Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
99b3727d
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
99b3727d
编写于
6月 28, 2022
作者:
Y
Yuang Liu
提交者:
GitHub
6月 28, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[fused_transformer] update transformer fustion for dygraph, test=allcases (#43858)
上级
72116696
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
167 addition
and
9 deletion
+167
-9
python/paddle/fluid/dygraph/amp/auto_cast.py
python/paddle/fluid/dygraph/amp/auto_cast.py
+4
-0
python/paddle/fluid/tests/unittests/test_fused_transformer_with_amp_decorator.py
...ts/unittests/test_fused_transformer_with_amp_decorator.py
+74
-0
python/paddle/incubate/nn/functional/fused_transformer.py
python/paddle/incubate/nn/functional/fused_transformer.py
+4
-2
python/paddle/incubate/nn/layer/fused_transformer.py
python/paddle/incubate/nn/layer/fused_transformer.py
+85
-7
未找到文件。
python/paddle/fluid/dygraph/amp/auto_cast.py
浏览文件 @
99b3727d
...
...
@@ -173,6 +173,10 @@ def pure_fp16_initialize(models):
paddle
.
nn
.
BatchNorm2D
,
paddle
.
nn
.
BatchNorm3D
,
paddle
.
nn
.
LayerNorm
,
paddle
.
nn
.
SyncBatchNorm
)):
continue
if
isinstance
(
layer
,
(
paddle
.
incubate
.
nn
.
FusedFeedForward
,
paddle
.
incubate
.
nn
.
FusedMultiHeadAttention
)):
layer
.
_amp_decorate
(
dtype
=
'float16'
)
continue
layer
.
_to_impl
(
dtype
=
'float16'
,
include_sublayers
=
False
,
floating_only
=
True
)
...
...
python/paddle/fluid/tests/unittests/test_fused_transformer_with_amp_decorator.py
0 → 100644
浏览文件 @
99b3727d
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle
import
paddle.nn
as
nn
from
paddle.incubate.nn.layer.fused_transformer
import
FusedMultiHeadAttention
,
FusedFeedForward
import
unittest
class
PreModel
(
nn
.
Layer
):
def
__init__
(
self
):
super
(
PreModel
,
self
).
__init__
()
self
.
attn
=
FusedMultiHeadAttention
(
embed_dim
=
1024
,
num_heads
=
16
,
normalize_before
=
False
,
)
self
.
ffn
=
FusedFeedForward
(
d_model
=
1024
,
dim_feedforward
=
4096
,
normalize_before
=
False
)
def
forward
(
self
,
x
):
x
=
self
.
attn
(
x
)
x
=
self
.
ffn
(
x
)
class
PostModel
(
nn
.
Layer
):
def
__init__
(
self
):
super
(
PostModel
,
self
).
__init__
()
self
.
attn
=
FusedMultiHeadAttention
(
embed_dim
=
1024
,
num_heads
=
16
,
normalize_before
=
True
,
)
self
.
ffn
=
FusedFeedForward
(
d_model
=
1024
,
dim_feedforward
=
4096
,
normalize_before
=
True
)
def
forward
(
self
,
x
):
x
=
self
.
attn
(
x
)
x
=
self
.
ffn
(
x
)
class
TestFusedTransformerWithAmpDecorator
(
unittest
.
TestCase
):
def
get_model
(
self
):
self
.
pre_model
=
PreModel
()
self
.
post_model
=
PostModel
()
def
test_run
(
self
):
self
.
get_model
()
pre_model
=
paddle
.
amp
.
decorate
(
models
=
self
.
pre_model
,
level
=
'O2'
,
save_dtype
=
'float32'
)
post_model
=
paddle
.
amp
.
decorate
(
models
=
self
.
post_model
,
level
=
'O2'
,
save_dtype
=
'float32'
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/incubate/nn/functional/fused_transformer.py
浏览文件 @
99b3727d
...
...
@@ -526,8 +526,10 @@ def fused_multi_head_attention(x,
0
]
==
3
,
"The shape of qkv_weight should be [3, num_head, head_dim, embed_dim]."
assert
qkv_weight
.
shape
[
3
]
==
x
.
shape
[
2
],
"The 3rd dim of qkv_weight and 2nd dim of x should be the same, i.e., embed_dim."
assert
qkv_weight
.
shape
[
1
]
*
qkv_weight
.
shape
[
2
]
==
qkv_weight
.
shape
[
3
],
"embed_dim must be divisible by num_heads."
if
ring_id
==
-
1
:
# under mp, the num head will be split, this equation will not hold
assert
qkv_weight
.
shape
[
1
]
*
qkv_weight
.
shape
[
2
]
==
qkv_weight
.
shape
[
3
],
"embed_dim must be divisible by num_heads."
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
cache_kv_out
,
final_out
=
_C_ops
.
fused_attention
(
x
,
pre_ln_scale
,
pre_ln_bias
,
qkv_weight
,
qkv_bias
,
cache_kv
,
...
...
python/paddle/incubate/nn/layer/fused_transformer.py
浏览文件 @
99b3727d
...
...
@@ -18,8 +18,11 @@ from paddle.framework import ParamAttr
import
paddle
from
paddle.nn.layer.transformer
import
_convert_attention_mask
,
_convert_param_attr_to_list
from
paddle.nn.initializer
import
Constant
import
collections
from
paddle.fluid.dygraph
import
no_grad
from
paddle.fluid.framework
import
convert_np_dtype_to_dtype_
,
_non_static_mode
from
paddle.fluid.core
import
VarDesc
from
paddle.fluid
import
core
import
numpy
as
np
# for distributed tensor model parallel
...
...
@@ -29,11 +32,48 @@ def _set_var_distributed(var):
var
.
is_distributed
=
True
# NOTE: use current_block and find_var_recursive to support while_loop
startup_block
=
paddle
.
static
.
default_startup_program
().
current_block
()
main_block
=
paddle
.
static
.
default_main_program
().
current_block
()
startup_block
.
_find_var_recursive
(
var
.
name
).
is_distributed
=
True
main_block
.
_find_var_recursive
(
var
.
name
).
is_distributed
=
True
if
not
_non_static_mode
():
# NOTE: use current_block and find_var_recursive to support while_loop
startup_block
=
paddle
.
static
.
default_startup_program
().
current_block
()
main_block
=
paddle
.
static
.
default_main_program
().
current_block
()
startup_block
.
_find_var_recursive
(
var
.
name
).
is_distributed
=
True
main_block
.
_find_var_recursive
(
var
.
name
).
is_distributed
=
True
def
_to_dtype
(
t
,
dtype
):
# this function is a prune of Layer._transform function to fix fused op under amp.decorator(O2)
if
not
paddle
.
is_floating_point
(
t
):
return
t
if
type
(
dtype
)
is
not
VarDesc
.
VarType
:
dtype
=
convert_np_dtype_to_dtype_
(
dtype
)
if
t
.
place
.
is_gpu_place
():
size_dtype
=
core
.
size_of_dtype
(
dtype
)
waiting_alloc_memory
=
(
(
np
.
prod
(
t
.
shape
)
*
size_dtype
)
/
256
+
1
)
*
256
*
1.2
gpu_memory_available
=
core
.
gpu_memory_available
()
if
gpu_memory_available
<
waiting_alloc_memory
:
t_used
=
t
.
_copy_to
(
paddle
.
CPUPlace
(),
False
)
t
.
value
().
get_tensor
().
_clear
()
else
:
t_used
=
t
else
:
t_used
=
t
if
dtype
is
not
None
and
dtype
!=
t_used
.
dtype
:
with
paddle
.
fluid
.
framework
.
_dygraph_place_guard
(
place
=
t_used
.
place
):
t_casted
=
t_used
.
cast
(
dtype
=
dtype
)
else
:
t_casted
=
t_used
new_t
=
t_casted
dst_tensor
=
t
.
value
().
get_tensor
()
src_tensor
=
new_t
.
value
().
get_tensor
()
dst_tensor
.
_share_data_with
(
src_tensor
)
return
t
class
FusedBiasDropoutResidualLayerNorm
(
Layer
):
...
...
@@ -374,6 +414,25 @@ class FusedMultiHeadAttention(Layer):
self
.
attn_dropout_rate
,
self
.
_epsilon
,
self
.
kdim
,
self
.
vdim
,
self
.
normalize_before
,
self
.
need_weights
,
self
.
_dtype
,
name_str
)
def
_amp_decorate
(
self
,
dtype
):
# tmp fix for amp.decorator(O2)
layer_norm_params_id
=
[]
if
self
.
normalize_before
:
layer_norm_params_id
.
append
(
id
(
self
.
pre_ln_scale
))
layer_norm_params_id
.
append
(
id
(
self
.
pre_ln_bias
))
else
:
layer_norm_params_id
.
append
(
id
(
self
.
ln_scale
))
layer_norm_params_id
.
append
(
id
(
self
.
ln_bias
))
for
key
,
param
in
self
.
_parameters
.
items
():
if
id
(
param
)
in
layer_norm_params_id
:
continue
if
param
is
not
None
:
with
no_grad
():
param_applied
=
_to_dtype
(
param
,
dtype
)
self
.
_dtype
=
dtype
class
FusedFeedForward
(
Layer
):
"""
...
...
@@ -559,6 +618,25 @@ class FusedFeedForward(Layer):
self
.
_epsilon
,
self
.
_act_method
,
self
.
_act_dropout_rate
,
self
.
_normalize_before
,
self
.
_dtype
,
name_str
)
def
_amp_decorate
(
self
,
dtype
):
# tmp fix for amp.decorator(O2)
layer_norm_params_id
=
[]
if
self
.
_normalize_before
:
layer_norm_params_id
.
append
(
id
(
self
.
_ln1_scale
))
layer_norm_params_id
.
append
(
id
(
self
.
_ln1_bias
))
else
:
layer_norm_params_id
.
append
(
id
(
self
.
_ln2_scale
))
layer_norm_params_id
.
append
(
id
(
self
.
_ln2_bias
))
for
key
,
param
in
self
.
_parameters
.
items
():
if
id
(
param
)
in
layer_norm_params_id
:
continue
if
param
is
not
None
:
with
no_grad
():
param_applied
=
_to_dtype
(
param
,
dtype
)
self
.
_dtype
=
dtype
class
FusedTransformerEncoderLayer
(
Layer
):
"""
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录