 249 250 251
            output = multi_head_attn(query, None, None, attn_mask=attn_mask)  # [2, 4, 128]
    """

    def __init__(self,
                 embed_dim,
                 num_heads,
252
                 dropout_rate=0.5,
Z
zhangkaihuo 已提交
253
                 attn_dropout_rate=0.5,
254 255
                 kdim=None,
                 vdim=None,
256
                 normalize_before=False,
257
                 need_weights=False,
258 259 260 261 262 263 264 265
                 qkv_weight_attr=None,
                 qkv_bias_attr=None,
                 linear_weight_attr=None,
                 linear_bias_attr=None,
                 pre_ln_scale_attr=None,
                 pre_ln_bias_attr=None,
                 ln_scale_attr=None,
                 ln_bias_attr=None,
266
                 epsilon=1e-5,
267 268
                 nranks=1,
                 ring_id=-1,
269
                 name=None):
270
        super(FusedMultiHeadAttention, self).__init__()
271 272

        assert embed_dim > 0, ("Expected embed_dim to be greater than 0, "
273
                               "but received {}".format(embed_dim))
274
        assert num_heads > 0, ("Expected nhead to be greater than 0, "
275
                               "but received {}".format(num_heads))
276 277 278

        self.normalize_before = normalize_before
        self._dtype = self._helper.get_default_dtype()
279
        self._epsilon = epsilon
280
        self._ring_id = ring_id
281

282 283
        self.embed_dim = embed_dim
        self.num_heads = num_heads
284
        self.head_dim = embed_dim // num_heads
285 286 287
        self.kdim = kdim
        self.vdim = vdim
        self.need_weights = need_weights
288
        assert self.head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads"
289 290 291 292 293
        assert need_weights is False, "Only support need_weight is False now."

        # tensor model parallel
        assert num_heads % nranks == 0
        num_heads = num_heads // nranks
294 295 296

        self.qkv_weight = self.create_parameter(
            shape=[3, num_heads, self.head_dim, embed_dim],
297
            attr=qkv_weight_attr,
298 299 300 301
            dtype=self._dtype,
            is_bias=False)
        self.qkv_bias = self.create_parameter(
            shape=[3, num_heads, self.head_dim],
302
            attr=qkv_bias_attr,
303 304
            dtype=self._dtype,
            is_bias=True)
305 306 307 308 309
        self.linear_weight = self.create_parameter(
            shape=[num_heads * self.head_dim, embed_dim],
            attr=linear_weight_attr,
            dtype=self._dtype,
            is_bias=False)
310
        self.linear_bias = self.create_parameter(shape=[embed_dim],
311
                                                 attr=linear_bias_attr,
312 313
                                                 dtype=self._dtype,
                                                 is_bias=True)
314

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
        # tensor model parallel
        if nranks > 1:
            assert ring_id != -1
            # column parallel
            _set_var_distributed(self.qkv_weight)
            _set_var_distributed(self.qkv_bias)
            # row parallel
            _set_var_distributed(self.linear_weight)

        if normalize_before:
            self.pre_ln_scale = self.create_parameter(
                attr=pre_ln_scale_attr,
                shape=[embed_dim],
                default_initializer=Constant(value=1.0))
            self.pre_ln_bias = self.create_parameter(attr=pre_ln_bias_attr,
                                                     shape=[embed_dim],
                                                     is_bias=True)
            self.ln_scale = None
            self.ln_bias = None
        else:
            self.pre_ln_scale = None
            self.pre_ln_bias = None
            self.ln_scale = self.create_parameter(
                attr=ln_scale_attr,
                shape=[embed_dim],
                default_initializer=Constant(value=1.0))
            self.ln_bias = self.create_parameter(attr=ln_bias_attr,
342 343
                                                 shape=[embed_dim],
                                                 is_bias=True)
344 345 346 347 348

        self.dropout_rate = dropout_rate
        self.attn_dropout_rate = attn_dropout_rate

        self.name = name
349 350 351 352 353

    def forward(self, query, key=None, value=None, attn_mask=None, cache=None):
        """
        Applies multi-head attention to map queries and a set of key-value pairs
        to outputs.
354

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
        Parameters:
            query (Tensor): The queries for multi-head attention. It is a
                tensor with shape `[batch_size, query_length, embed_dim]`. The
                data type should be float32 or float64.
            key (Tensor, optional): The keys for multi-head attention. It is
                a tensor with shape `[batch_size, key_length, kdim]`. The
                data type should be float32 or float64. If None, use `query` as
                `key`. Default None.
            value (Tensor, optional): The values for multi-head attention. It
                is a tensor with shape `[batch_size, value_length, vdim]`.
                The data type should be float32 or float64. If None, use `query` as
                `value`. Default None.
            attn_mask (Tensor, optional): A tensor used in multi-head attention
                to prevents attention to some unwanted positions, usually the
                paddings or the subsequent positions. It is a tensor with shape
                broadcasted to `[batch_size, n_head, sequence_length, sequence_length]`.
371 372 373 374 375
                When the data type is bool, the unwanted positions have `False`
                values and the others have `True` values. When the data type is
                int, the unwanted positions have 0 values and the others have 1
                values. When the data type is float, the unwanted positions have
                `-INF` values and the others have 0 values. It can be None when
376 377
                nothing wanted or needed to be prevented attention to. Default None.
            cache (MultiHeadAttention.Cache|MultiHeadAttention.StaticCache, optional):
378
                Now, only None is supported. Default None.
379

380 381
        Returns:
            Tensor|tuple: It is a tensor that has the same shape and data type \
382
                as `query`, representing attention output.
383
        """
384 385 386 387 388 389 390 391 392 393 394 395 396
        if attn_mask is not None:
            # Support bool or int mask
            attn_mask = _convert_attention_mask(attn_mask, query.dtype)

        out = incubate_f.fused_multi_head_attention(
            x=query,
            qkv_weight=self.qkv_weight,
            linear_weight=self.linear_weight,
            pre_layer_norm=self.normalize_before,
            pre_ln_scale=self.pre_ln_scale,
            pre_ln_bias=self.pre_ln_bias,
            ln_scale=self.ln_scale,
            ln_bias=self.ln_bias,
397
            pre_ln_epsilon=self._epsilon,
398 399
            qkv_bias=self.qkv_bias,
            linear_bias=self.linear_bias,
400
            cache_kv=cache,
401 402 403
            attn_mask=attn_mask,
            dropout_rate=self.dropout_rate,
            attn_dropout_rate=self.attn_dropout_rate,
404 405
            ln_epsilon=self._epsilon,
            training=self.training,
406
            ring_id=self._ring_id,
407
            name=self.name)
408
        return out
409

410 411 412 413 414 415 416
    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'embed_dim={}, num_heads={}, dropout_rate={}, attn_dropout_rate={}, epsilon={}, kdim={}, vdim={}, normalize_before={}, need_weights={}, dtype={}{}'.format(
            self.embed_dim, self.num_heads, self.dropout_rate,
            self.attn_dropout_rate, self._epsilon, self.kdim, self.vdim,
            self.normalize_before, self.need_weights, self._dtype, name_str)

417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
    def _amp_decorate(self, dtype):
        # tmp fix for amp.decorator(O2)
        layer_norm_params_id = []
        if self.normalize_before:
            layer_norm_params_id.append(id(self.pre_ln_scale))
            layer_norm_params_id.append(id(self.pre_ln_bias))
        else:
            layer_norm_params_id.append(id(self.ln_scale))
            layer_norm_params_id.append(id(self.ln_bias))

        for key, param in self._parameters.items():
            if id(param) in layer_norm_params_id:
                continue
            if param is not None:
                with no_grad():
                    param_applied = _to_dtype(param, dtype)

        self._dtype = dtype

436 437

class FusedFeedForward(Layer):
438 439 440 441 442 443
    """
    Parameters:
        d_model (int): The expected feature size in the input and output.
        dim_feedforward (int): The hidden layer size.
        dropout_rate (float, optional): The dropout probability used in pre-process
            and post-precess. Default 0.1
444 445
        epsilon (float, optional): he small value added to the variance to prevent
            division by zero. Default: 1e-05.
446 447 448 449 450
        activation (str, optional): The activation function. Default relu.
        act_dropout_rate (float, optional): The dropout probability after activition.
            If None, use the value of `dropout_rate`. Default None
        normalize_before (bool, optional): Indicate whether to put layer normalization
            into, preprocessing or postprocessing. Default False
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
        linear1_weight_attr(ParamAttr, optional): To specify the weight parameter property
            for FFN first linear. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        linear1_bias_attr(ParamAttr|bool, optional): To specify the bias parameter property
            for FFN first linear. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
        linear2_weight_attr(ParamAttr, optional): To specify the weight parameter property
            for FFN second linear. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        linear2_bias_attr(ParamAttr|bool, optional): To specify the bias parameter property
            for FFN second linear. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ln1_scale_attr(ParamAttr, optional): To specify the weight parameter property
            for FFN pre_layer_norm. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ln1_bias_attr(ParamAttr|bool, optional): To specify the bias parameter property
            for FFN pre_layer_norm. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ln2_scale_attr(ParamAttr, optional): To specify the weight parameter property
            for FFN post_layer_norm. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ln2_bias_attr(ParamAttr|bool, optional): To specify the bias parameter property
            for FFN layer_norm. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
        nranks (int, optional): Distributed tensor model parallel nranks. Default is 1, means not using tensor parallel.
        ring_id (int, optional): For distributed tensor model parallel. Default is -1, means not using tensor parallel.
        name (str, optional): The default value is None.  Normally there is no need for user to set
            this property. For more information, please refer to :ref:`api_guide_Name`.
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497

    Examples:
        .. code-block:: python

            # required: gpu
            import paddle
            from paddle.incubate.nn import FusedFeedForward

            fused_feedforward_layer = FusedFeedForward(8, 8)
            x = paddle.rand((1, 8, 8))
            out = fused_feedforward_layer(x)
            print(out.numpy().shape)
            # (1, 8, 8)
    """

498 499 500
    def __init__(self,
                 d_model,
                 dim_feedforward,
501
                 dropout_rate=0.1,
502
                 epsilon=1e-05,
503
                 activation="relu",
504
                 act_dropout_rate=None,
505
                 normalize_before=False,
506 507 508 509 510 511 512 513 514 515
                 linear1_weight_attr=None,
                 linear1_bias_attr=None,
                 linear2_weight_attr=None,
                 linear2_bias_attr=None,
                 ln1_scale_attr=None,
                 ln1_bias_attr=None,
                 ln2_scale_attr=None,
                 ln2_bias_attr=None,
                 nranks=1,
                 ring_id=-1,
516
                 name=None):
517 518

        super(FusedFeedForward, self).__init__()
519
        assert d_model > 0, (
520
            "Expected d_model to be greater than 0, but received {}".format(
521 522
                d_model))
        assert dim_feedforward > 0, (
523
            "Expected dim_feedforward to be greater than 0, but received {}".
524 525 526 527
            format(dim_feedforward))

        self._dtype = self._helper.get_default_dtype()
        self._d_model = d_model
528 529 530

        assert dim_feedforward % nranks == 0
        dim_feedforward = dim_feedforward // nranks
531 532 533 534 535
        self._dim_feedforward = dim_feedforward
        self._dropout_rate = dropout_rate
        self._act_dropout_rate = dropout_rate if act_dropout_rate is None else act_dropout_rate
        self._act_method = activation
        self._normalize_before = normalize_before
536
        self._epsilon = epsilon
537
        self._ring_id = ring_id
538 539 540

        self._linear1_weight = self.create_parameter(
            shape=[d_model, dim_feedforward],
541
            attr=linear1_weight_attr,
542 543
            dtype=self._dtype,
            is_bias=False)
544
        self._linear1_bias = self.create_parameter(shape=[dim_feedforward],
545
                                                   attr=linear1_bias_attr,
546 547
                                                   dtype=self._dtype,
                                                   is_bias=True)
548 549 550

        self._linear2_weight = self.create_parameter(
            shape=[dim_feedforward, d_model],
551
            attr=linear2_weight_attr,
552 553 554
            dtype=self._dtype,
            is_bias=False)

555
        self._linear2_bias = self.create_parameter(shape=[d_model],
556
                                                   attr=linear2_bias_attr,
557 558
                                                   dtype=self._dtype,
                                                   is_bias=True)
559

560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
        if nranks > 1:
            assert ring_id != -1
            # column parallel
            _set_var_distributed(self._linear1_weight)
            _set_var_distributed(self._linear1_bias)
            _set_var_distributed(self._linear2_weight)

        if normalize_before:
            self._ln1_scale = self.create_parameter(
                shape=[d_model],
                attr=ln1_scale_attr,
                is_bias=False,
                default_initializer=Constant(1.0))
            self._ln1_bias = self.create_parameter(shape=[d_model],
                                                   attr=ln1_bias_attr,
                                                   is_bias=True)
            self._ln2_scale = None
            self._ln2_bias = None
        else:
            self._ln1_scale = None
            self._ln1_bias = None
            self._ln2_scale = self.create_parameter(
                shape=[d_model],
                attr=ln2_scale_attr,
                is_bias=False,
                default_initializer=Constant(1.0))
            self._ln2_bias = self.create_parameter(shape=[d_model],
                                                   attr=ln2_bias_attr,
                                                   is_bias=True)

590
        self.name = name
591 592

    def forward(self, src, cache=None):
593
        out = incubate_f.fused_feedforward(
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
            src,
            self._linear1_weight,
            self._linear2_weight,
            self._linear1_bias,
            self._linear2_bias,
            self._ln1_scale,
            self._ln1_bias,
            self._ln2_scale,
            self._ln2_bias,
            dropout1_rate=self._act_dropout_rate,
            dropout2_rate=self._dropout_rate,
            activation=self._act_method,
            ln1_epsilon=self._epsilon,
            ln2_epsilon=self._epsilon,
            pre_layer_norm=self._normalize_before,
            training=self.training,
610
            ring_id=self._ring_id,
611
            name=self.name)
612
        return out
613

614 615 616 617 618 619 620
    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'd_model={}, dim_feedforward={}, dropout_rate={}, epsilon={}, activation={}, act_dropout_rate={}, normalize_before={}, dtype={}{}'.format(
            self._d_model, self._dim_feedforward, self._dropout_rate,
            self._epsilon, self._act_method, self._act_dropout_rate,
            self._normalize_before, self._dtype, name_str)

621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
    def _amp_decorate(self, dtype):
        # tmp fix for amp.decorator(O2)
        layer_norm_params_id = []
        if self._normalize_before:
            layer_norm_params_id.append(id(self._ln1_scale))
            layer_norm_params_id.append(id(self._ln1_bias))
        else:
            layer_norm_params_id.append(id(self._ln2_scale))
            layer_norm_params_id.append(id(self._ln2_bias))

        for key, param in self._parameters.items():
            if id(param) in layer_norm_params_id:
                continue
            if param is not None:
                with no_grad():
                    param_applied = _to_dtype(param, dtype)

        self._dtype = dtype

640 641 642

class FusedTransformerEncoderLayer(Layer):
    """
643
    FusedTransformerEncoderLayer is composed of two sub-layers which are self (multi-head)
644 645 646 647 648 649 650 651 652 653
    attention and feedforward network. Before and after each sub-layer, pre-process
    and post-precess would be applied on the input and output accordingly. If
    `normalize_before` is True, pre-process is layer normalization and post-precess
    includes dropout, residual connection. Otherwise, no pre-process and post-precess
    includes dropout, residual connection, layer normalization.

    Parameters:
        d_model (int): The expected feature size in the input and output.
        nhead (int): The number of heads in multi-head attention(MHA).
        dim_feedforward (int): The hidden layer size in the feedforward network(FFN).
654
        dropout_rate (float, optional): The dropout probability used in pre-process
655 656 657
            and post-precess of MHA and FFN sub-layer. Default 0.1
        activation (str, optional): The activation function in the feedforward
            network. Default relu.
658
        attn_dropout_rate (float, optional): The dropout probability used
659 660
            in MHA to drop some attention target. If None, use the value of
            `dropout`. Default None
661
        act_dropout_rate (float, optional): The dropout probability used after FFN
662 663 664 665 666 667 668 669 670 671 672
            activition.  If None, use the value of `dropout`. Default None
        normalize_before (bool, optional): Indicate whether to put layer normalization
            into preprocessing of MHA and FFN sub-layers. If True, pre-process is layer
            normalization and post-precess includes dropout, residual connection.
            Otherwise, no pre-process and post-precess includes dropout, residual
            connection, layer normalization. Default False
        weight_attr(ParamAttr|list|tuple, optional): To specify the weight parameter property.
            If it is a list/tuple, `weight_attr[0]` would be used as `weight_attr` for
            MHA, and `weight_attr[1]` would be used as `weight_attr` for linear in FFN.
            Otherwise, MHA and FFN both use it as `weight_attr` to create parameters.
            Default: None, which means the default weight parameter property is used.
673
            See usage for details in :code:`ParamAttr` .
674 675 676 677 678 679 680
        bias_attr (ParamAttr|list|tuple|bool, optional): To specify the bias parameter property.
            If it is a list/tuple, `bias_attr[0]` would be used as `bias_attr` for
            MHA, and `bias_attr[1]` would be used as `bias_attr` for linear in FFN.
            Otherwise, MHA and FFN both use it as `bias_attr` to create parameters.
            The `False` value means the corresponding layer would not have trainable
            bias parameter. See usage for details in :code:`ParamAttr` . Default: None,
            which means the default bias parameter property is used.
681

682 683 684 685

    Examples:

        .. code-block:: python
686

687
	    # required: gpu
688
            import paddle
689
            from paddle.incubate.nn import FusedTransformerEncoderLayer
690 691 692 693 694

            # encoder input: [batch_size, src_len, d_model]
            enc_input = paddle.rand((2, 4, 128))
            # self attention mask: [batch_size, n_head, src_len, src_len]
            attn_mask = paddle.rand((2, 2, 4, 4))
695
            encoder_layer = FusedTransformerEncoderLayer(128, 2, 512)
696 697 698 699 700 701 702
            enc_output = encoder_layer(enc_input, attn_mask)  # [2, 4, 128]
    """

    def __init__(self,
                 d_model,
                 nhead,
                 dim_feedforward,
703
                 dropout_rate=0.1,
704
                 activation="relu",
705 706
                 attn_dropout_rate=None,
                 act_dropout_rate=None,
707 708 709 710 711 712 713 714
                 normalize_before=False,
                 weight_attr=None,
                 bias_attr=None):
        self._config = locals()
        self._config.pop("self")
        self._config.pop("__class__", None)  # py3

        super(FusedTransformerEncoderLayer, self).__init__()
715
        assert d_model > 0, ("Expected d_model to be greater than 0, "
716
                             "but received {}".format(d_model))
717
        assert nhead > 0, ("Expected nhead to be greater than 0, "
718
                           "but received {}".format(nhead))
719 720
        assert dim_feedforward > 0, (
            "Expected dim_feedforward to be greater than 0, "
721
            "but received {}".format(dim_feedforward))
722 723 724 725 726 727 728 729 730 731
        attn_dropout_rate = dropout_rate if attn_dropout_rate is None else attn_dropout_rate
        act_dropout_rate = dropout_rate if act_dropout_rate is None else act_dropout_rate
        self.normalize_before = normalize_before

        weight_attrs = _convert_param_attr_to_list(weight_attr, 2)
        bias_attrs = _convert_param_attr_to_list(bias_attr, 2)

        self.fused_attn = FusedMultiHeadAttention(
            d_model,
            nhead,
732 733 734
            dropout_rate=dropout_rate,
            attn_dropout_rate=attn_dropout_rate,
            normalize_before=self.normalize_before,
735 736 737 738 739 740 741 742
            qkv_weight_attr=weight_attrs[0],
            qkv_bias_attr=bias_attrs[0],
            linear_weight_attr=weight_attrs[0],
            linear_bias_attr=bias_attrs[0],
            pre_ln_scale_attr=weight_attrs[0],
            pre_ln_bias_attr=bias_attrs[0],
            ln_scale_attr=weight_attrs[0],
            ln_bias_attr=bias_attrs[0])
743

744 745 746 747 748 749
        self.ffn = FusedFeedForward(d_model,
                                    dim_feedforward,
                                    dropout_rate=dropout_rate,
                                    activation=activation,
                                    act_dropout_rate=act_dropout_rate,
                                    normalize_before=self.normalize_before,
750 751 752 753
                                    linear1_weight_attr=weight_attrs[1],
                                    linear1_bias_attr=bias_attrs[1],
                                    linear2_weight_attr=weight_attrs[1],
                                    linear2_bias_attr=bias_attrs[1])
754 755 756 757 758 759 760 761 762 763 764 765

    def forward(self, src, src_mask=None, cache=None):
        """
        Applies a Transformer encoder layer on the input.
        Parameters:
            src (Tensor): The input of Transformer encoder layer. It is
                a tensor with shape `[batch_size, sequence_length, d_model]`.
                The data type should be float32 or float64.
            src_mask (Tensor, optional): A tensor used in multi-head attention
                to prevents attention to some unwanted positions, usually the
                paddings or the subsequent positions. It is a tensor with shape
                broadcasted to `[batch_size, n_head, sequence_length, sequence_length]`.
766 767 768 769 770
                When the data type is bool, the unwanted positions have `False`
                values and the others have `True` values. When the data type is
                int, the unwanted positions have 0 values and the others have 1
                values. When the data type is float, the unwanted positions have
                `-INF` values and the others have 0 values. It can be None when
771 772 773 774 775 776 777 778 779 780 781 782 783 784
                nothing wanted or needed to be prevented attention to. Default None.
            cache (Tensor, optional): It is an instance of `MultiHeadAttention.Cache`.
                See `TransformerEncoderLayer.gen_cache` for more details. It is
                only used for inference and should be None for training. Default
                None.
        Returns:
            Tensor|tuple: It is a tensor that has the same shape and data type \
                as `enc_input`, representing the output of Transformer encoder \
                layer. Or a tuple if `cache` is not None, except for encoder \
                layer output, the tuple includes the new cache which is same \
                as input `cache` argument but `incremental_cache` has an \
                incremental length. See `MultiHeadAttention.gen_cache` and \
                `MultiHeadAttention.forward` for more details.
        """
785 786 787 788
        src_mask = _convert_attention_mask(src_mask, src.dtype)
        if cache is None:
            attn_out = self.fused_attn(src, attn_mask=src_mask)
        else:
789 790 791
            attn_out, incremental_cache = self.fused_attn(src,
                                                          attn_mask=src_mask,
                                                          cache=cache)
792 793 794 795

        ffn_out = self.ffn(attn_out)

        return ffn_out if cache is None else (ffn_out, incremental_cache)
796 797 798 799 800 801 802 803 804 805


class FusedTransformer(Layer):
    """
    A Transformer model composed of an instance of `TransformerEncoder` and an
    instance of `TransformerDecoder`. While the embedding layer and output layer
    are not included.

    Please refer to `Attention is all you need <http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf>`_ ,
    and see `TransformerEncoder` and `TransformerDecoder` for more details.
806

807 808 809 810
    Users can configurate the model architecture with corresponding parameters.
    Note the usage of `normalize_before` representing where to apply layer
    normalization (in pre-process or post-precess of multi-head attention or FFN),
    and some transformer like models are different on this, such as
811
    `BERT <https://arxiv.org/abs/1810.04805>`_ and `GPT2 <https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf>`_ .
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
    The default architecture here places layer normalization in post-process and
    applies another layer normalization on the output of last encoder/decoder layer.

    Parameters:
        d_model (int, optional): The expected feature size in the encoder/decoder input
            and output. Default 512
        nhead (int, optional): The number of heads in multi-head attention(MHA). Default 8
        num_encoder_layers (int, optional): The number of layers in encoder. Default 6
        num_decoder_layers (int, optional): The number of layers in decoder. Default 6
        dim_feedforward (int, optional): The hidden layer size in the feedforward network(FFN). Default 2048
        dropout (float, optional): The dropout probability used in pre-process
            and post-precess of MHA and FFN sub-layer. Default 0.1
        activation (str, optional): The activation function in the feedforward
            network. Default relu.
        attn_dropout (float, optional): The dropout probability used
            in MHA to drop some attention target. If None, use the value of
            `dropout`. Default None
        act_dropout (float, optional): The dropout probability used after FFN
            activition.  If None, use the value of `dropout`. Default None
        normalize_before (bool, optional): Indicate whether to put layer normalization
            into preprocessing of MHA and FFN sub-layers. If True, pre-process is layer
            normalization and post-precess includes dropout, residual connection.
            Otherwise, no pre-process and post-precess includes dropout, residual
            connection, layer normalization. Default False
        weight_attr(ParamAttr|list|tuple, optional): To specify the weight parameter property.
837 838 839 840 841 842 843 844 845 846
            If it is a list/tuple, the length of `weight_attr` could be 1, 2 or 3. If it is 3,
            `weight_attr[0]` would be used as `weight_attr` for self attention, `weight_attr[1]`
            would be used as `weight_attr` for cross attention of `TransformerDecoder`,
            and `weight_attr[2]` would be used as `weight_attr` for linear in FFN.
            If it is 2, `weight_attr[0]` would be used as `weight_attr` both for self attention
            and cross attntion and `weight_attr[1]` would be used as `weight_attr` for
            linear in FFN. If it is 1, `weight_attr[0]` would be used as `weight_attr`
            for self attention, cross attention and linear in FFN. Otherwise,
            the three sub-layers all uses it as `weight_attr` to create parameters.
            Default: None, which means the default weight parameter property is used.
847
            See usage for details
848
            in :code:`ParamAttr` .
849
        bias_attr (ParamAttr|list|tuple|bool, optional): To specify the bias parameter property.
850 851 852 853 854 855 856 857 858 859 860
            If it is a list/tuple, the length of `bias_attr` could be 1, 2 or 3. If it is 3,
            `bias_attr[0]` would be used as `bias_attr` for self attention, `bias_attr[1]`
            would be used as `bias_attr` for cross attention of `TransformerDecoder`,
            and `bias_attr[2]` would be used as `bias_attr` for linear in FFN.
            If it is 2, `bias_attr[0]` would be used as `bias_attr` both for self attention
            and cross attntion and `bias_attr[1]` would be used as `bias_attr` for
            linear in FFN. If it is 1, `bias_attr[0]` would be used as `bias_attr`
            for self attention, cross attention and linear in FFN. Otherwise,
            the three sub-layers all uses it as `bias_attr` to create parameters.
            The `False` value means the corresponding layer would not have trainable
            bias parameter. See usage for details in :code:`ParamAttr` .
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
            Default: None,which means the default bias parameter property is used.
        custom_encoder (Layer, optional): If custom encoder is provided, use it as the encoder.
            Default None
        custom_decoder (Layer, optional): If custom decoder is provided, use it as the decoder.
            Default None

    Examples:

        .. code-block:: python

            import paddle
            from paddle.nn import Transformer

            # src: [batch_size, tgt_len, d_model]
            enc_input = paddle.rand((2, 4, 128))
            # tgt: [batch_size, src_len, d_model]
            dec_input = paddle.rand((2, 6, 128))
            # src_mask: [batch_size, n_head, src_len, src_len]
            enc_self_attn_mask = paddle.rand((2, 2, 4, 4))
            # tgt_mask: [batch_size, n_head, tgt_len, tgt_len]
            dec_self_attn_mask = paddle.rand((2, 2, 6, 6))
            # memory_mask: [batch_size, n_head, tgt_len, src_len]
            cross_attn_mask = paddle.rand((2, 2, 6, 4))
            transformer = Transformer(128, 2, 4, 4, 512)
            output = transformer(enc_input,
                                 dec_input,
                                 enc_self_attn_mask,
                                 dec_self_attn_mask,
                                 cross_attn_mask)  # [2, 6, 128]
    """

    def __init__(self,
                 d_model=512,
                 nhead=8,
                 num_encoder_layers=6,
                 num_decoder_layers=6,
                 dim_feedforward=2048,
                 dropout=0.1,
                 activation="relu",
                 attn_dropout=None,
                 act_dropout=None,
                 normalize_before=False,
                 weight_attr=None,
                 bias_attr=None,
                 custom_encoder=None,
                 custom_decoder=None):
        super(fusedTransformer, self).__init__()
908
        raise NotImplementedError()
909 910

    def forward(self, src, tgt, src_mask=None, tgt_mask=None, memory_mask=None):
911
        raise NotImplementedError()
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050


class FusedMultiTransformer(Layer):
    """
    FusedMultiTransformer is composed of multi transformer layers which contains two
    sub-layers which are self (multi-head) attention and feedforward network. The
    function of one transformer layer is consistent with the following pseudo code:

    .. code-block:: python

        if pre_layer_norm:
            out = layer_norm(x)
            out = qkv_linear(out) + qkv_bias
        else:
            out = qkv_linear(x) + qkv_bias
        out = transpose(out, perm=[2, 0, 3, 1, 4])
        # extract q, k and v from out.
        q = out[0:1, ::]
        k = out[1:2, ::]
        v = out[2:3, ::]
        out = q * k^t
        out = attn_mask + out
        out = softmax(out)
        out = dropout(out)
        out = out * v
        out = transpose(out, perm=[0, 2, 1, 3])
        out = linear(out)
        if pre_layer_norm:
            out = x + dropout(out + bias)
        else:
            out = layer_norm(x + dropout(out + bias))

        residual = out;
        if pre_layer_norm:
            out = ffn_layer_norm(out)
        out = ffn1_linear(out)
        out = dropout(activation(out + ffn1_bias))
        out = ffn2_linear(out)
        out = residual + dropout(out + ffn2_bias)
        if not pre_layer_norm:
            out = ffn_layer_norm(out)

    Parameters:
        embed_dim (int): The expected feature size in the input and output.
        num_heads (int): The number of heads in multi-head attention(MHA).
        dim_feedforward (int): The hidden layer size in the feedforward network(FFN).
        dropout_rate (float, optional): The dropout probability used in pre-process
            and post-precess of MHA and FFN sub-layer. Default 0.0
        activation (str, optional): The activation function in the feedforward
            network. Default "gelu".
        normalize_before (bool, optional): Indicate whether to put layer normalization
            into preprocessing of MHA and FFN sub-layers. If True, pre-process is layer
            normalization and post-precess includes dropout, residual connection.
            Otherwise, no pre-process and post-precess includes dropout, residual
            connection, layer normalization. Default True
        ln_scale_attrs(ParamAttr|list|tuple, optional): To specify the weight parameter property
            for Attention layer_norm. For Attention layer_norm weight, if it is a list/tuple, `attrs[0]`
            would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as
            `attr` for transformer layer 1,etc. Otherwise, all layers both use it as
            `attr` to create parameters. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ln_bias_attrs(ParamAttr|list|tuple|bool, optional): To specify the bias parameter property
            for Attention layer_norm. For Attention layer_norm bias, if it is a list/tuple, `attrs[0]`
            would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as
            `attr` for transformer layer 1,etc. Otherwise, all layers both use it as
            `attr` to create parameters. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
        qkv_weight_attrs(ParamAttr|list|tuple, optional): To specify the weight parameter property
            for Attention qkv computation. For Attention qkv weight, if it is a list/tuple, `attrs[0]`
            would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as
            `attr` for transformer layer 1,etc. Otherwise, all layers both use it as
            `attr` to create parameters. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        qkv_bias_attrs(ParamAttr|list|tuple|bool, optional): To specify the bias parameter property
            for Attention qkv computation. For Attention qkv bias, if it is a list/tuple, `attrs[0]`
            would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as
            `attr` for transformer layer 1,etc. Otherwise, all layers both use it as
            `attr` to create parameters. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
        linear_weight_attrs(ParamAttr|list|tuple, optional): To specify the weight parameter property
            for Attention linear. For Attention linear weight, if it is a list/tuple, `attrs[0]`
            would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as
            `attr` for transformer layer 1,etc. Otherwise, all layers both use it as
            `attr` to create parameters. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        linear_bias_attrs(ParamAttr|list|tuple|bool, optional): To specify the bias parameter property
            for Attention linear computation. For Attention linear bias, if it is a list/tuple, `attrs[0]`
            would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as
            `attr` for transformer layer 1,etc. Otherwise, all layers both use it as
            `attr` to create parameters. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ffn_ln_scale_attrs(ParamAttr|list|tuple, optional): To specify the weight parameter property
            for FFN layer_norm. For FFN layer_norm weight, if it is a list/tuple, `attrs[0]`
            would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as
            `attr` for transformer layer 1,etc. Otherwise, all layers both use it as
            `attr` to create parameters. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ffn_ln_bias_attrs(ParamAttr|list|tuple|bool, optional): To specify the bias parameter property
            for FFN layer_norm. For FFN layer_norm bias, if it is a list/tuple, `attrs[0]`
            would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as
            `attr` for transformer layer 1,etc. Otherwise, all layers both use it as
            `attr` to create parameters. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ffn1_weight_attrs(ParamAttr|list|tuple, optional): To specify the weight parameter property
            for FFN first linear. For FFN first linear weight, if it is a list/tuple, `attrs[0]`
            would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as
            `attr` for transformer layer 1,etc. Otherwise, all layers both use it as
            `attr` to create parameters. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ffn1_bias_attrs(ParamAttr|list|tuple|bool, optional): To specify the bias parameter property
            for FFN first linear. For FFN first linear bias, if it is a list/tuple, `attrs[0]`
            would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as
            `attr` for transformer layer 1,etc. Otherwise, all layers both use it as
            `attr` to create parameters. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ffn2_weight_attrs(ParamAttr|list|tuple, optional): To specify the weight parameter property
            for FFN second linear. For FFN second linear weight, if it is a list/tuple, `attrs[0]`
            would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as
            `attr` for transformer layer 1,etc. Otherwise, all layers both use it as
            `attr` to create parameters. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ffn2_bias_attrs(ParamAttr|list|tuple|bool, optional): To specify the bias parameter property
            for FFN second linear. For FFN second linear bias, if it is a list/tuple, `attrs[0]`
            would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as
            `attr` for transformer layer 1,etc. Otherwise, all layers both use it as
            `attr` to create parameters. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
        epsilon (float, optional): Small float value added to denominator of the layer_norm to
            avoid dividing by zero. Default: 1e-05.
        num_layers (int, optional): The number of layers of the transformer. If `qkv_weight_attrs`
            is a list or tuple, the number of layers is obtained from `qkv_weight_attrs`. num_layers
            only takes effect when `qkv_weight_attrs` is not a list or tuple. Default: -1.
        nranks (int, optional): Distributed tensor model parallel nranks. Default is 1, means not using mp.
1051 1052 1053
        trans_qkvw (bool, optional): Whether to transpose for weights of qkv.
            If true, the shape eights of qkv should be [3, num_head, dim_head, dim_embed].
            Otherwise the shape of weights of qkv should be [dim_embed, 3, num_head, dim_head]. Default: True.
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
        ring_id (int, optional): For distributed tensor model parallel. Default is -1, means not using mp.
        name (str, optional): The default value is None.  Normally there is no need for user to set
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Examples:

        .. code-block:: python

            # required: gpu
            import paddle
            from paddle.incubate.nn import FusedMultiTransformer

            # encoder input: [batch_size, src_len, d_model]
            enc_input = paddle.rand((2, 4, 128))
            # self attention mask: [batch_size, 1, src_len, src_len]
            attn_mask = paddle.rand((2, 1, 4, 4))
            encoder_layers = FusedMultiTransformer(128, 2, 512, num_layers=1)
            enc_output = encoder_layers(enc_input, attn_mask)  # [2, 4, 128]
    """

    def __init__(self,
                 embed_dim,
                 num_heads,
                 dim_feedforward,
                 dropout_rate=0.0,
                 activation="gelu",
                 normalize_before=True,
                 ln_scale_attrs=None,
                 ln_bias_attrs=None,
                 qkv_weight_attrs=None,
                 qkv_bias_attrs=None,
                 linear_weight_attrs=None,
                 linear_bias_attrs=None,
                 ffn_ln_scale_attrs=None,
                 ffn_ln_bias_attrs=None,
                 ffn1_weight_attrs=None,
                 ffn1_bias_attrs=None,
                 ffn2_weight_attrs=None,
                 ffn2_bias_attrs=None,
                 epsilon=1e-5,
                 num_layers=-1,
                 nranks=1,
1096
                 trans_qkvw=True,
1097 1098 1099 1100 1101
                 ring_id=-1,
                 name=None):
        super(FusedMultiTransformer, self).__init__()

        assert embed_dim > 0, ("Expected embed_dim to be greater than 0, "
1102
                               "but received {}".format(embed_dim))
1103
        assert num_heads > 0, ("Expected nhead to be greater than 0, "
1104
                               "but received {}".format(num_heads))
1105
        assert dim_feedforward > 0, (
1106
            "Expected dim_feedforward to be greater than 0, but received {}".
1107 1108 1109 1110 1111
            format(dim_feedforward))

        self.normalize_before = normalize_before
        self._dtype = self._helper.get_default_dtype()
        self._epsilon = epsilon
1112
        self._trans_qkvw = trans_qkvw
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
        self._ring_id = ring_id

        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.head_dim = embed_dim // num_heads
        assert self.head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads"

        # tensor model parallel
        if nranks > 1:
            assert ring_id != -1
        assert num_heads % nranks == 0
        assert dim_feedforward % nranks == 0
        num_heads = num_heads // nranks
        dim_feedforward = dim_feedforward // nranks
        self._dim_feedforward = dim_feedforward

        if isinstance(qkv_weight_attrs, (list, tuple)):
            num_layers = len(qkv_weight_attrs)
        assert num_layers > 0

        self.ln_scales, self.ln_biases = [], []
        self.qkv_weights, self.qkv_biases = [], []
        self.linear_weights, self.linear_biases = [], []
        self.ffn_ln_scales, self.ffn_ln_biases = [], []
        self.ffn1_weights, self.ffn1_biases = [], []
        self.ffn2_weights, self.ffn2_biases = [], []

        def get_attr(attrs, idx):
            if isinstance(attrs, (list, tuple)):
                assert len(attrs) == num_layers
                return attrs[idx]
            return attrs

        for i in range(num_layers):
            ln_scale_attr = get_attr(ln_scale_attrs, i)
            ln_bias_attr = get_attr(ln_bias_attrs, i)
            qkv_weight_attr = get_attr(qkv_weight_attrs, i)
            qkv_bias_attr = get_attr(qkv_bias_attrs, i)
            linear_weight_attr = get_attr(linear_weight_attrs, i)
            linear_bias_attr = get_attr(linear_bias_attrs, i)

            ffn_ln_scale_attr = get_attr(ffn_ln_scale_attrs, i)
            ffn_ln_bias_attr = get_attr(ffn_ln_bias_attrs, i)
            ffn1_weight_attr = get_attr(ffn1_weight_attrs, i)
            ffn1_bias_attr = get_attr(ffn1_bias_attrs, i)
            ffn2_weight_attr = get_attr(ffn2_weight_attrs, i)
            ffn2_bias_attr = get_attr(ffn2_bias_attrs, i)

            ln_scale = self.create_parameter(
                attr=ln_scale_attr,
                shape=[embed_dim],
                default_initializer=Constant(value=1.0))
1165 1166 1167
            ln_bias = self.create_parameter(attr=ln_bias_attr,
                                            shape=[embed_dim],
                                            is_bias=True)
1168
            qkv_weight = self.create_parameter(
1169 1170
                shape=[3, num_heads, self.head_dim, embed_dim]
                if trans_qkvw else [embed_dim, 3, num_heads, self.head_dim],
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
                attr=qkv_weight_attr,
                dtype=self._dtype,
                is_bias=False)
            qkv_bias = self.create_parameter(
                shape=[3, num_heads, self.head_dim],
                attr=qkv_bias_attr,
                dtype=self._dtype,
                is_bias=True)
            linear_weight = self.create_parameter(
                shape=[num_heads * self.head_dim, embed_dim],
                attr=linear_weight_attr,
                dtype=self._dtype,
                is_bias=False)
1184 1185 1186 1187
            linear_bias = self.create_parameter(shape=[embed_dim],
                                                attr=linear_bias_attr,
                                                dtype=self._dtype,
                                                is_bias=True)
1188 1189 1190 1191 1192 1193

            ffn_ln_scale = self.create_parameter(
                shape=[embed_dim],
                attr=ffn_ln_scale_attr,
                is_bias=False,
                default_initializer=Constant(1.0))
1194 1195 1196
            ffn_ln_bias = self.create_parameter(shape=[embed_dim],
                                                attr=ffn_ln_bias_attr,
                                                is_bias=True)
1197 1198 1199 1200 1201
            ffn1_weight = self.create_parameter(
                shape=[embed_dim, dim_feedforward],
                attr=ffn1_weight_attr,
                dtype=self._dtype,
                is_bias=False)
1202 1203 1204 1205
            ffn1_bias = self.create_parameter(shape=[dim_feedforward],
                                              attr=ffn1_bias_attr,
                                              dtype=self._dtype,
                                              is_bias=True)
1206 1207 1208 1209 1210
            ffn2_weight = self.create_parameter(
                shape=[dim_feedforward, embed_dim],
                attr=ffn2_weight_attr,
                dtype=self._dtype,
                is_bias=False)
1211 1212 1213 1214
            ffn2_bias = self.create_parameter(shape=[embed_dim],
                                              attr=ffn2_bias_attr,
                                              dtype=self._dtype,
                                              is_bias=True)
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300

            # tensor model parallel
            if nranks > 1:
                # column parallel
                _set_var_distributed(qkv_weight)
                _set_var_distributed(qkv_bias)
                _set_var_distributed(ffn1_weight)
                _set_var_distributed(ffn1_bias)
                # row parallel
                _set_var_distributed(linear_weight)
                _set_var_distributed(ffn2_weight)

            self.ln_scales.append(ln_scale)
            self.ln_biases.append(ln_bias)
            self.qkv_weights.append(qkv_weight)
            self.qkv_biases.append(qkv_bias)
            self.linear_weights.append(linear_weight)
            self.linear_biases.append(linear_bias)

            self.ffn_ln_scales.append(ffn_ln_scale)
            self.ffn_ln_biases.append(ffn_ln_bias)
            self.ffn1_weights.append(ffn1_weight)
            self.ffn1_biases.append(ffn1_bias)
            self.ffn2_weights.append(ffn2_weight)
            self.ffn2_biases.append(ffn2_bias)

        self.dropout_rate = dropout_rate
        self.activation = activation
        self.name = name

    def forward(self, src, attn_mask=None, caches=None, time_step=None):
        """
        Applies multi transformer layers on the input.

        Parameters:
            src (Tensor): The input of Transformer layers. It is
                a tensor with shape `[batch_size, sequence_length, d_model]`.
                The data type should be float16 or float32.
            attn_mask (Tensor, optional): A tensor used in multi-head attention
                to prevents attention to some unwanted positions, usually the
                paddings or the subsequent positions. It is a tensor with shape
                `[batch_size, 1, sequence_length, sequence_length]`. It can be
                None when nothing wanted or needed to be prevented attention to.
                Default None.
            caches (list(Tensor)|tuple(Tensor), optional): The cache structure
                tensors for the inference generation model. It is only used for
                inference and should be None for training. The shape is
                `[2, batch_size, num_head, max_seq_len, head_dim]`. Default None.
            time_step (Tensor, optional): The time step tensor for the generation
                model. Which used in decode stage, to represent the time step,
                that is, the real seq_len of CacheKV. The shape is `[1]`, must be
                in CPUPlace. Default None.

        Returns:
            Tensor|tuple: If `caches` is None, return a tensor that has
            the same shape and data type with `src`, representing the output
            of Transformer layers. If `caches` is not None, return the
            tuple (output, caches), which output is the output of
            Transformer layers, caches is inplace with input `caches`.
        """

        if caches is not None:
            assert len(caches) == len(self.qkv_weights)
        out = incubate_f.fused_multi_transformer(
            src,
            self.ln_scales,
            self.ln_biases,
            self.qkv_weights,
            self.qkv_biases,
            self.linear_weights,
            self.linear_biases,
            self.ffn_ln_scales,
            self.ffn_ln_biases,
            self.ffn1_weights,
            self.ffn1_biases,
            self.ffn2_weights,
            self.ffn2_biases,
            pre_layer_norm=self.normalize_before,
            epsilon=self._epsilon,
            cache_kvs=caches,
            time_step=time_step,
            attn_mask=attn_mask,
            dropout_rate=self.dropout_rate,
            activation=self.activation,
            training=self.training,
            mode='upscale_in_train',
1301
            trans_qkvw=self._trans_qkvw,
1302 1303 1304
            ring_id=self._ring_id,
            name=self.name)
        return out